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Abstract

In the case of ground-based telescopes equipped with adaptive optics systems, the point spread function (PSF) is only poorly

known or completely unknown. Moreover, an accurate modeling of the PSF is in general not available. Therefore in several

imaging situations the so-called blind deconvolution methods, aiming at estimating both the scientific target and the PSF from the

detected image, can be useful. A blind deconvolution problem is severely ill-posed and, in order to reduce the extremely large

number of possible solutions, it is necessary to introduce sensible constraints on both the scientific target and the PSF.

In a previous paper we proposed a sound mathematical approach based on a suitable inexact alternating minimization strategy

for minimizing the generalized Kullback–Leibler divergence, assuring global convergence. In the framework of this method we

showed that an important constraint on the PSF is the upper bound which can be derived from the knowledge of its Strehl ratio.

The efficacy of the approach was demonstrated by means of numerical simulations.

In this paper, besides improving the previous approach by the use of a further constraint on the unknown scientific target, we

extend it to the case of multiple images of the same target obtained with different PSFs. The main application we have in mind

is to Fizeau interferometry. As it is known this is a special feature of the Large Binocular Telescope (LBT). Of the two expected

interferometers for LBT, one, LINC-NIRVANA, is forthcoming while the other, LBTI, is already operating and has provided the

first Fizeau images, demonstrating the possibility of reaching the resolution of a 22.8 m telescope. Therefore the extension of our

blind method to this imaging modality seems to be timely.

The method is applied to realistic simulations of imaging both by single mirrors and Fizeau interferometers. Successes and

failures of the method in the imaging of stellar fields are demonstrated in simple cases. These preliminary results look promising

at least in specific situations. The IDL code of the proposed method is available on request and will be included in the forthcoming

version of the Software Package AIRY (v.6.1).
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1. Introduction

In a previous paper (Prato et al., 2013) we proposed a blind

deconvolution method for ground-based telescopes equipped

with an adaptive optics (AO) system. Assuming that the image

and the corresponding background are known, then the features

of the method are the following:

• formulation of the problem as a constrained minimization

of the data fidelity function in the case of Poisson noise

(photon counting), namely a generalized Kullback–Leibler

divergence depending on the unknown astronomical target

(in the following called the object) and on the unknown

point spread function (PSF);

• non-negativity of the object;
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• non-negativity of the PSF and normalization to unit vol-

ume;

• upper bound on the PSF values derived from the knowl-

edge of the Strehl ratio (SR), as suggested by Desiderà

and Carbillet (2009);

• use of the inexact alternating minimization method pro-

posed by Bonettini (2011) and based on the scaled gradi-

ent projection (SGP) method (Bonettini et al., 2009; Prato

et al., 2012).

The method is iterative and at each outer iteration the object and

the PSF are updated by means of given (but arbitrary) numbers

of inner iterations of SGP. We remark that when SGP is applied

to the object only projection on the non-negative orthant is re-

quired while, in the case of the PSF, the projection is performed

on the convex and closed set defined by the box and equality

constraints.

Our proposed method is similar to blind methods based on

the Richardson–Lucy (RL) algorithm (Richardson, 1972; Lucy,

1974) or its accelerated versions, such as those proposed in

Holmes (1992); Tsumuraya et al. (1994); Fish et al. (1995);

Preprint submitted to New Astronomy July 26, 2017



Biggs and Andrews (1998) for the case of single image and

in Desiderà et al. (2006) for the case of multiple images, appli-

cable to Fizeau interferometry. But the advantage of using SGP

in place of RL is double: first, as proved in Bonettini (2011),

global convergence of the iteration holds true, i.e. any limit

point of the sequence is a stationary point of the constrained KL

divergence; secondly it is possible to introduce box and equal-

ity constraints on the different blocks of variables (object and

PSF).

Therefore the novelty of the method is that it is based on a

sound mathematical approach and allows, in an easy way, the

introduction of important constraints on the PSF such as the

Strehl constraint, preventing the appearance of trivial solutions

such as a delta function.

The method, in its present form, does not consider the use

of regularization for the object or the PSF, in addition to that

provided by the constraints mentioned above. We remark that

it is quite easy to introduce as an additional constraint on the

object the value of its flux (namely, its ℓ1 norm), as derived from

the detected images and the knowledge of the background. This

constraint, enforcing the sparsity of the object, is considered in

this paper. If we select a large number of inner iterations on the

object variables, the method is suitable for the reconstruction

of star systems, as already remarked in Prato et al. (2013); this

result is confirmed in this paper by means of simulations more

realistic than those used in that paper.

However the main contribution of this paper is the extension

of the method to the case of Fizeau interferometry. As it is

known this is a specific feature of the Large Binocular Tele-

scope which consists of two 8.4 m mirrors situated on a com-

mon mount with a center to center distance of 14.4 m. Indeed,

this structure is suitable for Fizeau interferometry which should

provide images with the resolution of a 22.8 m telescope in the

direction of the baseline joining the center of the two mirrors

and that of a 8.4 m telescope in the orthogonal direction. Dif-

ferent images of the same target corresponding to different ori-

entations of the baseline can be combined by suitable decon-

volution methods to provide a unique reconstructed image with

the highest resolution in all directions (Bertero et al., 2011).

Two interferometers are planned for LBT: the forthcoming

LINC-NIRVANA (Herbst et al., 2003), in advanced realiza-

tion stage by a German–Italian consortium leaded by MPIA,

Heidelberg, and the NASA funded LBTI (Wilson et al., 2008;

Bailey et al., 2014) already operating on Mount Graham. In-

deed, images of the Jupiter moon Io were obtained with

LBTI/LMIRcam during UT 2013 December 24, showing that

the resolution of a 22.8 m is reachable (Leisenring et al., 2014)

and thus proving that LBT is the first in a class of extremely

large telescopes (ELT).

