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Abstract. We develop a new minimum description length criterion for index tracking, which deals
with two main issues affecting portfolio weights: estimation errors and model misspecification. The
criterion minimizes the uncertainty related to data distribution and model parameters by means of
a generalized q-entropy measure, and performs model selection and estimation in a single step, by
assuming a prior distribution on portfolio weights. The new approach results in sparse and robust
portfolios in presence of outliers and high correlation, by penalizing observations and parameters that
highly diverge from the assumed data model and prior distribution. The Monte Carlo simulations
and the empirical study on financial data confirm the properties and the advantages of the proposed
approach compared to state-of-art methods.
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1 Introduction

Since Markowitz [1], an optimal portfolio in asset allocation is determined by first considering the
risk/return performance of each asset, in terms of mean and variance, and then selecting the portfolio
with the best trade-off. Portfolio weights result then to be very sensitive to changes in parameter
estimates, especially in presence of model misspecification and high dimensionality of the problem.
Thus, estimation bias may heavily affect the optimization process resulting in suboptimal and unsa-
tisfactory performance ([2], [3], [4]). Typically, asset returns are highly correlated with a leptokurtic
distribution, which is largely contaminated by outliers [5]. If these statistical regularities are not
properly considered, the misspecification of the data model may result in imprecise parameter esti-
mates. To deal with these issues, several methods have been proposed in the financial literature, i.e.
robust estimation methods, minimum divergence models and penalized least squares. We formulate
a new criterion for portfolio selection that is able to deal with both estimation errors and model
misspecification, and develop a general algorithm to obtain robust and sparse portfolios, i.e. with a
low number of active positions.

In particular, we propose a description length criterion that codes the uncertainty about the data
and the model parameters through a q-entropy, a generalized information measure [6] that accounts
for the divergence from the assumed data model and the target prior distribution. It enhances the
robustness of the portfolio to model misspecifications by assigning a lower weight to observations and
parameter estimates that are not consistent with the assumed models. The whole criterion performs
model selection and estimation in a single step and depends on the choice of two tuning parameters,
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q and λ. The former manages the trade-off between accuracy and stability of parameter estimates [7],
while the latter controls the penalization of portfolio weights.

Section 2 introduces the description length criterion. Section 3 describes the re-weighting algorithm
for portfolio selection and the special cases in which data are assumed to follow a Normal or a t-Student
distribution, while the prior distribution on the parameters is a Laplace function. Section 4 presents
the simulation study comparing the performance of our method to the main state-of-art benchmark.
Section 5 illustrates the behaviour of our portfolio selection method in an index tracking framework
with real-world financial data. Section 6 concludes.

2 Description Length Criterion

Let a financial portfolio return be defined as Y = βTX, where X is a p-dimensional random vector
of asset returns with unknown multivariate distribution and β is the vector of asset weights. Given
observations xi, i = 1, . . . , n, let µ and σ2 be the portfolio expected return and variance. Then, the
true probability density function of the standardized portfolio return g(z), can be modelled through
the function f , which may be for example the standard Normal or the t-Student distribution. Given
a mean target value µ = µ∗, we can then compute portfolio weights β̂q,λ, by minimizing the following
description length criterion:

D̂q,λ(β, σ) = −
n∑
i=1

Lq

{
f

(
xTi β − µ∗

σ

)}
−

p∑
j=1

Lq {π(βj ;λ)} , (1)

for fixed tuning constants λ ≥ 0 and q ≤ 1. In (1), Lq(·) is the generalized q-logarithm

Lq(u) =

{
(u1−q − 1)/(1− q), q 6= 1,

log(u), q = 1,
(2)

and π(βj ;λ) is a symmetric distribution for βj with zero mean and variance depending on λ. In the
general framework, no restrictions are placed on the vector of portfolio weights β. We notice that
when q → 1, criterion (1) is equal to maximum a posteriori (MAP) estimation of β, where π(βj ;λ)
represent a prior probability density function on βj . The penalty function π(βj ;λ) controls the model
selection and sparsity by shrinking to zero the weights of the assets that do not contribute to obtain a
mean target value µ∗. From now on, π() is assumed to be a Laplace function and then Lq(π) results
in a non-convex function. In (1), the first term represents the information provided by the data xi
given a model, while the second term encodes the information about the model itself, given by the
prior distributions π(βj ;λ). Minimizing this criterion results in the most efficient description of the
data, including the description of the model itself [8]. Differentiating function (1) with respect to
parameters (β, σ)T , we get the following estimating equations:

