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Abstract— The scaled gradient projection (SGP) method is a variable metric forward-backward
algorithm designed for constrained differentiable optimization problems, as those obtained by
reformulating several signal and image processing problems according to standard statistical ap-
proaches. The main SGP features are a variable scaling matrix multiplying the gradient direction
at each iteration and an adaptive steplength parameter chosen by generalizing the well-known
Barzilai-Borwein rules.

An interesting result is that SGP can be exploited within an alternating minimization approach
in order to address optimization problems in which the unknown can be splitted in several blocks,
each with a given convex and closed feasible set. Classical examples of applications belonging to
this class are the non-negative matrix factorization and the blind deconvolution problems.

In this work we applied this method to the blind deconvolution of multiple images of the same
target obtained with different PSFs. In particular, for our experiments we considered the NASA
funded Fizeau interferometer LBTI of the Large Binocular Telescope, which is already operating
on Mount Graham and has provided the first Fizeau images, demonstrating the possibility of
reaching the resolution of a 22.8 m telescope. Due to the Poisson nature of the noise affecting
the measured images, the resulting optimization problem consists in the minimization of the sum
of several Kullback-Leibler divergences, constrained in suitable feasible sets accounting for the
different features to be preserved in the object and the PSFs.

1. INTRODUCTION

Interferometry is a standard way exploited in astronomical imaging to obtain high angular resolution
starting from two or more telescopes with smaller diameters. Famous examples of astronomical
interferometers are the Very Large Telescope Interferometer (VLTI), the Navy Prototype Optical
Interferometer (NPOI) and the Center for High Angular Resolution Astronomy (CHARA) array.
A further Fizeau interferometer which recently provided its first images is that located at the
Large Binocular Telescope (LBT, Mount Graham, Arizona) and called Large Binocular Telescope
Interferometer (LBTT [1]). With its two 8.4-m primary mirrors, separated by a 14.4-m center-to-
center distance, and mounted on a common alt-az mount, LBT can be considered the very first
Extremely Large Telescope (ELT). The adaptive secondary mirrors provide high-order adaptive
optics corrections which produce images with Strehl Ratio (SR), i.e., the ratio of peak diffraction
intensity of an aberrated versus perfect waveform (see, e.g., [9]), greater than 0.9. LBTT collects the
light from both primary mirrors and combines the two beams on the image plane (Fizeau imaging).
In order to obtain a uniform coverage of the frequency plane, several LBTI images at different
rotation angles are needed. Each of these measured images will be affected by several sources
of noise, whose statistical nature includes both Poisson (due to, e.g., radiation from the object,
background, dark current) and Gaussian (read-out-noise (RON) due to the amplifier) components.
It has been shown [14] that the latter one can be handled by adding the variance of the RON to the
measured images and the background and considering the resulting data as purely Poissonian. As a
result of this, a statistical approach to the image reconstruction problem leads to the minimization
of the sum of a given number p (equal to the number of images acquired by LBTI) of Kullback-
Leibler divergences
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where:
e fis the n x n image to be recovered;
e g;. is the k-th n x n measured image, and b, the corresponding n x n background radiation;

e wy is the unknown n x n point spread function (PSF) related to g, which has to be estimated
during the reconstruction procedure;

e O and (2, are the feasible sets of f and w, accounting for physical constraints that object
and PSF's have to satisfy.

Since we are assuming that the PSFs are unknown, problem (1) is a so-called blind deconvolution
problem [7], which is highly ill-posed due to the infinite solutions available. Moreover, from the
optimization point of view the objective function in (1) is nonconvex, thus leading to the presence
of multiple stationary points. A possible way to address this kind of problems is to introduce
suitable constraints on the unknown to reduce the set of feasible solutions. In particular, in [11, 12]
the following feasible sets have been considered
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where the upper bound s is estimated from the knowledge of the SR. Moreover, in [12] an alternating
minimization approach for the solution of (1) has been proposed based on the scaled gradient
projection (SGP) method [3].