All the methods developed for Fizeau interferometry are also

applicable to other situations where multiple images of the

same target, corresponding to different PSFs, are available such

as the co-adding problem in Astronomy (Lucy and Hook, 1992)

or the multiple image method used in STED microscopy for im-

proving the signal-to-noise ratio (Castello et al., 2014).

For this reason we present in Sect. 2 our blind method with-

out a specific reference to Fizeau interferometry but just as a

method for multiple image deconvolution in the case of Pois-

son noise, including, as it is obvious, the case of a single image

as a particular case. In the same section we discuss the intrinsic

limitations of our constrained blind deconvolution, a discussion

which is possible in our sound mathematical framework.

In the simulations intended to validate the method we focus

on LBT which is equipped with a very innovative AO system,

the so-called First Light AO (FLAO) system (Esposito et al.,

2010), providing SR values up to 0.9 in K-band. Therefore for

single image simulations we use models of the PSF of such a

system. On the other hand, for multiple image deconvolution

we consider images generated by means of PSFs computed for

the interferometer LINC-NIRVANA (LN) in K band. Since the

camera of LINC-NIRVANA has a pixel size of ∼5 mas while

the LMIRcam of LBTI has a pixel size of 10.7 mas, the shape

of the PSFs of LN in K band (2.2 µm) is similar to the shape of

the PSFs of LBTI in M band (4.8 µm). Obviously the properties

of the images may be very different. Details on image modeling

and simulation are given in Sect. 3.

Finally in Sect. 4 we discuss our numerical results in the case

of binary systems and “open cluster” models. Conclusions are

sketched in Sect. 5.

2. Method

We assume that p different images of the scientific object,

with p different PSFs are available. The case of a single aper-

ture telescope obviously corresponds to p = 1 if only one im-

age has been acquired; if different observations have been per-

formed at different times, hence with PSFs corresponding to

different AO corrections, then the approach can be used for the

co-adding of these images.

Let f be the unknown astronomical object and let K j be the

unknown PSFs (each one normalized to unit volume) corre-

sponding to the detected images g j for j = 1, ..., p (we as-

sume for simplicity a space-invariant model), then we define

as A j f = K j ∗ f the corresponding imaging matrices. Moreover

we denote as b j the expected value of the background emission

in image g j and we assume that it is known, so that the expected

value of g j is given by A j f + b j.

Since it is quite natural to assume that the p images are statis-

tically independent, the likelihood of the problem is the product

of the likelihoods of the different images. We assume that they

are perturbed by Poisson noise. Then, by taking the negative

logarithm of the likelihood we obtain the following data-fidelity

function which is the sum of p Kullback–Leibler (KL) general-

ized divergences, also known as Csiszár I-divergences (Csiszár,

1991), one for each image, i.e.

J0( f , K1, ..., Kp; g, b) = (1)
p
∑

j=1

∑

m∈S

{

g j(m)ln
g j(m)

(A j f )(m) + b j(m)
+

(A j f )(m) + b j(m) − g j(m)
}

,

where S is the set of the values of the multi-index m character-

izing the pixels of the image array, and (g, b) = {(g j, b j)}
p

j=1
.
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The problem of image deconvolution (without regularization)

consists in the minimization of this function with respect to f

for given PSFs, images and backgrounds. The minimization

can be obtained by means of RL in the single image case, by

means of OS-EM method (Hudson and Larkin, 1994; Bertero

and Boccacci, 2000) in the multiple image case, or by means of

SGP method (Bonettini et al., 2009; Prato et al., 2012) in both

cases. As shown in Prato et al. (2012) SGP is more efficient

than OS-EM if the number p of images is not too large.

2.1. Blind deconvolution: problem formulation

If images and backgrounds are given, the ML approach to

blind deconvolution can be formulated as the minimization of

the function in Eq. (1) with respect to p+ 1 blocks of unknown

variables, namely the object f and the p PSFs K j, j = 1, ..., p.

As it is known, this function is convex with respect to each

block of variables for fixed values of the others, but is not con-

vex with respect to the full set of variables (Prato et al., 2013).

Therefore blind deconvolution is a difficult problem of noncon-

vex optimization. Moreover, this problem is highly ill-posed

and allows uninteresting solutions. For instance, a global min-

imum can be achieved by choosing f = g − b and K j = δ,

j = 1, . . . , p, where δ is the Dirac delta array. This trivial mini-

mizer can be avoided by the introduction of suitable regulariza-

tion terms and constraints.

Since we mainly consider the case of stellar fields or, in other

words, of sparse objects, by taking into account the sparsity

property of the minimizers of the KL divergence in the case of

image deconvolution (Bertero et al., 2009), we do not introduce

an object-dependent regularization term in the objective func-

tion. However, besides non-negativity of the object we also in-

troduce a constraint on its flux; more precisely we require that

the object flux coincides with the average flux of the p detected

images (after background subtraction), which is given by

c =
1

p

p
∑

j=1

∑

m∈S

{g j(m) − b j(m)} . (2)

We remark that this constraint is further enforcing sparsity; in

the case of deconvolution and zero value of the backgrounds,

it is automatically satisfied by the minimizers of the KL diver-

gence.

As concerns the PSFs, as shown in Desiderà and Carbillet

(2009) and Prato et al. (2013), an important constraint is the

upper bound derived from the knowledge of the SR character-

izing the AO correction of the atmospheric blur during the ob-

servation. Moreover, non-negativity and normalization provide

additional constraints. In conclusion, the nonconvex optimiza-

tion problem we are considering can be formulated as follows

min J0( f , K1, ..., Kp; g, b) (3)

s.t. f ≥ 0 ,
∑

n∈S

f (n) = c ;

0 ≤ K j ≤ s j ,
∑

n∈S

K j(n) = 1 ; j = 1, ..., p ,

where s j is the upper bound on the PSF K j derived from the

knowledge of the SR characterizing the acquisition of g j. In

conclusion the data of the problem are (g, b) and s = {s j}
p

j=1
.

