
03/10/2024 16:59

Building self-adaptive systems by adaptation patterns integrated into agent methodologies / Puviani,
Mariachiara; Cabri, Giacomo; Capodieci, Nicola; Leonardi, Letizia. - STAMPA. - 9494:(2015), pp. 58-75.
(Intervento presentato al convegno 7th International Conference on Agents and Artificial Intelligence,
ICAART 2015 tenutosi a prt nel 2015) [10.1007/978-3-319-27947-3_4].

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

Springer

This is the peer reviewd version of the followng article:

Building Self-Adaptive Systems by Adaptation
Patterns Integrated into Agent Methodologies

Mariachiara Puviani?, Giacomo Cabri, Nicola Capodieci, and Letizia Leonardi

Università di Modena e Reggio Emilia,
Modena, Italy

{mariachiara.puviani,giacomo.cabri,nicola.capodieci,letizia.leonardi}@

unimore.it

http://www.unimore.it

Abstract. Adopting patterns, i.e. reusable solutions to generic prob-
lems, turns out to be useful to rely on tested solutions and to avoid
reinventing the wheel. To this aim, we proposed to use adaptation pat-
terns to build systems that exhibit self-adaptive features. However, these
patterns would be more usable if integrated in a methodology exploited
to develop a system. In this paper we show how our Catalogue of adapta-
tion patterns can be integrated into methodologies for adaptive systems;
more in detail, we consider methodologies which support the develop-
ment of multi-agent systems that can be considered good examples of
adaptive systems. The paper, in particular, shows the integration of our
Catalogue of adaptive patterns into the PASSI methodology, together
with the graphical tool that we developed to support it.

Keywords: Multi-Agent System, adaptation pattern, methodology.

1 Introduction

Intelligent software systems are playing an important role in many fields, but
they are becoming more and more complex, requiring appropriate approaches
for their development and maintenance. In particular, their complexity and the
fact that they often cannot be stopped, introduce the need for some form of
adaptation to the changes in the surrounding environment or in general in the
execution conditions. So, self-adaptation is more and more a required feature of
the complex intelligent systems, and must be carefully taken into consideration
during the development, from a software engineering point of view, becoming
one of the challenges for the discipline [14].

We define Self-adaptation as the ability of a software system or an applica-
tion to automatically modify its structure and behaviour at runtime in order to
ensure, maintain or recover some functional or non-functional properties, even
in the case of unexpected changes to operating conditions or user requirements.

? The work is supported by the “Linea strategica SMART ICT FOR SMART SOCIAL
WORLDS” of the Università di Modena e Reggio Emilia.

2 Mariachiara Puviani, Giacomo Cabri, Nicola Capodieci, Letizia Leonardi

In the literature, we can find two approaches to develop self-adaptive systems:
parameter adaptation and compositional adaptation [21]. Parameter adapta-
tion means adapting the system’s behaviour through changing parameters, while
compositional adaptation is meant as a change of components (in terms of be-
haviour or whole structure). In our work, we focus on compositional adaptation,
but in a more specific way: we do not aim to simply change the components
in a system, but we aim to modify their behaviour (defined as the pattern that
describes it) inside the system. This leads to conceive the adaptation of a system
as the capability of changing its internal structure in order to make it behave
differently, not only as the possibility of changing the system’s components.

Anyway, there is a lack of support for designing and implementing self-
adaptive systems, in terms of reusable and well-defined components and how
composing them, so designers often start from scratch the development of a self-
adaptive system. From this point of view, the availability of adaptation patterns
is considered as useful means to introduce adaptation into a system. Further,
the integration of adaptation patterns into a more general framework not only
will help suggesting developers how to include adaptivity in their systems, but
also this would take advantage of the methodologies and the tools exploited in
the framework, leading to a fast and less error-prone development.

The general aim of our work is to propose a comprehensive approach that will
guide developers during the development phases, from the system’s specification
to the system’s implementation, in a complete framework for developing self-
adaptive systems. To this purpose, we have defined four general steps for our
work:

1. analysis of existing methodologies, choice of few of them and integration of
our Catalogue of adaptation patterns into the chosen ones;

2. modification of the tools that support the chosen methodologies, for the
creation of adaptive systems;

3. creation of a middleware that will merge the concepts coming from method-
ologies’ tools, by means of Java classes;

4. evaluation of the framework, experimenting the creation of self-adaptive sys-
tems.

In a previous work [27], we have presented a preliminary result of the first
step. In this paper, we extend the presentation of the results of the first step and
add some results of the second and of the third steps, in particular related to a
specific methodology.

