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Abstract—Measurements of the 𝐼(𝑉 ) characteristic in Ovonic
semiconductors are notoriously unstable. Experimental setups
must therefore rely on pulsed schemes in which only the positive-
slope branches of the characteristic are detected. This paper
considers the time-dependent, trap-limited conduction model
proposed by the authors for investigating this type of devices,
and shows that the model is suitable for stability analysis. The
conditions that make the measurement stable are assessed; also,
examples of simulations in the oscillatory regime are given, in
the field-driven case.

I. INTRODUCTION

The electrical switching observed in a class of amor-
phous semiconductors, referred to as “Ovonic”, is due to
a transition process from a high- to a low-resistivity state
occurring when a threshold field is reached [1]–[15]. The 𝐼(𝑉 )
characteristic shows a negative differential-resistance region
above the threshold point. Among the several interpretations
of the Ovonic switching in steady-state conditions, a basic
analytical model relying on a thermally-assisted trap-limited
conduction scheme has recently been shown to be able to
reproduce the above mentioned electrical bistability [16]. The
model has then been extended to the dynamic case [17].
The investigations on the device models have strongly been
stimulated by the technological exploitation in the design of
phase-change memories [12]. Such applications require not
only predictive tools for the threshold switching in steady-
state conditions, but also the analysis of the electric behavior
of Ovonic materials in the dynamic and transient regime. It is
well known that instability degrades the quality of the 𝐼(𝑉 )-
curve measurement, so that only the positive-slope branches
may actually be traced. This paper addresses the latter issue,
showing that the model of [17] is amenable to extracting the
measurement-stabilizing conditions.

II. MODEL

The starting point is the time-dependent model of [17]. It
reads

𝐽 = 𝑞 𝜇𝑛𝐵 𝐹 , (1)

𝐽 𝐹 = 𝑛𝑘
𝑇𝑒 − 𝑇0

𝜏𝑅
+Δ𝐸

d
d𝑡
[𝑛𝐵(𝑇𝑒)− 𝑛𝐵(𝑇0)] , (2)

𝑛

𝑛𝐵
= 1 + 𝑐 exp

(
Δ𝐸

𝑘 𝑇𝑒

)
, (3)

ARCES is the acronym for “E. De Castro” Advanced Research Center on
Electronic Systems of the University of Bologna.

where 𝐽 , 𝑞, 𝜇, and 𝐹 are the current density, electronic charge,
mobility of the band electrons, and electric field, respectively.
As the sample under investigation is assumed one dimensional
and uniform, the equations bear no dependence on position.
In turn, 𝑛, 𝑛𝐵 are the concentrations of all electrons and of
band electrons, respectively, while 𝑘, 𝑇𝑒, 𝑇0, and 𝜏𝑅 are the
Boltzmann constant, the temperature of the band electrons,
the room temperature, and the electron-temperature relaxation
time. Finally, Δ𝐸 is the difference between the energy of the
band and that of the traps, and 𝑐 = 2.5 × 10−4 is the ratio
between the density of states of the traps and that of the band.
Eq. (1) is the transport equation describing the drift motion of
the band electrons under the influence of the field, while (2)
expresses the power balance of the band electrons: specifically,
the 𝐽 𝐹 product at the left hand side provides the power per
unit volume injected by the field: such a power is absorbed in
part by the phonons (first term at the right hand side), while the
other part determines the time change of the band population
(second term). Finally, (3) relates the fraction 𝑛𝐵/𝑛 of the
electrons that belong to the band to the electrons’ temperature.