Another important constraint can be provided by the require-

ment of band-limiting of the PSFs, which is used for instance

in Desiderà et al. (2006). Indeed the band of the PSF, i.e the

set in Fourier space where the Fourier transform of the PSF is

not zero, is known and consists, in general, of a disc in the case

of a single aperture telescope and a union of three discs in the

case of a Fizeau interferometer with LBT, the central one being

the band of the mirrors of LBT and the side-ones the replicas

due to interferometry (see, for instance, Bertero et al., 2011).

This constraint on the Fourier transform of the PSF, together

with normalization and upper and lower bounds, defines a con-

vex set. Unfortunately, since we use projection methods, the

projection of an array on this set is not easily computable, even

if methods for computing the projection on the intersection of

convex sets are available. The difficulty is that these methods

are not efficient and therefore can lead to an excessive compu-

tational cost since the projection should be computed several

times in the used iterative methods. However, from the numeri-

cal experiments described in Prato et al. (2013) we deduce that

a suitable initialization of our algorithm, based on a PSF sat-

isfying the band constraint, may lead to a set of reconstructed

PSFs whose bands are very close to the desired ones.

2.2. Blind deconvolution: alternating minimization

Although the previous formulation of blind deconvolution re-

quires the minimization of a nonconvex objective function, the

constraints have a nice separable structure, since they involve

separately the blocks of variables, defining a feasible convex

set for each of them. In addition, the function is convex with

respect to the different blocks of variables. In these settings, the

solution of problem (3) can be sought by means of an alternat-

ing minimization (AM) strategy.

The basic idea of AM is the cyclic minimization for the con-

strained problem with respect to one block of variables, updat-

ing its value for the next minimization step. This kind of ap-

proach is known in the literature also as nonlinear Gauss–Seidel

or block coordinate descent method and its theoretical proper-

ties have been deeply studied in the last decades (Bertsekas,

1999; Grippo and Sciandrone, 1999, 2000; Luo and Tseng,

1992).

In our case, each iteration of the AM method consists in solv-

ing the following p + 1 constrained minimization problems of

convex functions

f (k+1) = arg min f∈ΩJ0( f , K
(k)

1
, ..., K(k)

p ; g, b) (4)

K
(k+1)

1
= arg minK∈Ω1

J0( f (k+1), K, ..., K(k)
p ; g, b)

...

K(k+1)
p = arg minK∈Ωp

J0( f (k+1), K
(k+1)

1
, ..., K; g, b) ,

where k is an index running on the AM iterations, Ω is the set

of the constraints on the object f and Ω j is the set of the con-

straints on the PSF K j. The limit points of the sequence gener-

ated by this iteration scheme are also stationary points for the

3



constrained problem if each partial problem is the minimiza-

tion of a strictly convex function (Bertsekas, 1999). This con-

dition is not only sufficient but also necessary when more than

two blocks of variables are involved. Indeed, Powell (1973)

showed a counterexample where the strict convexity is not satis-

fied, three blocks of variables are involved and the AM method

fails to locate stationary points.

Even when the hypothesis of strict convexity on each block

of variables holds true, the convergence of the AM scheme can

be proved only if each partial minimization problem is solved

exactly, which is often impractical or too costly (in general it-

erative methods are used). Quite surprisingly the convergence

result is obtained without the assumption of strict convexity if

SGP is used for solving inexactly the partial minimization prob-

lems. This important result is proved in Bonettini (2011) and is

basic for the proposed approach to blind deconvolution.

In conclusion, at each line of Eq. (4) the minimization is

replaced by a given number of SGP iterations. These will be

called inner iterations while the iterations of the AM scheme

will be called outer iterations. Therefore the sequence gener-

ated by the method depends both on the initialization of the

first outer iteration (in the subsequent outer iterations the inner

iterations are initialized with the results derived from the previ-

ous one) and on the given numbers of inner iterations for each

block of variables. In the present application it seems quite nat-

ural to choose the same number of inner iterations for all the

PSF’s blocks.

2.3. SGP algorithm

Since it is basic for the solution of the partial minimization

problems it may be useful to briefly recall the main points of

the SGP algorithm (Bonettini et al., 2009) even if its applica-

tion to astronomical imaging has already been described else-

where (Prato et al., 2012; Bonettini and Prato, 2010, 2014). To

this purpose we remark that each minimization problem in the

iterative scheme of Eq. (4) has the following structure

min
h∈Ω

J0(h) , (5)

where, for simplicity, we omitted the dependence on the other

variables andΩ is the closed and convex set defined by the con-

straints. The main difference with respect to Prato et al. (2012)

is that Ω is a subset of the non-negative orthant defined by a

suitable equality constraint. Therefore the projection on this set

is more complex than that on the non-negative orthant.

The main step of SGP is the computation of the kth feasi-

ble descent direction (where k is an index running on the inner

iterations of a given AM iteration)

d(k) = PΩ,D−1
k

(h(k) − αkDk∇J0(h(k))) − h(k)

by performing the following steps:

a) The direction provided by the negative gradient −∇J0(h(k))

is modified by a diagonal scaling matrix Dk with positive

entries, which in all the subproblems of one AM iterations

is given by

Dk = diag
(

min(L2,max(L1, h
(k))
)

, (6)

(L1, L2) being given constants estimated from the extreme

values of the image.

b) A point on the scaled gradient direction is selected by

choosing a multiplicative factor αk by means of an al-

ternation of the generalized Barzilai–Borwein (BB) rules

(Barzilai and Borwein, 1988; Bonettini et al., 2009)

α
(BB1)

k
=

(s(k−1))T D−1
k

D−1
k

s(k−1)

(s(k−1))T D−1
k

z(k−1)
, (7)

α
(BB2)

k
=

(s(k−1))T Dk z(k−1)

(z(k−1))T DkDk z(k−1)
,

where s(k−1) = h(k) − h(k−1) and z(k−1) = ∇J0(h(k)) −

∇J0(h(k−1)), and a suitable introduction of upper and lower

bounds.

c) The resulting point is brought back in the feasible set Ω

by means of the projection PΩ,D−1
k

associated to the norm

induced by D−1
k

, i.e.