With regard to the first step, we will show how our Catalogue of adaptation
patterns can be integrated, in particult, into one existing methodology, PASSI;
we will exploit the SPEM notation [34] to specify when and how our Catalogue
can be considered in the development process proposed by a specific methodol-
ogy.

With regard to the second step, we will present the graphical tool we have
developed in order to support the previously mentioned integration.

With regard to the third step, we will show how the graphical tool produces
a set of Java classes.

Adaptation Patterns and Agent Methodologies 3

The reminder of this paper is as follows: in Section 2, we present the Cata-
logue of adaptation patterns, explaining its importance in connection with adap-
tive systems and methodologies. Further on, in Section 3 we introduce agent-
oriented methodologies, along with the criteria we used to select a few of them,
and we show how and where our Catalogue of adaptation patterns can be in-
cluded into one of the chosen methodology, PASSI (Section 4); moreover, we
present the developed graphical tool to exploit adaptation patterns in the PASSI
methodology and to produce the needed Java classes. In Section 5, we present
some work related to our approach and at the end, in Section 6 we conclude the
paper and present some future works.

2 The Catalogue of Adaptation Patterns

Closed to self-adaptation are Service-based systems and Agent-based systems.

In literature, design patterns (or simply patterns) are defined as reusable
solutions to recurring design problems and are a mainstream of software reuse
practice [15, 22]. They crystallize a general solution to a common problem, so
software developers can benefit from their reuse to develop systems. An adapta-
tion pattern is a conceptual scheme that describes a specific adaptation mecha-
nism. It specifies how the component/system architecture can express adaptivity.

An important task to develop a well performing self-adaptive system, is to
understand which pattern to choose. In order to define how a pattern works
in a self-adaptive system and which kind of systems is covered by a specific
pattern, we wrote a Catalogue of adaptation patterns [28]. In this Catalogue,
the different patterns are presented, and each of them describes the features of
a specific adaptive system.

The adaptive behaviour inside a component or an ensemble is described in
terms of feedback loops. In the Catalogue, the patterns are proposed with a
specific description by means of a template, and with examples of use of the
patterns in real systems, in order to simplify the selection of the right pattern
to use. The use of a pattern permits the developer to be guided to make the
system exhibit the required behaviour, even when unexpected situations occur.

The use of adaptation patterns to create self-adaptive systems has been tested
in different fields and in many applications [20, 29], and guarantees correct results
in systems that are frequently changing, not only in their internal conditions,
but also in the environment where they are operating.

The use of a methodology could be very useful to develop self-adaptive sys-
tems. However, the current methodologies consider adaptation only at level of
single components, instead of at the system’s level. That is the reason why
we consider necessary to introduce our Catalogue of adaptation patterns into
methodologies: in fact, this will enact adaptivity at the level both of single com-
ponent and of the entire system. By this integration, our Catalogue of adaptation
patterns will support the methodologies in the creation of an adaptive system
where the structural adaptation of the whole system is considered very relevant.

4 Mariachiara Puviani, Giacomo Cabri, Nicola Capodieci, Letizia Leonardi

3 Agent-Oriented Methodologies for Adaptive Systems

In order to support application developers during the creation of an adaptive
system, it is necessary to provide a methodology that support adaptation mech-
anisms starting from the system requirements. The initial idea is not to propose
a methodology from scratch, but to have as a base a stable and well known
methodology.

Moreover, we consider that “agents” are one of the most useful paradigms to
build intelligence distributed systems, so we would like to use that paradigm to
create adaptive systems. To do that, we started from the study of agent-oriented
methodologies as a starting point to introduce adaptation features while building
a system.

Considering MASs (Multi Agent Systems), it is generally accepted that anal-
ysis and design of agent-based systems require an Agent-Oriented Software En-
gineering (AOSE) methodology. There are now many mature AOSE method-
ologies [19], [4], including MaSE [13], Tropos [6], Gaia [36], Prometheus [24],
INGENIAS [25], ADEM1, ADELFE [5], SODA [1] and PASSI [11].

After different studies [32], we found out that to create a unified methodology
that may have the most powerful features of every of the starting ones, is very
difficult. For example, we are not able to prove if a new unified methodology
covers all the possible scenarios, as happened for MAR&A [7], that is a com-
posed methodology, but is not applicable to adaptive systems. Moreover, not
all the composing methodologies use the same language or the same concepts,
and translating them into unified terms will not be always easy. Furthermore,
creating a new methodology for adaptive systems from scratch will not be easy
as well. It may be yet another methodology, and there is no guarantee that it
will be able to build all the adaptive systems.