The three model equations (1,2,3) involve four unknowns,
namely, 𝐽 , 𝐹 , 𝑛𝐵 , and 𝑇𝑒. In a steady-state condition, the
equations reduce to a single, algebraic relation involving 𝐹
and 𝐽 only. However, the use of the 𝐹, 𝐽 variables is awkward,
and it is found that the adoption of auxiliary variables is more
suitable because it provides expressions that are easily man-
aged analytically without introducing approximations. This is
true also for the time-dependent analysis. To proceed along
this line one defines the normalization parameters

𝑎 =
Δ𝐸

𝑘 𝑇0
= 14 , 𝐹 2

0 =
𝑘 𝑇0

𝑞 𝜇 𝜏𝑅
= 1010

V2

cm2
, (4)

with Δ𝐸 = 360 meV, 𝜏𝑅 = 1 ps, 𝜇 = 2.58 cm2/(V s) [16],
along with 𝑞 = 1.6× 10−19 C, 𝑘 = 1.38× 10−23 J K−1, and
𝑇0 = 300 K. Using the auxiliary variables

𝑟 =
𝑇𝑒

𝑇0
, 𝑓 =

𝐹 2

𝐹 2
0

, (5)

with 𝑇0 = 300 K, reduces the steady-state form of (2) to

𝑓 = (𝑟 − 1) [1 + 𝑐 exp(𝑎/𝑟)] . (6)

The graph of (6) is shown in Fig. 1 along with the straight line
𝑓 = 𝑓𝑢 = 2.6, corresponding to 𝐹 ≃ 1.6 × 105 V/cm. The
𝑓 = 𝑓𝑢 = 2.6 line has been chosen by way of example. In fact,
it intersects the 𝑓(𝑟) curve in three points; in particular, the
intersection at 𝑟𝑢 = 1.4 belongs to the negative-slope branch
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Fig. 1. The thick line shows the graph of 𝑓 = (𝑟 − 1) [1 + 𝑐 exp(𝑎/𝑟)].
It is intersected by the thin line 𝑓 = 𝑓𝑢 = 2.6 in three equilibrium points;
of them, the one corresponding to 𝑟𝑢 = 1.4 intersects the 𝑓(𝑟) curve in the
negative-slope branch. The form of the expressions used here implies that 𝑟
is the independent variable, so that the device is “temperature driven” and is
loaded at a constant field.

of 𝑓(𝑟). The form of the expressions used here implies that 𝑟
is the independent variable, so that the device is “temperature
driven” and is loaded at a constant field.

III. STABILITY ANALYSIS

A. Constant-Field Case

To determine the stability of the intersection points one
resorts to the time-dependent model (1,2,3). As the two inter-
sections with the positive-slope branches are stable, the only
equilibrium point considered from now on is that correspond-
ing to 𝑟 = 𝑟𝑢. Using the symbols previously defined, and
letting 𝜃 = 𝑡/𝜏𝑅, transforms (2) into

d𝑟
d𝜃

= 𝐴(𝑟, 𝑓) =
𝑁(𝑟, 𝑓)

𝐷(𝑟)
, (7)

with

𝑁(𝑟, 𝑓) = (𝑟 − 1)
𝑛

𝑛𝐵
− 𝑓 , 𝐷(𝑟) =

𝑎2

𝑟2

(𝑛𝐵

𝑛
− 1

)
. (8)

Note that in time-dependent conditions (6) does not hold,
so the right hand side of (7) does not vanish, apart from
the equilibrium point where 𝑁𝑢 = 𝑁(𝑟𝑢, 𝑓𝑢) = 0. Eq. (7)
must be coupled with the differential equation for 𝑓 , that
reads d𝑓/d𝜃 = 0. These two equations describe the dynamic
behavior of the system. The analysis then proceeds in the
standard way [18], namely, by examining the behavior of the
system near the equilibrium point; one lets 𝑟 = 𝑟𝑢+𝛿𝑟, 𝑓 = 𝑓𝑢
and linearizes (7) about (𝑟𝑢, 𝑓𝑢), to find

d
d𝜃

𝛿𝑟 = 𝑠𝑟𝑢 𝛿𝑟 , 𝑠𝑟𝑢 =

(
∂𝐴

∂𝑟

)
𝑢

, (9)

whence
𝛿𝑟 = 𝛿𝑟𝑡=0 exp (𝑠𝑟𝑢 𝜃) . (10)

It follows that the equilibrium point is stable (unstable) if
𝑠𝑟𝑢 < 0 (𝑠𝑟𝑢 > 0). Remembering (7) one finds

𝑠𝑟𝑢 =
𝐷𝑢 𝑁 ′

𝑢 −𝑁𝑢 𝐷′𝑢
𝐷2

𝑢

, (11)
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Fig. 2. Graphic solution of (14). The thick (thin) line is the graph of the left
(right) hand side. There are two solutions 𝑟𝑢1, 𝑟𝑢2, indicated by the vertical
lines.