PΩ,D−1
k

(h) = arg miny∈Ω(h − y)T D−1
k (h − y). (8)

Since the feasible sets of both the object and the PSFs in-

volve a given number of inequalities plus an equality con-

straint, in all cases we used a secant-based routine devel-

oped by Dai and Fletcher (2006), which is able to compute

the projection with a computational cost growing linearly

in time with respect to the image size (see also Prato et al.,

2013).

2.4. Discussion

In the previous approach, the blind deconvolution problem

is formulated as the constrained minimization of a nonconvex

function which depends on an extremely large number of vari-

ables, about 106 in the numerical experiments described in this

paper. Since the constraints used in our approach imply that the

sequences of objects and PSFs generated by the inexact AM

method are bounded, it follows that these sequences have limit

points. We can add that, even if it is difficult to provide a the-

oretical evidence of the existence of a unique limit point, in

all our numerical experiments the sequences produced by the

inexact AM method have a convergent behavior. However, ac-

cording to the general convergence result proved in Bonettini

(2011), we can only state that the limit points are stationary

points of the function, hence not necessarily minimizers.

As far as we know, there is no practical way for establishing

if these points are minimizers or not. In fact, it should be nec-

essary to manage the Hessian of the function in these points but

this is an absolutely intractable matrix even if one can write it

explicitly (Prato et al., 2013). Since one can use different ini-

tializations of the iterative procedure and different numbers of

inner iterations and these different choices can produce differ-

ent results, in a practical application we do not see an approach

better than that of doing different attempts and look for that

providing the most sensible solution.

4



An additional difficulty is that it may happen, as we show

by some numerical simulations, that a sensible solution cor-

responds to a value of the objective function which is greater

than the value of the same function corresponding to a solution

which is clearly unphysical. It is obvious that these situations

should not be surprising because the problem of blind decon-

volution is nonconvex and therefore the objective function can

have several local minimizers as well as stationary points. Since

the objective function has a simple structure it should be impor-

tant to characterize the sets of these points, but an approach to

this problem presently is not available, as far as we know.

The advantage of our method is that it is mathematically

sound, it provides sequences with limit points, very frequently

with a unique limit point and therefore, if the user is conscious

of the difficulties of the problem, he can attempt to use this

method for obtaining different solutions in practical applica-

tions and select that looking as the most appealing. In the next

section we attempt to provide a few hints for helping the user

in the choice of the parameters of the method and, in particular,

of its initialization.

3. Image simulation

We model the images according to the model proposed in

Snyder et al. (1994) for images acquired with a CCD camera,

i.e. each pixel is affected by background (due to sky emission,

dark current, etc.), photon counting noise (described by a Pois-

son distribution) and additive read-out noise (RON) described

by a Gaussian distribution.

If the RON variance is σ2, in the deconvolution process it

can be approximated by a Poisson distribution with parameter

σ2 if σ2 is added both to the detected images and the corre-

sponding backgrounds (Snyder et al., 1995). Therefore all the

pixel values of the detected images can be viewed as realiza-

tions of suitable Poisson random variables if in Eq. (1) we in-

tend that g j, b j have been modified according to this approach.

Therefore, in our numerical simulations we perturb the images

with Poisson and additive Gaussian noise but in the deconvo-

lution algorithms we use the images and backgrounds modified

as above.

All the images and the PSFs considered in our numerical ex-

periments are sized 256 × 256 pixels in the single image case,

with a pixel size of 15 mas, and 512×512 pixels in the multiple

image case, with a pixel size of 5 mas. Moreover all images,

except one indicated in Sect. 4.1.1, are obtained by adding 10

frames in order to avoid saturation of the detector, as we discuss

in the following, so that the variance of the RON will be 10 σ2.

3.1. Single image simulation

In this case we use two PSFs in K-band with SR = 0.81 and

0.62, respectively, modeling the optics of a single mirror of

LBT, with diameter 8.4 m, and the effect of the adaptive optics

system FLAO using the power spectrum of the wavefront resid-

ual of the AO correction as measured at the telescope (Esposito

et al., 2012). To the noise-free image, obtained by convolv-

ing the object with one of these PSFs, a background in K-band

is added and the result is corrupted with Poisson and additive

Gaussian noise. In order to avoid saturation of the detector (a

maximum number of 5 × 104 photons per pixel is assumed in

a single frame) the image is obtained by co-adding n frames.

More precisely, in the case of a stellar system the procedure for

image generation is the following.

• We establish the coordinates of the stars and we fix their

magnitudes in K-band.

• We compute the integration time which does not produce

saturation of the detector by taking into account the col-

lection area of the telescope, the overall efficiency of the

acquisition system (assumed equal to 30%), and the flux of

the brightest star multiplied by the peak value of the PSF.

This is the integration time of a single frame and is used

for computing the number of frames n required for obtain-

ing an acceptable SNR for all the stars of the system.

• We generate noise-free images by shifting, with sub-pixel

precision, the PSF to the positions of the stars and adding

these shifted PSFs, each one weighted with a weight corre-

sponding to the magnitude and the total observation time.

• These images are perturbed by adding a background in K-

band, corresponding to about 13.5 mag arcsec−2, and by

corrupting the results with Poisson and additive Gaussian

noise (RON); the variance of the RON is nσ2, thus corre-

sponding to the RON of n frames; we take σ = 10 e−/px.