0 = ∇D̂q,λ(β, σ) =

n∑
i=1

wq(xi,β, σ)∇ log f(σ−1(xTi β − µ∗)) +

p∑
j=1

vq(βj , λ)∇ log π(βj ;λ), (3)

where

wq(xi,β, σ) = f(σ−1(xTi β − µ∗))1−q, vq(βj , λ) = π(βj ;λ)1−q (4)

are the vectors of weights applied to the observations and the parameters, respectively. The weights
wq downweight observations xi that diverge from the assumed data model f , while vq downweights

the |β̂j | that diverge from the assumed prior distribution π. For example, when q < 1, the linear
combinations xTi β that are far away from the target mean µ∗ are assigned a small wq. If q → 1,
f(z) is the normal density function and π(β;λ) is the Laplace function, we recover the popular Lasso
method [9], in which wi = vj = 1. However, as shown by [10], since the weights in Lasso do not
affect the optimization process, we may obtain unstable and inaccurate results in presence of large
coefficients. Our approach proposes a remedy to such problem.
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3 Re-weighting algorithms

The following section describes the weighting algorithm we introduce to estimate optimal portfolios
in the general case in which data are assumed to follow a generic ditribution f , and then focus on the
specific cases in which f is a Normal or a t-Student distribution. The aim of the optimization process
is to obtain the parameter estimates β̂q,λ by minimizing criterion (1). Since the Lq terms are typically
non-convex in β, we divide the whole process in several convex optimization steps. In particular, if we
fix q, the vectors of weights wq and vq become wi, i = 1, . . . , n and vj , j = 1, . . . , p, and the criterion
results in a penalized likelihood problem that we can solve with an iteratively re-weighted scheme:
given the weights wi and vj , we estimate β̂q,λ by solving equation (3) and then update the weights
using the new parameter estimates. We call this process a doubly re-weighted (2RE) algorithm as the
re-weighting is applied to both data and penalty scores.

Algorithm 3.1.
Given the tuning constants q ≤ 1, λ ≥ 0, and a target portfolio return µ∗, the algorithm consists of
the following steps:

Step 0 At Iteration s = 0, compute the parameter estimates β̂
(s)

and σ̂(s).

Step 1 Set s = s+ 1, and update the vector of weights as

ŵ
(s)
i = f((xiβ̂

(s−1)
− µ∗)/σ̂(s−1))1−q, v̂

(s)
j = π(β̂

(s−1)
j ;λ)1−q. (5)

Step 2 Compute the parameter estimates β̃ and σ̃ by minimizing

n∑
i=1

ŵi log f((xTi β − µ∗)/σ) +

p∑
j=1

v̂j log π(βj ;λ). (6)

Step 3 Update β̂
(s)

and σ̂(s) by solving f(xTi β̃ − µ∗)/σ̃)q for β and σ.

Step 4 Repeat Steps 1 and 2 until a stopping criterion is satisfied.

In Step 3, a re-scaling operation re-centers the estimates to correct the bias arising from the
weights wq(xi,β, σ), as suggested by [7].

The parameter λ controls the penalty term on the β coefficiants and regulates the sparsity of the
portfolio. The literature suggests to choose such tuning parameters by information criteria like the
AIC and BIC. As [11], given a certain level of q, we select the optimal values of λ by minimizing
the robust Bayesian Information Criterion defined as below, where k ≤ p is the number of active
positions:

BICq = −2

n∑
i=1

Lq

{
f

(
xTi β̂q,λ − µ∗

σ̂q,λ

)}
+ log(n)k. (7)

Normal portfolios

If we assume that data follow a p-variate normal distribution and π(βj ;λ) is a Laplace function, then
Y ∼ N(µ, σ2). In this case, the 2RE algorithm can be adapted as follows.

Algorithm 3.2.
Given q ≤ 1, λ ≥ 0, and a target return µ∗:

Step 0 At Iteration s = 0, initialize w
(s)
i , v

(s)
j and σ(s).