V
C

I
V

R Ov

Fig. 3. The bipole obtained by connecting a series resistance 𝑅 to the
Ovonic device (Ov). The position of the load characteristic, and its slope at
the intersection with the Ovonic characteristic, is controlled by 𝑅 and 𝑉𝐶 or
by other two parameters connected to them (like, e.g., 𝑓𝐶 and 𝜔 defined in
the text).

𝑁 ′
𝑢 =

(
∂𝑁

∂𝑟

)
𝑢

, 𝐷′𝑢 =

(
d𝐷
d𝑟

)
𝑢

, (12)

where it is 𝑁𝑢 = 0 and 𝐷𝑢 = (𝑎/𝑟)2 (𝑛𝐵/𝑛 − 1) < 0 for
all 𝑟. As a consequence, 𝑠𝑟𝑢 = −𝑁 ′

𝑢/∣𝐷𝑢∣, and stability is
dictated by the sign of 𝑁 ′

𝑢. On the other hand it is

𝑁 ′
𝑢 =

𝑛

𝑛𝐵
− 𝑎

𝑟 − 1

𝑟2

(
𝑛

𝑛𝐵
− 1

)
, (13)

which may be either positive or negative. It follows that the
limiting situation between stability and instability holds for
𝑁 ′

𝑢 = 0, namely, from (1) and (3),

𝑟2𝑢 − 𝑎 (𝑟𝑢 − 1) = −𝑟2𝑢
𝑐

exp(−𝑎/𝑟𝑢) . (14)

The graphic solution of (14) is shown in Fig. 2. There are two
solutions 𝑟𝑢1, 𝑟𝑢2, indicated by the vertical lines. In the interval
of 𝑟𝑢 between the solutions the right hand side of (14) is larger
than the left hand side, which is equivalent to 𝑁 ′

𝑢 < 0 and
𝑠𝑟𝑢 = 𝑁 ′

𝑢/𝐷𝑢 > 0; as a consequence, the solution at 𝑟𝑢 = 1.4
is unstable. Also, from the first of (8) and (6) one notes that
∂𝑁/∂𝑟 = 0 is identical to d𝑓/d𝑟 = 0, so that the points 𝑟𝑢1,
𝑟𝑢2 are the boundaries of the negative-slope branch. It follows,
as expected, that for a load of the type 𝑓 = const, equilibrium
is unstable at all points of the negative-slope branch.

B. Variable-Field Case

The stability analysis is now repeated in the more general
case where the field is allowed to change. To this purpose one
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Fig. 4. The thick line shows the graph of the inverse function of 𝑓 =

(𝑟−1) [1+𝑐 exp(𝑎/𝑟)]. The thin line shows the graph of the inverse function
of (16), with 𝑓𝐶 = 4, 𝜔 = 1. The two lines intersect each other in three
equilibrium points; of them, the one corresponding to 𝑓𝑢 ≃ 3.3 belongs to
the negative-slope branch, and is unstable.

connects a series resistance 𝑅 to the Ovonic device and applies
a voltage 𝑉𝐶 to the bipole thus obtained, so that 𝑉𝐶 = 𝑉 +𝑅𝐼
(Fig. 3); in the above, 𝑉 = 𝐿𝐹 is the voltage drop across the
Ovonic device, with 𝐿 its length, and 𝐼 = 𝐴𝐽 the current
through it, with 𝐴 its cross-sectional area. This setup provides
more degrees of freedom to the system and eventually yields
the required information about the stability of the measurement
scheme. As before, the sample under investigation is assumed
to be one dimensional and uniform, hence the equations bear
no dependence on position. If 𝐿𝑅, 𝐴𝑅 are the resistor’s length
and cross-sectional area, and 𝜚 = 𝑅𝐴𝑅/𝐿𝑅 the resistivity of
the resistor’s material, letting 𝜆 = 𝐿/𝐿𝑅 and 𝛼 = 𝐴/𝐴𝑅 one
obtains 𝑉𝐶/𝐿𝑅 = 𝜆𝐹+𝛼𝜚𝐽 . Taking 𝐽 from (1) and defining
the dimensionless parameters 𝑚 = 𝜚 𝑞 𝜇𝑛, 𝜔 = 𝑚𝛼/𝜆 yields