3.2. Multiple image simulation

As concerns the simulation of LN images, we recall that the

instrument combines in a Fizeau mode the beams coming from

the two mirrors of LBT whose center-to-center distance is about

14.4 m. Therefore the maximum baseline available is 22.8 m

and the resolution achievable by a single LN image is that of a

22.8 m telescope in the direction of the baseline and that of a 8.4

m telescope in the orthogonal direction. For a given orientation

the PSF of LN looks as that of a 8.4 m telescope, modulated by

the interference fringes, orthogonal to the direction of the base-

line. In order to get a more uniform resolution one must acquire

and combine different images with different orientations of the

baseline.

It is important to remark that the orientation of the fringes

does not depend on the orientation of the baseline because the

camera is rotating with the baseline and therefore the fringes

have always the same direction (for instance the vertical one)

in the image array. In other words two images of the same

scientific object with two different orientations of the baseline

correspond to two rotated versions of that object. This specific

feature implies that one should introduce rotation matrices in

the formulation of the problem. However we verified that the

computation of hundreds or thousands of rotations in hundreds

or thousands of inner iterations introduces large computational

errors. Therefore we considered the approach which consists

in derotating the images in such a way that they correspond

to aligned versions of the object f . The price to be payed is

that the derotation of discrete images modifies their statistical
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properties. In order to estimate this effect we considered the

rotation of a constant array perturbed by Poisson noise. We

found the following results:

• before rotation the histogram of the array is a Gaussian

with the same mean and variance; after a rotation based on

spline interpolation the histogram is still a Gaussian with

the correct mean but a smaller variance;

• the support of the autocorrelation of the rotated image is a

3 × 3 square;

• if we use a different rotation approach which consists in

attributing the value of a pixel before rotation to the pixel

with maximum overlapping after rotation (nearest neigh-

bor approximation), the statistics is preserved but the qual-

ity of the image is degraded.

As a consequence of this analysis we decided to use in the ap-

proach derotated images.

The procedure adopted in our numerical experiments is sim-

ilar to that used in the case of a single image. We consider

two sets of PSFs in K-band with SR respectively 0.77 and 0.46,

corresponding to orientation angles of the baseline indicated as

0◦, 60◦ and 120◦, all with vertical fringes (for simplicity we

take the same SR for the three orientations). The first PSF of

each set has been generated by means of the software package

LOST (Arcidiacono et al., 2004), the second by reflecting the

first one with respect to the central line and the third by taking

the arithmetic mean of the first two. In this way the three PSF of

each set have exactly the same SR. Then the generation of the

corresponding LN images is similar to that of the single image

case by modifying the first item as follows.

• We establish the coordinates of the stars corresponding to

the observation at 0◦ and we compute, with sub-pixel pre-

cision, their coordinates if the system is rotated by 60◦ and

120◦ respectively.

The rest of the procedure is unchanged and applied to the three

images but at the end we must add the following item.

• The images corresponding to 60◦ and 120◦ are derotated

in order to align the object in the three images and three

arrays containing the object are extracted from the full im-

ages.

The derotated images are used in the definition of the objec-

tive function and in the blind algorithm, which therefore will

produce derotated PSFs.

4. Numerical results

In order to evaluate the quality of the reconstructions ob-

tained with our blind method we need some figures of merit.

As concerns the reconstruction of a binary we consider the

relative absolute error on the magnitudes of both stars while in

the case of a stellar system we consider a magnitude average

relative error (MARE) defined by

MARE =
1

q

q
∑

i=1

|mi − m̃i|

m̃i

, (9)

where q is the number of stars and mi, m̃i are respectively the

reconstructed and the true magnitudes.

As concerns PSF reconstruction, in the case of single im-

age we consider the root-mean-square error with respect to the

true one, defined as usual in terms of the ℓ2 norm of their dif-

ference. In the case of LN images generated according to the

previous procedure, since the blind algorithm produces a set

of three PSFs, two of them being derotated with respect to the

ones used for generating the images, for comparison we must

derotate the original ones. If we denote as K̃ j the derotated orig-

inal PSF, then we measure the quality of the reconstruction by

means of the root-mean-square error (RMSE)

ρ j =
‖K j − K̃ j‖

‖K̃ j‖
, (10)

where K j is the reconstructed PSF and ‖ · ‖ denotes the usual

ℓ2-norm.

4.1. Binary systems

We first consider the simple case of binary systems. More

precisely we consider nine cases by varying both separation

and magnitude of the stars. By keeping fixed the magnitude

of the primary, i.e. m1 = 15, we take for the magnitude of the

secondary m2 = 15, 16 and 17. Moreover for each choice we

consider three possible angular separations: d = 60, 120 and

240 mas in the single image case and d = 20, 40 and 80 mas

in the LN case. In both cases the first separation corresponds

to the resolution limit of the instrument while the last is four

times larger. In all cases, as described in the previous section,

we compute the integration time of a frame in such a way that

the number of counts in the image pixel corresponding to the

position of the primary does not exceed 5 × 104. As stated in

the previous section, we consider 10 frames per image, both in

the single and in the multiple image case, so that the peak value

of the photons is about 5 × 105 for all images. Since in the case

of LN we have three images, in this case the SNR is higher than

in the single image case.

In Fig. 1 we show the images of the binaries with m1 = m2 =

15 and different angular separations; in the first row those of the

single image case and in the second row those of the multiple

image case corresponding to the 0◦ baseline, all obtained with

the PSF with the highest SR. The difficulty in reconstructing the

binary with separation d = 20 mas is obvious.

4.1.1. Single image

For the convenience of the reader we give the computed inte-

gration time avoiding saturation in a single frame: 40 sec for SR

= 0.81 and 52 s for SR = 0.62. As already stated the images are

obtained by adding 10 frames. These are the input images of

the blind algorithm together with the value of the background.
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In a first attempt we use the initialization already used in

Prato et al. (2013) and in other papers, namely a constant array

for the object and the autocorrelation of the diffraction-limited

PSF for the PSF. Indeed, this initialization has produced very

promising results in our previous paper, where a much higher

SNR was assumed. We use 1000 outer iterations in the case SR

= 0.81 and 2000 outer iterations in the case SR = 0.62. Indeed

in the case of a lower SR we have a lower quality of the images

and, presumably, a larger number of iterations is required. As

concerns the inner iterations, as in Prato et al. (2013) we use 50

SGP iterations for the object and one SGP iteration for the PSF.