The aim of this paper is to exploit the same optimization approach to clash with a further
defect which characterizes interferometric images. As known, the PSF can be described as the
product of the Airy function (representing the PSF of a single mirror) by the interferometric term
(1 4 cosf), where 6 depends on the current pixel and the orientation of the baseline (besides the
other parameters of the acquisition system)!. If we consider a (small) difference in the two optical
paths, i.e., there is a residual error when the system corrects for the so-called “piston error”, then
the interferometric term becomes (1 + cos(6 + ¢)). This phase error ¢ moves the position of the
fringes in the direction of the baseline (and therefore in the direction orthogonal to the fringes
themselves) with the result that the PSF is not symmetric with respect to the original PSF. The
corresponding image is affected by the same effect.

2. THE CYCLIC BLOCK COORDINATE GRADIENT PROJECTION METHOD

The cyclic block coordinate gradient projection (CBCGP) method is an alternating minimization
algorithm originally proposed in [2] in the context of non-negative matrix factorization [6] and
adapted in following works to astronomical blind deconvolution problems [4,11,12]. The main idea
at the basis of this approach is a partial minimization over each block of variables in a Gauss-Seidel
style performed inexactly by means of the scaled gradient projection (SGP) method [3]. The SGP
algorithm is a first-order method which applies to a general constrained optimization problem

i . 2
min p(z) (2)
The main steps of SGP are reported in Algorithm 1, where D is the set of diagonal positive definite
matrices with diagonal elements bounded in a positive interval. If ¢ is equal to the Kullback-Leibler
divergence and the PSFs are normalized to unit volume, a frequently used scaling matrix is the one
borrowed from the Richardson-Lucy method [8,13] and defined as

[Dg]ii = max {;, min {,u,a:(k)}} ,

with u > 1 (see, e.g., [3,5,10]). As concerns the choice of the steplength parameter oy, we adopted
a suitable alternation of the Barzilai and Borwein rules (see [3,10] for further details).
The CBCGP scheme applied to problem (1) is reported in Algorithm 2.

1For more details: 6(n1,n2) = A(ni cosa + nasina), where « is the hour angle of the baseline and A = 2rAB/\, being A
the pixel size of the image in rad/px, B the distance between the two mirrors and A the observed wavelength.
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Algorithm 2: Scaled gradient projection (SGP) method
Choose the starting point z(®) € Q, set the parameters 3,0 € (0,1), 0 < amin < Omax-

For £ =0,1,2,... DO THE FOLLOWING STEPS:

STEP 1. Choose the steplength parameter ax € [min, @max] and the scaling matrix Dy, € D;
STEP 2. Projection: y* = P, Dgl(:c(k) — ap D V(z®));
STEP 3. Descent direction: d®) = y(¥) — z(k).

STEP 4. Set A\, = 1;

STEP 5. Backtracking loop:
Ir o(x® + A\ d®) < (™) + BNV (") Td®) THEN

go to Step 6;
ELSE

set A\, = 0\ and go to Step 5.
ENDIF

STEP 6. Set z*t1D) = z(k) 4 )\, q(k)

END

Algorithm 3: Cyclic block coordinate gradient projection (CBCGP) method

Choose the starting points f(©) € Q, w§0), . ,wéo)

€ ), and two integers Ny, N, > 1.
For h=0,1,2,... DO THE FOLLOWING STEPS:

)

STEP f. Choose an integer 1 < N](ch < Ny and compute f+) by applying Nj(ch) iterations of

Algorithm 2 to problem

in KL(f,w'™, ... oW 3
poin KL(f,@ wp) (3)
starting from the point ).
STEP w. FOR k=1,...,p DO THE FOLLOWING STEPS:

Choose an integer 1 < Nﬁ:) < N, and compute w,(ghﬂ) by applying Nu(,},i) iterations of
Algorithm 2 to problem

wrre%n KL(f(h+1)7w§h'+1), .. ,wg’jl), w,w,&?l, .. ,wl(jh)) (4)

starting from the point w,i}L).