Step 1 Set s = s+ 1, and obtain β̂
(s)

by solving

β̂
(s)

= argmin
β


n∑
i=1

ŵ
(s−1)
i

1

2

(
µ∗ − xTi β

σ̂(s−1)

)2

+ λ

p∑
j=1

v̂
(s−1)
j |βj |

 , (8)
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Step 2 Update the vectors of weights as

ŵ
(s−1)
i =

 1√
2πσ̂2(s−1)

exp

−
(
µ∗ − xTi β̂

(s−1))2
2σ̂2(s−1)



1−q

, v̂
(s−1)
j =

[
λ

2
exp

{
−λ|β̂(s−1)j |

}]1−q
. (9)

Step 3 When the portfolio variance is a fixed target σ∗2, we set σ̂2(s) = σ∗2, for all s ≥ 0; otherwise

σ̂2(s) =

∑n
i=1 ŵ

(s−1)
i

(
µ∗ − xTi β̂

(s−1))2
q
∑n

i=1 ŵ
(s−1)
i

. (10)

Step 4 Repeat Steps 1 to 3 until a stopping criterion is satisfied.

The optimization function in (8) is a weighted L1-penalized least squares problem that we solve by
applying the gradient projection algorithm developed by [12]. Other algorithms, like coordinate wise

and quadratic optimization ([9]), could be used to efficiently estimate β̂
(s)

. However, as the gradient
projection is faster and updates parameters and solutions by using the optimal values of the previous
iteration as warm-start points ([13]), we rely on it for solving the penalized least squares problem.

t-porfolios

If we assume the portfolio Y to be a non standardized t-Student distribution with mean µ, variance
σ and number of degrees of freedom ν > 1 (i.e. Y ∼ fν(µ, σ)), then Step 2 of the 2RE algorithm

computes {β̂
(s)
, σ̂(s)} as

argmin
β,σ

−
(
ν + 1

2

) n∑
i=1

ŵ
(s−1)
i log

{
1 +

(xiβ
T − µ∗)2

νσ2

}
+ λ

p∑
j=1

v̂
(s−1)
j |βj |

 , (11)

where σ > 0. While the penalty weights v̂j are updated as in (9), the data weights ŵi are obtained as

ŵ
(s−1)
i =

[
fν

(
xTi β̂

(s−1)
;µ, σ̂(s−1)

)]1−q
, i = 1, . . . , n. (12)

When data are assumed to follow the nonstandardized t-Student distribution and λ → 0, equation
(11) results in biased estimates for β and σ. Thus, according to Proposition 1 in [7], we solve
this issue by adjusting the degrees of freedom parameter: we use νq = qν + (q − 1) instead of ν.
Also, the optimization function (11) represents a non-convex problem, which results in imprecise
estimates if solved directly. Therefore, by writing a t-Student observation as a scale mixture of
normals Yi ∼ N(µ, σ2Z−1i ), where Zi follows a Gamma distribution Zi ∼ Ga(ν/2, ν/2), we derive an
EM algorithm, which efficiently estimates the optimal solutions as follows.

Algorithm 3.3.

For any s > 0, we set the initial weights ẑi = 1/n, i = 1, . . . , n and estimate β̂
(s)

and σ̂(s) through the
expectation-maximization steps:

M-Step Estimate β and σ as

β′ = argmin
β


n∑
i=1

ŵ
(s−1)
i ẑ

(s−1)
i

1

2

(
xTi β − µ
σ̂(s−1)

)2

+ λ

p∑
j=1

v̂
(s−1)
j |βj |

 , (13)

σ′
2

=

∑n
i=1 ŵ

(s−1)
i ẑ

(s−1)
i

(
xTi β̂ − µ

)2
∑n

i=1 ŵ
(s−1)
i ẑ

(s−1)
i

× ν

(ν + 1)q − 1
. (14)

E-Step Update the mixing constants ẑi, such that

ẑi =
(νq + 1)σ′2

νqσ′
2 + ŵ

(s−1)
i (xTi β

′ − µ)2
, i = 1, . . . , n, (15)
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4 Simulation study

In the following simulation study, we evaluate and compare the behaviour of the 2RE algorithm,
for both normal (GDL N) and t-Student portfolios (GDL t), with respect to the Lasso penalization
model. In particular, we want to test the robustness of the proposed methods in presence of outliers
and correlated assets X. We simulate data from a multivariate t-Student distribution with ν degrees
of freedom: tp(µ,Σ, ν), where µj = 1, if j ≤ k, and µj = 0, if j > k, and the covariance matrix
has diagonal elements Σjj = 1, j = 1, . . . , p, and off-diagonal elements Σjk = ρ, 0 ≤ ρ < 1 j 6= k.
We construct four settings by considering four different levels of correlation between assets, ρ =
0.2, 0.4, 0.6, 0.8. For each setting, we generate B = 50 samples with n = 500, p = 50, k = 10.