In Table 1 we give the results obtained with the previous

choice. As a first remark, the binaries and the PSFs are re-

constructed satisfactorily in all cases except the closest binaries

(d = 60 mas) with different magnitudes. Indeed, the indica-

tion 100% in the column for ∆m2/m2 means that the method

reconstructs only one star, which sometimes is not exactly in

the position of the primary but slightly shifted in the direction

of the secondary. Since its magnitude is computed using a 3×3

square centered on the true position of the primary, the error on

its magnitude is, in general, not too large. On the other hand the

error on the PSFs is very large, as one should expect since the

secondary is missed. This point deserves further investigation.

In Fig. 2 we show, in a particular case, the behavior of the

normalized objective function, defined by 2J0/N
2 with J0 given

in Eq. (1) (with p = 1), and of the RMSE on the PSF as func-

tions of the number of iterations. Similar behaviors are obtained

in all cases where a sensible result is obtained. This result sug-

gests that presumably convergence is reached after 1000 itera-

tions even if, as previously discussed, it is difficult to establish

numerically the convergence of a sequence.

A second remark is that, according to statistical properties of

Poisson random variables, if we compute the value of the nor-

malized objective function by inserting in Eq. (1) the noisy and

the noise-free images we should obtain a value very close to 1

(Bertero et al., 2010; Zanella et al., 2009). This is just what

we obtain using our simulated images (this result also demon-

strates the accuracy of the approximation of the RON with a

Poisson random variable). However the limiting values of the

normalized objective function obtained in our experiments are

definitely smaller than 1, an effect already remarked in our pre-

vious paper.

Coming back to the problem of the unresolved binaries, we

point out that, if we deconvolve the images using the PSF used

for their generation (inverse crime) all the binaries are correctly

reconstructed with small errors on their magnitudes. Therefore

the failure of our experiment may be due to a failure of the

method or to an inappropriate initialization or to inappropriate

choices of the internal iterations.

Several attempts with different numbers of internal iterations

did not improve the results. Therefore we searched for an initial

PSF with a SR value closer to the correct one and with the prop-

erty of being band-limited with the band of the LBT mirror. A

possible choice is obtained by means of the diffraction-limited

PSF of LBT, let us say K̃, by looking for an initial guess K(0) of

the following form

K(0) =
1

1 + ω N2
(K̃ + ω) (11)

which is band-limited and satisfies the normalization condition.

The constant ω should be selected in such a way that K(0) has

the correct SR value, i.e. max (K(0)) = SR max (K̃). We obtain

(

SR N2 max(K̃) − 1
)

ω = (SR − 1) max(K̃) (12)

and, by neglecting 1 with respect to the first term in the l.h.s. of

this equation, we obtain ω = (1 − SR)/(SR N2).

The results obtained with this initialization, using again 50

SGP iterations for the object and one for the PSF, are reported

in Table 2. Since the convergence is slower than in the previ-

ous case we use 2000 outer iterations for SR = 0.81 and 3000

iterations for SR = 0.62.

By comparing the results reported in the two tables we re-

mark that the two different initializations provide very similar

results in all cases where they succeed or they fail; in other

words they provide sequences of iterations which presumably

converge, even if with a different rate, to the same point, which

is a stationary point of the objective function. Obviously we

believe that it is also a minimizer. In the case of separation 60

mas and m2 = 16 the algorithm, equipped with the new ini-

tialization, is able to reconstruct the binary and the PSF with a

satisfactory accuracy for both values of SR. We remark that the

value of the objective function is higher than that correspond-

ing to the result provided by the first initialization, which is not

correct. This fact clearly indicates the existence of several sta-

tionary points or minimizers or both. Of course it should be

nice to establish that the result of the first initialization is a sta-

tionary point and that of the second a minimizer; but, as already

remarked such a verification is practically impossible. Finally,

in the case m2 = 17 also the new initialization is unable to pro-

vide the correct results.

The results obtained in the multiple image case and described

in the next subsection suggest that this negative result may be

due to an insufficient value of the SNR. Therefore, in the case

m2 = 17 we generated an image which is the sum of 30 frames

(we point out that, as already remarked, in the considered mul-

tiple image case we have three times the photons of the single

image case). Using again 2000 iterations, we find that the al-

gorithm, with the second initialization, can resolve the binary

in the case SR = 0.81 (even if with a large reconstruction error,

about 9%, on the PSF) but not in the case SR = 0.62.

However in these difficult cases we observe a new phe-

nomenon: even if in the limit the results are not satisfactory,

the PSF reconstruction error exhibits a minimum before con-

vergence. If we consider the reconstructions corresponding to

these minima, then, in the case of the first initialization, the

minima do not correspond to a situation where the binary is

resolved. On the other hand, in the case of the second initial-

ization, the binary is resolved for both SR values, with a 2.03%

PSF error in the case SR = 0.81 (574 iterations) and a 7.13%

error in the case SR = 0.62 (1739 iterations). Such a result pre-

sumably indicates the need of introducing a regularization of
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the PSF in the objective function, at least for treating the most

difficult cases. In Fig. 3 we show the reconstructions of the

PSF corresponding to the minimum reconstruction errors. Ar-

tifacts due to the missed secondary are visible in the case of

the first initialization and also in the case SR = 0.62, since the

reconstructed secondary is fainter than the true one.

4.1.2. Multiple images

In this case the integration time of a nonsaturated frame is 95

s for SR = 0.77 and 167 s for SR = 0.46. For each binary and

orientation angle we consider again 10 frames, so that we have

approximately the same number of photons in all images.