All these reasons suggested us to not create a methodology dedicated to self-
adaptive system, or to compose a methodology, but to start from well known and
well defined methodologies, and to insert our Catalogue of adaptation patterns
into them in order to have self-adaptive features.

Starting from our previous work [30], we found out that some AOSE method-
ologies, even if they are well known, are not up to date, or no more utilised to
develop intelligent complex agents systems. So we selected only few methodolo-
gies that we consider suitable to build a self-adaptive system. The methodologies
that we selected have some common features:

– they are updated (e.g. a new version of the methodology has been released
in the last years);

– they have been tested in different distributed systems;
– they use well known paradigms like UML and the SPEM approach [34, 31]

that will be very useful in order to introduce adaptation patterns;
– they use the concept of “role” to define adaptation patterns in a system;
– they have a supporting tool, or specific indication for the development of a

system.

1 http://www.whitestein.com/adem

Adaptation Patterns and Agent Methodologies 5

The methodologies we selected for our work are: ADELFE, PASSI2 and
SODA. For space reasons, in this paper we describe only PASSI2, along with
explaining where introducing our Catalogue of adaptation patterns.

As said before, an common point of these methodologies is that all of them
have been described using the SPEM (Software Process Engineering Meta-model)
approach [23]. This will be useful in order to insert our Catalogue of adaptation
patterns in terms of SPEM fragments. In this way, it will be possible to better
define the concepts presented in patterns and to insert them into the different
methodologies.

To improve reading of the paper, in Fig. 1 we report the definitions of some
common notations used by SPEM.

Fig. 1. SPEM notations

4 Integrating Catalogue of adaptation patterns into
Methodologies

In this section we present how to integrate our Catalogue of the adaptation
patterns, in particular, in the PASSI methodology. Moreover, the last subsec-
tion sketches the interfaces of the graphical tool we developed to support the
exploitation of the patterns in that methodology.

6 Mariachiara Puviani, Giacomo Cabri, Nicola Capodieci, Letizia Leonardi

4.1 Integration in PASSI2

PASSI2 (Process for Agent Society Specification and Implementation) [12] is
the evolution of PASSI [11], a methodology that aims at covering all the phases
of a system development from the requirements’ analysis to the deployment
configuration, coding, and testing.

It is based on a meta-model describing the elements that constitute the sys-
tem to be designed (agents, tasks, communications, roles) and what are the
relationships among them. The importance of this description is in the lack of
a universally accepted meta-model of MASs (differently from object-oriented
systems) that makes unclear any agent design process that does not precisely
define the structure of the system it aims to produce. PASSI2 has been de-
signed keeping in mind the possibility of designing systems with the following
peculiarities: (i) highly distributed, (ii) subject to a (relatively) low rate of re-
quirements changes, (iii) openness (at runtime external systems and agents that
are unknown at design time will interact with the system to be built). Robotics,
workflow management, and information systems are the specific application ar-
eas where it has been wildly applied.

PASSI2 is composed of three models that address different design concerns
and several phases, as we can see in Fig. 2. An important aspect of PASSI2 is that
it uses standards as UML and adapts it to the need of representing agent systems
through its extension mechanisms (constraints, tagged values and stereotypes).

Fig. 2. PASSI2 models and phases

Synthetically, the models and phases of PASSI2 are:

Adaptation Patterns and Agent Methodologies 7

1. System Requirements Model. A model of the system requirements in terms
of agency and purpose. Developing this model involves:

– Domain req. Description (DD). A functional description of the system
using conventional use-case diagrams.

– Agents Identification (AId). Separation of responsibility concerns into
agents, represented as UML packages.

– Roles Identification (RId). Use of sequence diagrams to represent each
agent’s responsibilities through role-specific scenarios.

– Agent Structure Exploration (ASE). An analysis-level description of the
agent structure in terms of tasks required for accomplishing the agent’s
functionalities.

– Tasks Specification (TSp). Specification through state/activity diagrams
of the capabilities of each agent.

2. Agent Society Model. A model of the social interactions and dependencies
among the agents involved in the solution. Developing this model involves
five phases:

– Domain Ontology Description (DOD). Use of class diagrams to describe
domain categories (concepts), actions that could affect their state and
propositions about values of categories.

– Communication Ontology Description (COD). Use of class diagrams to
describe agents’ communications in terms of referred ontology, interac-
tion protocol and message content language.

– Roles Description (RD). Use of class diagrams to show distinct roles
played by agents, the tasks involved what the roles involve, communica-
tion capabilities and inter-agent dependencies in terms of services.

– Multi-Agent Structure Definition (MASD). Use of conventional class di-
agrams to describe the structure of solution agent classes at the social
level of abstraction.

