
10/04/2024 11:16

Mathematical models and decomposition algorithms for makespan minimization in plastic rolls production
/ Nesello, Vitor; Delorme, Maxence; Iori, Manuel; Subramanian, Anand. - In: JOURNAL OF THE
OPERATIONAL RESEARCH SOCIETY. - ISSN 0160-5682. - 69:(2018), pp. 326-339. [10.1057/s41274-017-
0221-8]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:

Mathematical Models and Decomposition Algorithms for Makespan

Minimization in Plastic Rolls Production

Vitor Nesello, Maxence Delorme, Manuel Iori, Anand Subramanian

May 22, 2017

Abstract

We study an optimization problem that originates from the packaging

industry, and in particular in the process of blown film extrusion, where a

plastic film is used to produce rolls of different dimensions and colors. The

film can be cut along its width, thus producing multiple rolls in parallel, and

set-up times must be considered when changing from one color to another.

The optimization problem that we face is to produce a given set of rolls

on a number of identical parallel machines by minimizing the makespan. The

problem combines together cutting and scheduling decisions, and is of high

complexity. For its solution we propose mathematical models and heuristic

algorithms that involve a non-trivial decomposition method. By means of

extensive computational experiments we show that proven optimality can be

achieved only on small instances, whereas for larger instances good quality

solutions can be obtained especially by the use of an iterated local search

algorithm.

Keywords: Plastic Rolls Production, Blown Film Extrusion, Optimization,

Mixed Integer Linear Programming, Iterated Local Search.

Introduction

In the packaging industry, plastic films are commonly obtained by blown film ex-

trusion. A tube of polymer is inflated to form a thin film bubble. The bubble is

collapsed to obtain a flat film, which is then used to produce the required items.

A common process is to first use the film to produce plastic rolls, and then use

the rolls later on the production process to obtain smaller items. The rolls have a

certain width that depends on the extruder machine at use, and a (possibly very

large) length that depends from the adopted operating time. To obtain the desired

roll dimensions, the film can be cut both along its width and along its length. The

cutting along the width is obtained by one or more devices called slits and allows

1

to produce multiple rolls in parallel on the same machine. We refer to, e.g., Cantor

(2011) for a wide description of the blown film extrusion characteristics.

In this paper we focus on a problem that originates from an industry producing

plastic bags for the South American market. Multiple identical extruded machines,

each equipped with a limited number of slits, are available to produce in parallel

a set of required plastic rolls. Each roll has a specific color, thickness, width, and

length. The extruder machines make use of raw polymer, thus a colorant is required

for the plastic bags to have the desired color. This implies that the rolls processed

at the same time on the same machine have the same color and thickness, although

they might have different width and length. The width of the film can be adjusted

at any time so as to waste neither time nor plastic. A setup time is incurred when

switching from one color to another, while changing the thickness is instantaneous.

The aim is to produce the required set of rolls by minimizing the makespan, i.e., the

completion time of the last item.

Note that the cutting process can be seen as a three-stage two-dimensional guil-

lotine cutting (see, e.g., Silva et al. 2010): the first-stage of vertical cuts separates

blocks of rolls having different colors; the second-stage of horizontal cuts separates

shelves of rolls produced in parallel; the third-stage of vertical cuts separates a roll

from the subsequent one thus obtaining the required products.

To better understand this complex problem, a simple example involving 12 items

of 3 different colors and a unique thickness is depicted in Figure 1. The numbers

on the arcs represent the setup times between pairs of colors. The widths of the

items are proportional to the vertical dimensions of the depicted rectangles, whereas

lengths are proportional to the horizontal dimensions (roll lengths have been scaled

down to better fit the graphical representation). An optimal solution with two

machines, both equipped with one slit and having maximum width 5, is provided in

Figure 2. Machine 1 processes a first block containing only item 1 for 5 time units,

then incurs in a setup of 4 units, and finally processes a second block containing

items from 5 to 8 for 11 time units. The slit is used only in the second block to

separate the shelf containing item 8 from the shelf containing the remaining items.

Note that no plastic is wasted during the processing of the second block. The width

of the film can indeed be reduced by lowering down by one unit the upper part when

processing items 8 and 6, and by two units when processing 8 and 7. Similarly, the

bottom can be lift up by one unit when processing only 7. A similar process is

performed by machine 2, that processes two blocks, both made by two shelves. The

2

slit is used in the first block to separate item 4 from 2 and 3, and in the second

block to separate items 9 and 10 from 11 and 12. The resulting makespan is of 20

time units.

2 3

4

1

8

5
6

7

12

10

11

9

4

3

10

Figure 1: A simple PRPP instance.

0 5 10 15 20

0 5 10 15 20

0

1

2

3

4

5

0

1

2

3

4

5

2

3

4

1

5

8

6

7

11

9

10

12

Figure 2: An optimal solution for the instance in Figure 1.

The resulting optimization problem, that we hereafter call plastic rolls produc-

tion problem (PRPP), embeds a cutting component (the 3-stage two-dimensional

guillotine cutting) into a classical scheduling problem of makespan minimization

with setup times on parallel machines. Problems arising in the so-called cutting and

packing research area are frequently encountered in practical industrial applications

(see, e.g., Kallrath et al. 2014 and the special issue edited by Bennell et al. 2013).