We preliminarily remark that, if we compute the value of the

normalized objective function (which is now given by 2J0/3N2)

by inserting in Eq. (1) the noisy and the noise-free images be-

fore derotation, we expect to obtain a value very close to 1 and

this is just what we obtain. But this is not true if we compute

the same quantity using the derotated images. Indeed, for the

nine binaries as well as for the other objects, we always obtain

a smaller value, namely 0.63. Since this value is independent of

the object and PSFs, this effect is clearly due to the modification

of the statistical properties of the data introduced by the derota-

tion, as briefly discussed in Sect. 3.2. In any case the limiting

values of the normalized objective function obtained in our ex-

periments are definitely smaller than the values corresponding

to the input objects and images, an effect already remarked in

the previous case.

As in the single image case we first use as initialization a con-

stant array for the object and the autocorrelations of the ideal

PSFs for the three PSFs. The results of the reconstructions ob-

tained with this initialization are reported in Table 3. We obtain

that only when both stars have the same magnitude the method

is able to reconstruct both the binary and the PSFs with suf-

ficient accuracy. When we have different magnitudes for the

two stars the method is in general failing to reproduce the sec-

ondary, except in the case of separation d = 80 mas; in this

case a binary with difference of magnitude ∆m = 1 is also re-

constructed. As in the single image case, the indication 100%

in the column for ∆m2/m2 means that the method reconstructs

an object which contains only one bright star (in one case the

centroid is shifted one pixel in the direction of the secondary.

These results show that, even if we have a higher SNR as al-

ready discussed, the multiple image case is more difficult than

the single one.

If we deconvolve the derotated images using the derotated

PSFs (this is not exactly an inverse crime because the images

were generated with non derotated PSFs) all the binaries are

correctly reconstructed with small errors on the magnitudes.

Therefore the failure of our experiment may be due again to

an inappropriate initialization (the autocorrelations of the ideal

PSFs have a SR value of about 0.35, much smaller than the

SR of the PSFs used in image generation) or to inappropriate

choices of the internal iterations. Also in this case, as in Prato

et al. (2013) and in the single image case, we use 50 SGP iter-

ations for the object and one SGP iteration for each PSF. How-

ever several attempts with different numbers of internal itera-

tions did not improve the results. Therefore, as in the single

image case, we use as a new initialization of the PSFs the ideal

PSFs of LN with the addition of a small constant selected in

such a way to satisfy normalization and SR value. The results

obtained with this initialization, using again 50 SGP iterations

for the object and one for the PSFs, are reported in Table 4.

Since the convergence is slower than in the previous case we

use 2000 outer iterations.

With the new initialization the blind method succeeds in re-

constructing all the binaries with sufficient accuracy as well as

the PSFs. We can add that in most cases both the normalized

objective function and the RMSE on the PSFs have a conver-

gent behavior while, in a few cases, the errors are still decreas-

ing after 2000 iterations, thus indicating that a larger number

of iterations could still improve the solution. A comparison of

the values of the objective function reported in the two tables

shows that, in some of the cases where the first initialization is

failing, the values in Table 3 are smaller than the corresponding

values in Table 4. This phenomenon was already observed in

the single image case and means that different stationary points

or minimizers are present.

A few more comments on the two tables. If one looks care-

fully at the reported results one can remark that, even if the re-

sults obtained with the second initialization are globally better

than those obtained with the first one, this may not be true for

particular cases (compare, for instance, the results for d = 40

mas and ∆m = 0). Moreover, the errors obtained with the sec-

ond initialization do not vary in a regular way with the variation

of angular distance and difference of magnitude. These behav-

iors can be due to the fact that 2000 iterations may not be suffi-

cient for assuring convergence of the method in the case of the

second initialization. We did not push further the iterations be-

cause in the case of three 512×512 images the computation time

is considerable. By assuming possible fluctuations due to insuf-

ficient number of iterations, a reasonable conclusion seems to

be that, as in the single image case, the two initializations lead

to the same limit point when the first one is successful.

In Fig. 4 we show an example of reconstructions of the PSF

at 0◦, for both SR values, when the unknown object is a binary

with d = 80 mas and m2 = 17. From the reconstructions dis-

played in the second column and obtained by initializing with

the autocorrelations of the ideal PSFs, it is evident that they

contain a contribution coming from the secondary, while this

contribution is practically absent in the reconstructions obtained

with the other initialization and displayed in the third column.

4.2. Star clusters

In a second experiment we consider two models of star clus-

ter. The first is already considered in Prato et al. (2013) and is

based on an image of the brightest stars of the Pleiades open

cluster; for this reason, we call it “open star cluster”. It consists

of nine stars that we take, in this paper, with magnitudes rang-

ing from 14.4 to 17.1. In the single image case, the minimum

distance between two stars is 120 mas, while the maximum dis-

tance is 1434 mas, with a mean distance of about 690 mas. In

the multiple image case, considering the different pixel scale,

we reduce of one third all the distances.
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As a second example we consider a model that we call “glob-

ular star cluster”. For simplicity, only 150 stars are considered

within the field of view, representing a very low crowding con-

dition. The positions of the stars are randomly computed fol-

lowing a Gaussian distribution around the center of the image

(with a standard deviation of about 450 mas in the single image

case and of about 150 mas in the multiple image case); similarly

the magnitudes of the stars are randomly distributed around m

= 16 with a standard deviation of about 0.4. It turns out that the

brightest star of the cluster has m = 14.8.

Again, we limit the maximum number of counts in each

frame to 5 × 104, keeping fixed to 10 the number of frames.

In Fig. 5 we show the images of the two star clusters provided

by the PSFs with the highest SR.

4.2.1. Single image

In the case of the “open star cluster”, the integration time of

a single frame is 22 s for SR = 0.81 and 29 s for SR = 0.62

while in the case of the “globular star cluster” these times are

respectively 32 and 42 s.