– Multi-Agent Behavior Description (MABD). Use of activity diagrams or
state-charts to describe the behaviour of individual agents at the social
level of abstraction.

3. Implementation Model. A model of the solution architecture in terms of
classes, methods, deployment configuration, code and testing directives; it
is composed of seven phases, the first two are performed at both the multi-
agent (whole agent society) and single-agent abstraction level:

– Single-Agent Structure Definition (SASD). Use of conventional class di-
agrams to describe the structure of solution agent classes at the imple-
mentation level of abstraction.

– Single-Agent Behavior Description (SABD). Use of activity diagrams
or state-charts to describe the behaviour of individual agents at the
implementation level of abstraction.

– Deployment Configuration (DC). Use of deployment diagrams to de-
scribe the allocation of agents to the available processing units and any
constraints on migration, mobility and configuration of hosts and agent-
running platforms.

8 Mariachiara Puviani, Giacomo Cabri, Nicola Capodieci, Letizia Leonardi

– Code Reuse (CR). A library of patterns with associated reusable code
to allow the automatic generation of significant portions of code.

– Code Production (CP). Source code of the target system that is manually
completed.

– Agent Test. Verification of the single behaviour with regards to the orig-
inal requirements of the system solved by the specific agent.

– Society Test. Validation of the correct interaction of the agents, per-
formed in order to verify that they actually concur in solving problems
that need cooperation. This test is done in the most real situation that
can be simulated in the development environment.

The Iteration Planning phase is positioned at a higher level of abstraction,
above the logical sequence of models and phases. It is at the base of every iterative
incremental process and in our case consists of the analysis of the Problem
Statement and all the other available documents (for instance outputs of previous
iterations) in order to identify the requirements (and related risks) that should
be faced in the next iteration (that is considered as the nineteen phase).

An important concept in PASSI2 is that of “role”. A role is defined by the set
of responsibilities defining the subjective behaviour of an agent in an interaction
(conversation) with another one or in providing some service in one or more
scenarios; an agent may play one or more roles at the same time. Roles are very
important because they are considered a useful paradigm that can used to define
the different patterns in a system [26].

Two are the main phases that involved roles: the Role Identification phase,
into the System Requirements Model (Fig. 3), and the Role Description phase
into the Agent Society Model (Fig. 4).

Fig. 3. PASSI2: System Requirements Model activities and resulting work products

The Roles Identification phase produces a set of sequence diagrams that
specify scenarios from the agents’ identification use case diagram. In this phase,

Adaptation Patterns and Agent Methodologies 9

Fig. 4. PASSI2: Agent Society Model activities and resulting work products

our Catalogue of adaptation patterns is added as input, in order to create specific
roles able to describe an adaptive system. In that phase, roles are identified in
the sense that agents’ external manifestations are captured in sequence diagrams
where agents participate playing one or more roles concurring to the evolution
of the system dynamic.

Our Catalogue of adaptation patterns is also introduced in the Roles Descrip-
tion phase. This phase consists in modelling the lifecycle of each agent, looking
at the roles it can play, the collaboration it needs, the communications in which
it participates and, with the inclusion of the Catalogue of adaptation patterns,
the adaptive system to develop. In the RD diagram all the rules of the society,
laws of the society and the domain in which the agent operates are introduced.
They could be expressed in plain text or OCL (Object Constraint Language) in
order to have a more precise, formal description.

In PASSI2, the defined RD diagram is a class diagram where roles are classes
grouped in packages representing agents. Roles can be connected by relationships
representing changes of role, by dependencies for a service or the availability of
a resource and by communications.

Specifically, in the Agent Society Model, the Catalogue of adaptation patterns
is introduced for the Multi-Agent Behaviour Description (MABD), where agents
are described in terms of their behaviour both from the social-exterior point of
view and the internal flow of control, as we can see in Fig. 4. Here the Catalogue
is necessary to identify which role to choose to obtain the system adaptation in
the considered environment.

10 Mariachiara Puviani, Giacomo Cabri, Nicola Capodieci, Letizia Leonardi

PASSI2 does not have a real Code Production Phase, but each programmer
has to complete the code of the application starting from the design of the
skeletons produced by the methodology.

The PASSI2 design methodology is supported by a specific design tool, grant-
ing a large number of automatisms during the design, and a pattern repository
for the reuse practice; these are determinant in cutting down the time and cost for
developing systems [10]. The toolkit is PTK (PASSI ToolKit). The PTK add-in
can generate the code for all the skeletons of the agents, tasks and other classes
included in the project. The pattern repository consists of a serie of reusable
portions of agents and tasks. The repository also includes a list of tasks that can
be applied to existing agents.