We evaluate the average performance of the B portfolios in terms of sparsity, model selection
performance and risk/return characteristics with respect to a specifc target µ∗ = k. In particular, we
compute (i) the number of active positions as k̂ =

∑p
j=1 I(|β̂j | > τ), where τ = 0.005 is a threshold

value, below which the estimated weights are set equal to zero; (ii) the F-measure to assess whether
the portolios select the ”correct” assets, which in our model are the ones in the first k positions; (iii)
the Monte Carlo mean squared error to compare the risk/return performance to the specified target:

M̂SE =
1

B

B∑
b=1

µT β̂b − µ?√
β̂
T

b Σβ̂b

2

, F-measure = 2
|supp(β∗)| ∩ |supp(β̂)|
|supp(β∗)|+ |supp(β̂)|

, (16)

where, given a vector β, the support is equal to supp(β) = {j : |βj | ≥ τ}, and β∗ represents the vector
of weights whose first k positions are equal to 1.

For each setting, we set q = 0.9 and select from a grid of values the λ associated to the model with
the lowest BIC. We then compare the average portfolio performances with the ones obtained using
Lasso. As specified in Section 3, we handle the optimization problem by using the DC-programming
as proposed by [13]. As the EM algorithm is very sensitive to the initialization of β, we initialize the
Lasso and the GDL N algorithms with the OLS β estimates, while the GDL t approach uses instead
the optimal estimates obtained by the GDL N. Finally, the initial vectors of weights wi and vj are set
equal to wi = 1/n and vj = 1/p.

Figure 1 shows from left to right the boxplots of the average number of active positions k̂ estimated
by the GDL methods and Lasso (a), and the relative F-measure (b) and MSE (c) obtained in 50
simulations for different values of correlation ρ = 0.2, 0.4, 0.6, 0.8 on the x-axis. We can compare
the performance of the three methods in terms of sparsity and selection ability, and analyse their
robustness in presence of correlated data.
First of all, we notice that the GDL criteria estimate much sparser portfolios than Lasso for each
value of ρ. The number of active positions is very close to the optimal value of 10 and it is not
influenced by the level of correlation between assets (Panel (a)). The stability of the GDL criteria
represents a clear advantage when comparing with Lasso, whose performance becomes worse when ρ
increases: on average it selects approximately 17 assets when ρ = 0.2 and 27 assets when ρ = 0.8,
against the 8 and 11 assets selected by the GDL t with ρ equal to 0.2 and 0.8, respectively. In terms
of F-measure, the GDL approaches obtain better performance than Lasso as closer to 1, showing very
good model selection properties. However, for all the methods, the average value of F-measure highly
depends on the level of ρ (Panel (b)): when data exhibit low correlation, Lasso obtains a value of
0.74 while GDL N and GDL t are closer to the maximum of 1, that represents the case in which we
select the correct vector of assets β∗; when data are highly correlated, Lasso presents a value of 0.52,
while the GDL methods obtain approximately 0.6. The GDL N and GDL t algorithms show similar
results in terms of sparsity and F-measure since they both select the same active positions and their
estimated weights differ only in magnitude. Finally, we analyse the overall performance of the three
methods with respect to the return target µ∗ by comparing their MSE. Though the two GDL criteria
slightly differ in their results, they both outperform the Lasso, whose performance get much worse
when data show high correlation (i.e. with ρ = 0.8 the MSE is twice the value obtained with ρ = 0.2).
As expected, given that the true model is a t-Student one, the GDL t obtains the lowest MSE in
all settings, indicating very good performance. However, this advantage might also result from the
initialization of the vector of β as the optimal solution of the GDL N algorithm.
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Figure 1: Average number of estimated active positions k̂, F-measure and Mean Squared Error for
different levels of correlation ρ in 50 simulations, using GDL for Normal and t-Student, and Lasso
methods.

Further simulations considering different set-ups support the main reported findings. Results
are available upon request. This study points out the main advantages of the proposed approach
with respect to a well-known benchmark: (i) the sparsity of the selected portfolios obtained by
penalizing and weighting the vector of asset weights β; (ii) the high robustness of the estimates in
presence of correlation between assets, which is ensured by weighting the observations according to
their divergence from an assumed distribution.