We applied to the four images our blind algorithm using both

initializations introduced in the case of the binaries. The results

are reported in Table 5. In the case of the “open star cluster”

and both values of SR the two initializations seem to provide

sequences of iterations converging to the same point. If we

look at the image shown in the upper left panel of Fig. 5 we

can observe that it contains sufficiently well-separated star im-

ages which can allow a good estimation of the PSF by the blind

algorithm.

The situation is a bit different in the case of the “globular star

cluster” and we can understand this fact if we look at the upper

right panel of Fig. 5. In the case of the higher SR value both

initializations lead essentially to the same result. The small dif-

ferences may be due to different convergence rates and could

be removed by a more accurate tuning of the number of it-

erations. On the other hand in the case of the lower SR ra-

tio the first initialization, based on the autocorrelation of the

diffraction-limited PSF, provides the best PSF reconstruction

(also corresponding to a lower value of the objective function).

It seems that the two initializations lead to two different station-

ary points. In conclusion, for this particular object one can state

that the first initialization may provide a better result than the

second one.

4.2.2. Multiple images

In the case of the “open cluster” model, the integration time

is 53 s for SR = 0.77 and 93 s for SR = 0.46. On the other hand

the integration time for the “globular cluster” images is 78 s for

SR = 0.77 and 136.5 s for SR = 0.46.

In both cases we apply our blind algorithm using the two ini-

tializations already used in the previous sections, with 50 inner

SGP iterations for the object and one iteration for each PSF.

The results obtained for the “open cluster” with the two initial-

izations are given in the first two rows of Table 6 in the case

SR = 0.77 and in the following two rows those obtained in the

case SR = 0.46. Similarly the results obtained for the “globular

cluster” are given in the second half of the same table.

In the multiple image case the situation is more complex than

in the single one, and this is not surprising since now we must

reconstruct four blocks of variables. By looking at the results

reported in Table 6 we see that the two initializations produce

in all cases two sequences of iterations converging to distinct

results. Even if, in some cases, the two values of the objective

function are very close, the corresponding points are definitely

different, thus implying the existence of several minimizers or

stationary points with very close values of the objective func-

tions.

It is interesting to remark that, while in the case of the bi-

naries the best results are provided by the second initialization,

now they are provided by the first one, based on the autocorre-

lations of the ideal PSFs. The highest reconstruction errors are

obtained in the case of the lowest SR, as one should expect. We

also remark that in the case of the second initialization we used

a larger number of iterations because the convergence is slower

than in the case of the first initialization. From the comparison

of the results obtained for the binaries with those obtained for

the star clusters we deduce that the problem of the initial PSFs is

essentially open; therefore, in the case of practical applications,

one should try with different initializations, using also physical

intuition in their choice.

As a final comment, all the values of the objective function

corresponding to the best solutions are higher than those corre-

sponding to the other ones.

5. Conclusions

In this paper we extend to the case of Fizeau interferometry

a blind deconvolution method previously proposed for single

aperture telescopes and we validate the method in both cases,

called respectively multiple image and single image case.

It is well-known that the problem of blind deconvolution is

extremely ill-posed and the introduction of constraints on PSF

and object does not exclude the existence of several local min-

ima, stationary points etc. In our approach the most signifi-

cant constraint is the SR constraint on the PSFs, as suggested

in Desiderà and Carbillet (2009). This constraint excludes the

trivial solution of a delta function for the PSF and image for the

object.

From our numerical analysis it turns out that the problem of

Fizeau interferometry is more difficult than the problem of sin-

gle aperture telescopes. The reason may be twofold. On one

hand the number of variables to be reconstructed is larger and it

is known that in the minimization of a nonconvex block-convex

function the theoretical results are weaker when the number of

blocks is greater than two. On the other hand the PSFs are very

structured due to the presence of interference fringes so that

if the initialization does not contain sufficient information on

these structures it is difficult if not impossible to obtain accept-

able results.

An astonishing feature already observed in the single aper-

ture case and confirmed in the present paper is that very often

the value of the objective function corresponding to a sensible

solution is greater than the value corresponding to an unaccept-

able one. Obviously it is impossible to verify if these points
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correspond to local minima or to stationary points. In any case

this result raises the issue if global minima, in case they were

computable, provide sensible solutions or not.

In summary the results of this paper open a large number of

problems; however we think that the proposed method, which

has a sound mathematical foundation, is very flexible and can

help to investigate these problems. Moreover, last but not least,

it can be extended to introduce regularization terms both on the

object and on the PSF (or PSFs) thanks to the high flexibility of

SGP, which is the basic tool in our approach. It is sufficient to

modify the scaling factor along the lines suggested in Lantéri

et al. (2002). Obviously, in such a case, the additional problem

arises of the choice of the regularization parameters.

We conclude by remarking that the IDL routines implement-

ing our method are available on request and will be included in

the forthcoming version of the Software Package AIRY (v.6.1)

(Carbillet et al., 2014).
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Véran, J.-P. (Eds.), Adaptive Optics Systems IV. Vol. 9148 of Proc. SPIE. p.

91484U.

Castello, M., Diaspro, A., Vicidomini, G., 2014. Multi-images deconvolution

improves signal-to-noise ratio on gated stimulated emission depletion mi-

croscopy. Appl. Phys. Lett. 105 (23), 234106.

Csiszár, I., 1991. Why least squares and maximum entropy? An axiomatic

approach to inference for linear inverse problems. Ann. Stat. 19 (4), 2032–

2066.

Dai, Y. H., Fletcher, R., 2006. New algorithms for singly linearly constrained

quadratic programming problems subject to lower and upper bounds. Math.

Program. 106 (3), 403–421.

Desiderà, G., Anconelli, B., Bertero, M., Boccacci, P., Carbillet, M., 2006.

Application of iterative blind deconvolution to the reconstruction of LBT

LINC-NIRVANA images. Astron. Astrophys. 452 (2), 727–734.
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