4.2 The Graphical Tool

We developed a graphical tool to be used as a complementary extension for
PTK, with the purpose of allowing the designer of adaptive system to rapidly
prototype different patterns to be applied to the same sets of tasks within the
considered adaptive system. Our contribution aims to extend the concept of
Agent-Structure Exploration as defined by the PASSI methodology (see Fig. 2),
hence to focus the necessary design aspects needed to foster the dynamic cre-
ation of hierarchical structures of autonomic components. The word component
is from now on used a substitute of agent, so that we are now able to oper-
ate a first distinction on the concept of Agent-Structure by dividing the agents
of the considered population into two mutually exclusive categories: Autonomic
Managers and Service Components (resp. AMs and SCs).

From the role description, the following phase of the PASSI methodology
deals with “Behaviour Description”, hence implying an unspecified relation be-
tween roles and behaviours. In our implementation, we detailed the relation
between these two concepts, by proposing a logic that is consistent with the
taxonomy of adaptation patterns as proposed in [28]. We defined a role as a
collection of sequential and/or parallel behaviours and the concept of behaviour
is an (implementation-wise) extension of the concept of Behaviour as intended in
the JADE agent platform [3]. We therefore extended the definition of PTK so to
support the definition of roles, behaviours, components and adaptive patterns
so to have a tool able to generate the necessary artifacts for describing more
complete adaptive systems.

As presented in section 2, an adaptation pattern is a conceptual scheme
that describes a specific adaptation mechanism. It specifies how the compo-
nent/system architecture can express adaptivity.

In [28], a taxonomy of adaptation patterns is defined in such a level of detail
that we are able to translate most of the relevant aspects in an Object Oriented
Programming point of view, with Java as our language of choice. In particular, we
are now able to design abstract classes, interfaces and basic implementations of
them (called default implementations) so to have re-usable structures of classes
that the designer of adaptive systems can rely on.

Adaptation Patterns and Agent Methodologies 11

According to [28] a clear definition of the components interfaces helps us in
understanding the mechanism of components’ composition. The interfaces of a
component can be described as a tuple of six elements:

– Input, used to receive information (e.g. service’s request);
– Output, used to send information (e.g. service’s reply);
– Sensor, that makes the component able to achieve information from the

external (e.g. others components and/or the environment);
– Effector, that makes the component be able to manage the external (e.g. to

act on the environment and manage other components);
– Emitter, used to emit status information to an external manager. This in-

terface permits also to share information taken from the environment (using
sensors) or other components;

– Controller, that makes it possible to an external adaptation manager to
change and adapt the component’s internal state.

According to our implementation, these elements refer to the generic concept
of Component, hence the class Component is subsequently sub-classed into the
classes Service Component and Autonomic Manager, with the latter one having
the implicit role of adaptation manager. Service Components have a list of dif-
ferent sensors and actuators and those are mainly used for reading or applying
modifications to the environment in which the ensemble is inserted. The list
of sensors and actuators belonging to an Autonomic Manager is used to create
connections with SCs or other AMs. Other important lists, associated with the
component, are related to active roles, components attached to the emitter and
components attached to the controller. Trivially, all the methods that allow us
to modify these lists are accessible through the class hierarchy. The concept of
component is an extension of the class Agent from the Jade agent platform,
hence the component inherits methods such as setup and takeDown that refer to
standard agent operations to be executed just after their creation or just before
their removal from the considered context (i.e registering to or de-registering
from a directory facilitator or other user-implemented yellow pages services).

A summarizing class diagram is in figure 5.
As shown in figure 5, components have the possibility to actively partici-

pate into a change of pattern. A pattern is a description of which component
is connected to which other components inside the same adaptive system. More
specifically, we can define a pattern by specifying for each component (AMs and
SCs), which components are attached to the their emitters and controllers. By
doing so we are able to re-create any combination of adaptation pattern that
are referred as taxonomies in [28]. A pattern may or may not have an asso-
ciated role, but is always bounded to a context. A context is an attribute of
the environment and it is characterized by a list of rules and a list of laws.
The difference between these latter ones is mostly case specific; however, as rule
of thumb, we can specify that rules are used to regulate the single behaviour
within a role, while laws deal with regulating the inter-component interactions
(e.g: negotiations, elections etc.). As previously specified, roles are collections of

12 Mariachiara Puviani, Giacomo Cabri, Nicola Capodieci, Letizia Leonardi

Fig. 5. UML Class diagram of the concept of Component

behaviours: this implies being able to use existing classes from the JADE pack-
age for defining behaviours as dynamically activated local computation within
the agents/components: these computations can be sequential, parallel, cyclic or
(using a JADE terminology) one-shot.