𝐹

𝐹𝐶
=

1 + 𝑐 exp(𝑎/𝑟)

𝜔 + 1 + 𝑐 exp(𝑎/𝑟)
, 𝐹𝐶 =

𝑉𝐶

𝐿
. (15)

The original setup with 𝑅 = 0 is obtained by letting 𝜔 → 0
in (15). Finally, squaring the first of (15) and letting 𝑓𝐶 =
𝐹 2
𝐶/𝐹 2

0 , one obtains the load curve

𝑓

𝑓𝐶
=

[
1 + 𝑐 exp(𝑎/𝑟)

𝜔 + 1 + 𝑐 exp(𝑎/𝑟)

]2
. (16)

The load curve (16) is shown in Fig. 4 using the values 𝑉𝐶 =
400 mV, 𝐿 = 20 nm (whence 𝑓𝐶 = 4), and 𝜔 = 1. Note that,
despite the use of a linear component 𝑅 in the bias circuit,
the load curve is not a straight line; this is simply due to the
choice of the auxiliary variables made at the beginning, and
does not influence the stabillty analysis carried out here.

The dynamic properties are now investigated by linearizing (7)
and

𝐵(𝑟, 𝑓) =
𝑓

𝑓𝐶
−
[

1 + 𝑐 exp(𝑎/𝑟)

𝜔 + 1 + 𝑐 exp(𝑎/𝑟)

]2
= 0 (17)

around 𝑟𝑢, 𝑓𝑢; when this is done, both 𝑟 and 𝑓 vary. Thus,

d
d𝜃

𝛿𝑟 = 𝑠𝑟𝑢 𝛿𝑟 − 𝛿𝑓

𝐷𝑢
, 𝑤𝑟𝑢 𝛿𝑟 +

𝛿𝑓

𝑓𝐶
= 0 , (18)
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Fig. 5. The thick line shows the graph of the inverse function of 𝑓 =

(𝑟−1) [1+𝑐 exp(𝑎/𝑟)]. The thin line shows the graph of the inverse function
of (16), with 𝑓𝐶 = 10, 𝜔 = 5. The two lines intersect each other in one
equilibrium point only, that belongs to the negative-slope branch, and is stable.

𝑠𝑟𝑢 =
𝑁 ′

𝑢

𝐷𝑢
, 𝑤𝑟𝑢 = − d

d𝑟

[
1 + 𝑐 exp(𝑎/𝑟)

𝜔 + 1 + 𝑐 exp(𝑎/𝑟)

]2
𝑢

. (19)

Eliminating 𝛿𝑓 from (18) provides

d
d𝜃

𝛿𝑟 =
𝑁 ′

𝑢 + 𝑓𝐶 𝑤𝑟𝑢

𝐷𝑢
𝛿𝑟 (20)

whence, remembering that 𝐷𝑢 < 0, the equilibrium point is
stable (unstable) if 𝑁 ′

𝑢 + 𝑓𝐶 𝑤𝑟𝑢 > 0 (𝑁 ′
𝑢 + 𝑓𝐶 𝑤𝑟𝑢 < 0).