5 Sparse and Robust Index Tracking

In this section, we test our approach in an index tracking framework, where we try to reproduce
the performance obtained by a certain index by selecting a vector of active weights only for some
of its components, in order to limit transaction and managing costs. The optimization problem can
be described as a regression problem, where the dependent variable y represents the vector of index
returns and X is the return matrix of its components.

Using a penalized technique may help to obtain good out-of-sample performance with respect to
the index by optimally selecting a small number of components. In order to evaluate the behaviour
of the proposed GDL criteria, we focus on three financial indexes by using n = 1401 daily return
observations of the Fama & French 100, the S&P 200 and the S&P 500, with different number of
constituents p, equal to 100, 200 and 500, respectively. For each index, we compare the performance
of three strategies: the GDL for Normal and t-Student portfolios, and the Lasso.

We estimate the optimal portfolios using a rolling window sample of 250 observations, and compute
the excess return of the first out-of-sample observation with respect to the index. For the GDL
criteria, we set q = 0.9 and select the λ in each window as described in Section 3. First, we evaluate
the risk/return performance of the optimal portfolios through the Information Ratio (IR), which is
computed dividing the excess return by the tracking error volatility (TEV). Then, we check sparsity by
means of the number of estimated active positions k̂ and finally, we test the tracking ability computing
the correlation with respect to the index.

Table 1 shows the out-of-sample statistics of each tracking strategy. In terms of IR (Column 4),
the GDL N has the best performance for F&F 100 and S&P 500, while the Lasso outperforms the
other strategies in the second dataset, S&P 200. However, the GDL criteria always obtain a lower
out-of-sample TEV (Column 3), which is a characteristic already underlined in the simulation study,
where the GDL showed smaller MSE than Lasso. This result is even more important if we consider
that the GDL strategies select very sparse solutions for each dataset (Column 5). While the Lasso
always uses approximately 66 positions, the GDL strategies select 35% of the available assets for the
first index, less than 25% for the second index and less than 10% for the third index. In terms of
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Strategy ER (%) TEV (%) IR k̄ TO Cor

PANEL A: F&F 100

GDL N 0.338 0.624 0.542 37.749 0.068 0.999
GDL t 0.170 0.492 0.346 32.241 0.066 0.999
Lasso 1.030 2.117 0.486 65.939 0.017 0.990

PANEL B: S&P 200

GDL N 0.319 4.500 0.071 36.950 0.399 0.963
GDL t -2.421 4.897 -0.494 28.431 0.520 0.933
Lasso 4.760 7.267 0.655 66.532 0.037 0.950

PANEL C: S&P 500

GDL N 2.906 6.966 0.417 44.564 0.605 0.932
GDL t 1.192 9.018 0.132 27.770 0.811 0.872
Lasso 2.986 10.315 0.289 66.407 0.053 0.926

Table 1: Out-of-sample statistics of each tracking portfolio: strategy (column 1), annualized excess
return ER (column 2), tracking error volatility TEV (column 3), Information Ratio IR (column 4),
average number of active components k̄ (column 5), turnover TO (column 6), correlation w.r.t. index
Cor (column 7).

tracking ability, the GDL N portfolios achieve values of Cor near 1 and outperform the Lasso by closer
tracking the indexes, especially in small dataset, where the TEV is lower.

6 Conclusion

In this paper we propose a generalized description length criterion to obtain sparse and robust port-
folios in presence of estimation errors and model misspecification. By relying on a q-entropy measure,
the approach minimizes the uncertainty about the distributions of data and model parameters by
assigning a lower weight to observations and parameters that diverge from the assumed models. After
deriving the general estimation algorithm, we specify two interesting cases, in which data are assumed
to follow a Normal or a t-Student distribution, and develop the corresponding algorithms, GDL N
and GDL t. The simulation study supports the theoretical properties of the GDL criterion and shows
that it achieves better performance in terms of sparsity, stability and robustness of the estimates
with respect to the well-known Lasso benchmark, especially when data exhibit high correlation. The
empirical results presented for the index tracking framework show that the GDL criterion is able to
obtain good out-of-sample estimates and reproduce the performance of an index by using only a small
number of its components in order to limit transaction and managing costs.
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