These considerations have been summarized in figure 6.
Now that we have a more detailed view on the concept of pattern and com-

ponent, we were able to proceed in creating the extension for the PTK. We
called this extension Component Hierarchy Builder (CHB). Both these toolkits
use tree structures as a mean of representing the considered system: a screen
shot of both of them is in figure 7.

The PASSI toolkit (PTK) allows the designer to describe agent structures
in terms of agents, tasks (as behaviours) and their relations. Agents can be
characterized in low level implementation details: therefore for each agent we can
specify which interfaces implements as well as defining attributes and methods’
prototypes. Our extension of this PTK feature does not capture this level of

Adaptation Patterns and Agent Methodologies 13

Fig. 6. UML Class diagram of the concept of Context, Pattern and Role

details, instead it complements it in order to have generic and reusable agents in
the form of components. During the creation of a component in CHB, the user
can decide to insert a new Autonomic Manager or a new Service Component
and, for each, can specify which sensor and effectors are going to be used.

In PTK, tasks are behaviour and viceversa. In our implementation, tasks are
not directly defined: instead roles are collection of behaviours and components
can add scheduled roles by picking from all the roles that the user inserted in
the CHB tree (figure 8).

In the example scenario depicted in figure 8, we can see a generic Service
Component that is representing a mobile robot: it has proximity sensors and
an effector constituted by a differential wheeled motor. As far as its scheduled
roles are concerned, it has the task to explore an area and to operate the role
of Listener. In order to know more about the listener role we have to open the
corresponding CHB panel regarding roles and behaviours (see figure 9). The
listener role is composed of two parallel behaviours that basically describe how
the Service Component listens to its connected autonomic managers and (if
necessary) enacts the requested state changes.

14 Mariachiara Puviani, Giacomo Cabri, Nicola Capodieci, Letizia Leonardi

Fig. 7. Tree views of both PTK (left) and our proposed CHB (right)

Fig. 8. A screen shot for the creation of a Service Component

Adaptation Patterns and Agent Methodologies 15

Fig. 9. A screen shot for the creation of a roles as collection of behaviours

In figure 9, we can see how for each behaviour composing the role, we can
specify the sub-class of JADE’s Behaviour class that better suits the component’s
needs.

Using CHB, the user can specify adaptation pattern by indicating the con-
nection topology among components, as specified as list of attached components
in both controllers and emitters. This can be seen in figure 10, in which an ex-
ample master-slave pattern is implemented and from the screen shot we can see
how a generic Autonomic Manager is connected to both the Service Components
that were previously inserted in the designed component structure.

Instead of generating code, CHB is able to serialize all the inserted informa-
tion (components, patterns, context, roles etc...) inside a macro object that is
called adaptive system. Such macro object can be serialized and deserialized so
to allow the operations of modifications, export and import of previously saved
component structures.

5 Related work

In literature, many approaches on patterns for self-adaptation exist, like the
one of [33], [8] and [35]. However, in this paper we do not focus on the use of
adaptation patterns to create self-adaptive systems, but on the definition of a
useful methodology to create this kind of systems, with the aid of the patterns’
approach.

In the last years, engineering research has tackled a well-defined problem
and has carefully selected and combined existing solutions into a comprehensive
development framework for self-adaptive systems.

16 Mariachiara Puviani, Giacomo Cabri, Nicola Capodieci, Letizia Leonardi

Fig. 10. A screen shot for the creation of a pattern: point of view of the Autonomic
Manager

A lot of projects like MADAM project2 and the MUSIC project3 tried to
address adaptation in different scenarios, from both the theoretical and the prac-
tical perspective. For example, the MUSIC project [18] would like to introduce
a model-driven development methodology [17] for self-adaptive context-aware
applications. Different from us, this approach was to write a new methodology
instead of exploiting the power of existing ones.

Other approaches as CARISMA [9] and RAINBOW [16] propose self-adaptation
middleware or architectural styles to develop self-adaptive software, but they do
not propose any methodology that will guide developers from the collection
of requirements to implementation. Moreover, MOCAS (Model of Components
for Adaptive Systems) propose a generic state-based component model which
enables the self-adaptation of software components along with their coordina-
tion [2]; but like the other approaches, there are not concrete guidelines, consid-
ered as a methodology.

2 Mobility and Adaptation-enabling Middleware, supported by the European Union
under research grant 004159 lasting from September 2004 to March 2007.