It has been shown before that 𝑁 ′
𝑢 < 0 at all points of the

negative-slope branch; on the other hand it is

𝑤𝑟𝑢 =
2𝜔 𝑎/𝑟2𝑢

(𝜔 + 𝑛/𝑛𝐵)3

(
𝑛

𝑛𝐵
− 1

)
𝑛

𝑛𝐵
> 0 , (21)

showing that the sign of 𝑁 ′
𝑢 + 𝑓𝐶 𝑤𝑟𝑢 depends on the choice

of the two parameters 𝑓𝐶 and 𝜔. Replacing 𝑁 ′
𝑢 with d𝑓/d𝑟

and observing that 𝑓𝐶 𝑤𝑟𝑢 is the negative derivative of the
load curve (16) with respect to 𝑟, one finds that the stability
condition is summarized as∣∣∣∣d𝑓

d𝑟

∣∣∣∣
load

>

∣∣∣∣d𝑓
d𝑟

∣∣∣∣
Ov

. (22)

For instance, the point corresponding to 𝑓𝑢 ≃ 3.3 in Fig. 4
is unstable, whereas the only intersection between the Ovonic
and load curves in Fig. 5 is stable (note that the slopes must be
appreciated by wieving from the 𝑟 axis). The value 𝑓𝐶 = 12
used in Fig. 5 corresponds to 𝑉𝐶 ≃ 630 mV.

IV. CONCLUSIONS

In summary, using the parameters of the generalized model
(7,16) it is possible to fix the load curve of the Ovonic device
in such a way that the intersects in the negative-slope branch
become stable. Thus, suitable combinations of 𝑉𝐶 and 𝑅 make
it possible to sweep the whole branch, which is equivalent to
making the measurement of the complete 𝐼(𝑉 ) curve feasible.

The theory upon which the analysis of this paper is based
assumes that the time variation of the unknowns is due only to
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Fig. 6. Outcome of the dynamic model when 𝑅 = 0 and 𝑉𝐶 = (3/4) [1−
cos(2𝜋 𝑡/𝑇 )] V, with 𝑇 = 5 ps. The graph of the current density 𝐽 and carrier
temperature 𝑇𝑒 with respect to time are shown in the middle and lower part
of the figure, respectively.

the last term of (2), namely, it is intrinsic to the device. In other
words, parasitic effects belonging to the measuring apparatus
are not considered. In practical situations such effects are
present, and can be described by inserting, e.g., an external
capacitance 𝐶 in parallel to the Ovonic device. This introduces
another time constant 𝜏 = 𝑅𝐶, to be compared with the
intrinsic time constant given by the interplay of 𝜏𝑅 and Δ𝐸
in (2). However, the analysis of stability is carried out along
the same line of reasoning, albeit the quantitative results
are affected by the difference in magnitude of the two time
constants.

The time-dependent model (1,2,3) can also be used to analyze
the behavior of an Ovonic device subjected to an oscillatory
bias. As the 𝐼(𝑉 ) characteristic of the device is non linear,
such a calculation must be carried out numerically; from a
qualitative viewpoint, if the bias depends linearly on, say,
cos(2𝜋 𝜈 𝑡), the internal variables are expected to oscillate with
the same frequency 𝜈, albeit their form may strongly depart
from the sinusoidal one. This is in fact confirmed by Fig. 6,
that shows the result of a simulation carried out by letting
𝑅 = 0 and applying a voltage of the form

𝑉𝐶 =
3

4

[
1− cos

(
2𝜋

𝑡

𝑇

)]
(V) , (23)

with 𝑇 = 5 ps, corresponding to 𝜈 = 200 GHz. From 𝑅 = 0
it follows that, when the auxiliary variables 𝑟, 𝑓 are used,
the load curve is of the type shown in Fig. 1. The length of
the Ovonic device used in the simulation is 𝐿 = 40 nm; as
a consequence, the electric field 𝐹 derived from (23) ranges
between 0 and 3.75×105 V/cm. The upper part of Fig. 6 shows
the time dependence of the electric field 𝐹 ; in turn, the middle
and lower parts show, respectively, the time dependence of the
current density 𝐽 and electron temperature 𝑇𝑒. As expected,
the period of 𝐽 and 𝑇𝑒 is the same as that of the input signal 𝐹 ,
although the waveforms are significantly distorted with respect
to the sinusoidal form.
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