END

END

3. NUMERICAL EXPERIMENTS

We simulated several diffraction limited, SR = 1, LBTI PSFs changing the values of the mentioned
phase error. Each set of PSFs is a cube of three PSFs with baseline angles at 0°, 60°, and 120°
and corresponds to a different value of ¢ (ranging from 0, 0.2, ..., 1.0). An horizontal cut of the
0° PSFs is shown in the left panel of Fig. 1. By choosing a model of star cluster (based on the
nine brightest stars of the Pleiades, as described in [10,11]), we used these PSFs for generating
several multiple images. We adopted a pixel-size of ~ 11 mas and we supposed to acquire images
in M-band (A = 4.8 um).

We applied our blind algorithm by using as initialization the autocorrelation of the ideal diffrac-
tion limited PSF (i.e., the PSF with no phase error). We remark that this choice has a SR of about
0.35, as described in our previous papers, with positions of the fringes that do not correspond with
those in the images. Therefore our goal is to verify whether the algorithm is able to reconstruct
both the object and the PSFs and what is the maximum phase error which gives satisfying results.

Following [11,12], we chose N](ch) = 50 and Né,}k") = 1 for all h, k, and we performed 1000 outer
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Figure 1: (a) The horizontal cut of the simulated PSFs for each of the phase error ¢ and for the baseline angle
of 0°. A positive value moves the position of the fringes towards left. (b) The input image corresponding to
¢ = 1.0 for the baseline angle of 0°. (c) The 0° PSF used for the initialization. The images are shown in log
scale with a zoom factor of 2.

Table 1: Astrometric error (AE), magnitude average relative error (MARE) and root mean square error
(RMSE) for different phase errors ¢. For the three PSFs, the values in brackets denote the errors after
re-centering. The normalized value of the objective function is also shown.

¢ | AE (pixels) | MARE RMSEo RMSEgo RMSE; 500 2/(pn?)K L
0.0 < 0.01 7.5 % 107° 0.7% 0.7% 0.7% 0.7318
0.2 < 0.01 1.0 x 1074 0.6% 0.6% 0.6% 0.7363
0.4 0.22 7.6x107° | 7.9% (4.5%)  28.0% (16.5%) 26.6% (16.2%) 0.8417
0.6 0.92 1.1 x 107% | 35.4% (15.9% ) 45.2% (18.3%) 20.0% (11.8%) 0.9081
0.8 1.26 9.6 x 107° | 37.4% (20.0%)  64.1% (9.3%)  39.1% (9.2%) 0.8234
1.0 1.27 1.1 x 107* | 37.5% (18.8%)  64.5% (9.1%)  39.0% (9.1%) 0.8192
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Figure 2: (a) The horizontal cut of the reconstructed PSFs for each of the phase error ¢.
reconstructed PSFs corresponding to ¢ = 0,0.2, ...,

iterations. In order to evaluate the quality of the reconstructions we computed three errors: the
astrometric error (AE), the magnitude average relative error (MARE), and the root mean square
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error (RMSE). The three errors are defined as:

BN 1 < N -
AE = - (i —&)? + (yi — 5:)% MARE=-)" M; RMSE;, — W
13 ‘ m; Ok ll2
=1 i1

where ¢ is the number of stars, (z;, y;) and (Z;, g;) are the reconstructed centroid and the original
position of each star, m; and m; are the reconstructed and the true magnitudes, w; and @, are the
reconstructed and true PSFs and || - |2 denotes the Euclidean norm.

All the errors are reported in Table 1. As concerns RMSE, it is interesting to note that the
values are quite high for all cases with ¢ > 0.2. Indeed, since each star is reconstructed with a
small, but significant, astrometric error, this causes a small displacement of the reconstructed PSF
with respect to the original one used in the computation of the RMSE. Therefore we re-centered
each PSF by means of a sub-pixel-precision procedure and we computed again the RMSE (the new
values are shown in parenthesis). Of course, in case of real images this operation is not necessary.

In conclusion, the proposed strategy seems to provide good reconstructions of the PSFs only if
the measured images are affected by a low phase error, although the magnitude of the stars are in
general well recovered. Future work will include the addition of explicit regularization terms in the
objective function specifically aimed at preserving the features which characterize the LBTI PSFs.
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