3 Self-Adapting Applications for Mobile Users in Ubiquitous Computing Environ-
ments, supported by the European Union under research grant IST-035166 lasting
from October 2006 to March 2010.

Adaptation Patterns and Agent Methodologies 17

6 Conclusions

In this paper, we have proposed an approach to enrich methodologies for ad-
dressing adaptation in building self-adaptive systems. We considered, in specific,
agent-oriented methodologies and we introduced in some of them our Catalogue
of adaptation patterns that help in defining self-adaptive systems. In this pa-
per we have shown how the patterns can be integrated in PASSI2, but our
approach can be exploited in any methodologies for building adaptive systems.
The possibility of easily inserting our Catalogue of adaptation patterns inside a
methodology is based on the SPEM approach and permits harnessing the power
of the chosen methodologies. Moreover, we have completed the methodologies
process introducing our Catalogue of adaptation patterns also in the the sup-
porting tools, in order to have all the steps completed. Then we have created
a framework that permits matching the methodologies’ concepts into agents’
infrastructures.

As an ongoing work we are testing these modified methodologies in different
scenarios, to have quantitative and qualitative results of the effectiveness of the
methodologies.

References

1. aliCE Research Group et al. SODA home page, 2009.

2. Cyril Ballagny, Nabil Hameurlain, and Franck Barbier. Mocas: A state-based com-
ponent model for self-adaptation. In Self-Adaptive and Self-Organizing Systems,
2009. SASO’09. Third IEEE International Conference on, pages 206–215. IEEE,
2009.

3. Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. JADE-a FIPA-
compliant agent framework. In Proceedings of PAAM, volume 99, page 33. London,
1999.

4. Federico Bergenti, Marie-Pierre Gleizes, and Franco Zambonelli. Methodologies
and software engineering for agent systems: the agent-oriented software engineering
handbook, volume 11. Springer, 2004.

5. Carole Bernon, Marie-Pierre Gleizes, Sylvain Peyruqueou, and Gauthier Picard.
Adelfe: A methodology for adaptive multi-agent systems engineering. In Engineer-
ing Societies in the Agents World III, pages 156–169. Springer, 2003.

6. Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John My-
lopoulos. Tropos: An agent-oriented software development methodology. Au-
tonomous Agents and Multi-Agent Systems, 8(3):203–236, 2004.

7. Giacomo Cabri, Mariachiara Puviani, and Letizia Leonardi. The MAR&A method-
ology to develop agent systems. In ICAART, pages 501–506, 2009.

8. Giacomo Cabri, Mariachiara Puviani, and Franco Zambonelli. Towards a taxonomy
of adaptive agent-based collaboration patterns for autonomic service ensembles. In
CTS, pages 508–515. IEEE, 2011.

9. Licia Capra, Wolfgang Emmerich, and Cecilia Mascolo. Carisma: Context-aware
reflective middleware system for mobile applications. Software Engineering, IEEE
Transactions on, 29(10):929–945, 2003.

18 Mariachiara Puviani, Giacomo Cabri, Nicola Capodieci, Letizia Leonardi

10. ANTONIO Chella, Massimo Cossentino, and Luca Sabatucci. Tools and patterns
in designing multi-agent systems with PASSI. WSEAS Transactions on Commu-
nications, 3(1):352–358, 2004.

11. Massimo Cossentino. From requirements to code with the PASSI methodology.
Agent-oriented methodologies, 3690:79–106, 2005.

12. Massimo Cossentino and Valeria Seidita. Passi2–going towards maturity of the
passi process. 2009.

13. Scott A DeLoach, Mark F Wood, and Clint H Sparkman. Multiagent systems
engineering. International Journal of Software Engineering and Knowledge Engi-
neering, 11(03):231–258, 2001.

14. Jose Luis Fernandez-Marquez, Giovanna Di Marzo Serugendo, Paul L Snyder, and
Giuseppe Valetto. A pattern-based architectural style for self-organizing software
systems. Drexel University, Department of Computer Science, Tech. Rep, 6, 2012.

15. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison
Wesley, Reading (MA), 1995.

16. David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Peter
Steenkiste. Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture. Computer, 37(10):46–54, 2004.

17. Kurt Geihs, Roland Reichle, Michael Wagner, and Mohammad Ullah Khan. Mod-
eling of context-aware self-adaptive applications in ubiquitous and service-oriented
environments. In Software engineering for self-adaptive systems, pages 146–163.
Springer, 2009.

18. Svein Hallsteinsen, Kurt Geihs, Nearchos Paspallis, Frank Eliassen, Geir Horn,
Jorge Lorenzo, Alessandro Mamelli, and George Angelos Papadopoulos. A de-
velopment framework and methodology for self-adapting applications in ubiqui-
tous computing environments. Journal of Systems and Software, 85(12):2840–2859,
2012.

19. Brian Henderson-Sellers and Paolo Giorgini. Agent-oriented methodologies. IGI
Global, 2005.

20. Philip Mayer, Annabelle Klarl, Rolf Hennicker, Mariachiara Puviani, Francesco
Tiezzi, Rosario Pugliese, Jaroslav Keznikl, and Toma Bure. The autonomic cloud:
a vision of voluntary, peer-2-peer cloud computing. In Self-Adaptation and Self-
Organizing Systems Workshops (SASOW), 2013 IEEE 7th International Confer-
ence on, pages 89–94. IEEE, 2013.

21. Philip K McKinley, Seyed Masoud Sadjadi, Eric P Kasten, and Betty HC Cheng.
Composing adaptive software. Computer, 37(7):56–64, 2004.

22. M. Morandini et al. On the use of the Goal-Oriented Paradigm for System Design
and Law Compliance Reasoning. In iStar, volume 586, pages 71–75. CEUR-WS.org,
2010.

23. Object Management Group. SPEM. http://www.omg.org/technology/documents/formal/spem.htm,
1997.

24. Lin Padgham and Michael Winikoff. Developing intelligent agent systems: A prac-
tical guide, volume 13. John Wiley & Sons, 2005.

25. Juan Pavón, Jorge J Gómez-Sanz, and Rubén Fuentes. The INGENIAS method-
ology and tools. Agent-oriented methodologies, 9:236–276, 2005.

26. Mariachiara Puviani, Giacomo Cabri, and Letizia Leonardi. Enabling self-
expression: the use of roles to dynamically change adaptation patterns. In FOCAS
2014. IEEE Computer Society, 2014.

27. Mariachiara Puviani, Giacomo Cabri, and Letizia Leonardi. Integrating adapta-
tion patterns into agent methodologies to build self-adaptive systems. In 7th Inter-

Adaptation Patterns and Agent Methodologies 19

national conference on Agents and Artificial Intelligence (ICAART 2015), pages
99–106. SciTePress–Science and Technology Publications, 2015.

28. Mariachiara Puviani, Giacomo Cabri, and Franco Zambonelli. A taxonomy of
architectural patterns for self-adaptive systems. In Proceedings of the International
C* Conference on Computer Science and Software Engineering, pages 77–85. ACM,
2013.

29. Mariachiara Puviani, Giacomo Cabri, and Franco Zambonelli. Agent-based sim-
ulations of patterns for self-adaptive systems. In ICAART 2014 - Proceedings
of the 6th International Conference on Agents and Artificial Intelligence, Volume
1, ESEO, Angers, Loire Valley, France, 6-8 March, 2014, pages 190–200. IEEE
Computer Society, 2014.

30. Mariachiara Puviani, Massimo Cossentino, Giacomo Cabri, and Ambra Molesini.
Building an agent methodology from fragments: the MEnSA experience. In Pro-
ceedings of the 2010 ACM Symposium on Applied Computing, pages 920–927.
ACM, 2010.

31. Mariachiara Puviani, Giovanna Di Marzo Serugendo, Regina Frei, and Giacomo
Cabri. Methodologies for self-organising systems: a SPEM approach. In Proceedings
of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence
and Intelligent Agent Technology-Volume 02, pages 66–69. IEEE Computer Society,
2009.

32. Mariachiara Puviani, Giovanna Di Marzo Serugendo, Regina Frei, and Giacomo
Cabri. A method fragments approach to methodologies for engineering self-
organizing systems. ACM Transactions on Autonomous and Adaptive Systems
(TAAS), 7(3):33, 2012.

33. A.J. Ramirez and B.H.C. Cheng. Design patterns for developing dynamically adap-
tive systems. In Proceedings of the 2010 ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems, pages 49–58. ACM, May 2010.

34. Valeria Seidita, Massimo Cossentino, and Salvatore Gaglio. Using and extending
the SPEM specifications to represent agent oriented methodologies. In Agent-
Oriented Software Engineering IX, pages 46–59. Springer, 2009.

35. Danny Weyns, Sam Malek, Jesper Andersson, and Bradley Schmerl. Introduction
to the special issue on state of the art in engineering self-adaptive systems. Journal
of Systems and Software, 85(12):2675–2677, 2012.

36. Franco Zambonelli, Nicholas R Jennings, and Michael Wooldridge. Developing
multiagent systems: The gaia methodology. ACM Transactions on Software Engi-
neering and Methodology (TOSEM), 12(3):317–370, 2003.