Cutting and packing problems are frequently combined with problems from other

optimization areas so as to better model real-world situations. Iori et al. (2007) com-

bined two-dimensional loading problem and vehicle-routing, Gramani et al. (2009)

3

and Silva et al. (2014) integrated lot-sizing with cutting stock problems, and Hu et al.

(2015) considered two-dimensional spatial resource constraints in project scheduling,

just to cite some examples.

To the best of our knowledge, the problem that is most similar to the PRPP is

the three-stage two-dimensional guillotine cutting problem studied by Vanderbeck

(2001). In this problem, rectangular bins of fixed width and length are cut into

blocks, then blocks are cut into shelves, and shelves are cut into items. Fixed setup

times occur between blocks, and the objective is mainly waste minimization. The

problem was solved by a decomposition based on the recursive use of a column gen-

eration approach. The PRPP is however different from the problem in Vanderbeck

(2001) because it has a limit on the number of shelves per block, it has sequence-

dependent setup times, it involves rolls instead of bins of fixed length, and aims at

minimizing makespan instead of waste material.

The aim of this paper is to formally introduce the PRPP, present exact and

heuristic methods for its optimization, and perform an extensive computational eval-

uation of the proposed solution strategies. In details, we first model the PRPP using

a compact mixed integer linear programming (MILP) formulation, i.e., a formula-

tion that has a polynomial number of variables and constraints. We then decompose

the problem by separating the cutting component from the scheduling one, and use

this to derive valid lower and upper bounds on the optimal makespan. Notably,

these bounds are obtained by solving three different MILP models, one involving a

non-trivial pseudo-polynomial arc-flow formulation, another one requiring a tailored

branch-and-cut implementation and the last one based on the generalized assign-

ment problem. These techniques work well for small- and medium-size instances,

thus, to efficiently address large-size instances, we developed a metaheuristic based

on an iterated local search framework.

The remainder of the paper is organized as follows: (i) the PRPP is formally in-

troduced and the relevant literature is discussed; (ii) the compact MILP formulation

is presented; (iii) the decomposition approach and the lower bounds are explained;

(iv) the upper bounding methods are described; (v) the proposed techniques are

computationally evaluated; and (vi) conclusions are drawn in the last section.

4

Problem Description

The PRPP requires to produce n plastic rolls, called items for short in the following,

onm identical parallel machines. Each item j has width wj , length lj , and belongs to

a class γj, for j = 1, . . . , n. Without loss of generality we suppose that the processing

time of an item j is equal to its length lj . Two items belong to the same class if they

have the same color and thickness, thus allowing both of them to be processed at

the same machine simultaneously. A setup cost sij occurs when a machine processes

an item j after having processed an item i. A machine cannot process items during

setup. Each machine has a maximum width W and is equipped with σ slits. A block

is a subset of items of the same class, whereas a shelf is a sequence of items packed

at the same width in a block. A machine can process items in parallel by using a

three-stage two-dimensional guillotine cutting process: the first-stage vertical cuts

separate blocks, the second-stage horizontal cuts separate shelves, and the third-

stage vertical cuts separate items. The width of a shelf is given by the wider item in

that shelf. The total width of the shelves produced in parallel on a machine cannot

exceed W , whereas their total number cannot exceed σ + 1. The processing time

of a shelf is given by the sum of the lengths of the items in that shelf, and the

processing time of a block is the maximum processing time of the shelves in that

block. The objective of the PRPP is to feasibly schedule the items into the machines

by minimizing the makespan.

We consider that a fixed identical setup cost occurs on each machine at the

beginning of the activities. As this cost is the same for all the machines it has

no impact on the optimal solution, thus we simply disregard it from our study.

Moreover, our models and algorithms could be easily adapted to include a starting

setup cost that depends from an initial configuration on each machine.

The PRPP is composed by a two-dimensional cutting component (creating the

blocks) and a scheduling component (assigning the blocks to the machines with

sequence-dependent setup times). Because of its nature, it generalizes a number

of quite different combinatorial optimization problems, as noticed in Table 1. If a

single machine with 0 slits is available and all items have the same color, then the

problem is trivial because there are no setup costs and items must be processed

one after the other, so the makespan is simply the sum of all processing times.

If a single machine with 0 slits is available and the items have different colors,

then the PRPP reduces to the well-known traveling salesman problem (TSP), see,

5

e.g., Applegate et al. (2007), because items cannot be produced in parallel and

thus minimizing the makespan is equivalent to finding the permutation of the items

that leads to the lowest setup cost. If all items have the same color, and multiple

machines are available but none of them has slits, then the PRPP is equivalent to

the identical parallel machine scheduling problem (P||Cmax), see, e.g., Dell’Amico

et al. (2008). In this case, indeed, no setup cost is paid, items cannot be produced

in parallel on a machine, and thus the problem is to distribute the items among the

machines to obtain the best makespan. If all items have the same color and just one

machine is available, then the PRPP becomes a three-stage cardinality-constrained

two-dimensional strip packing problem (3SC2SPP), where the cardinality limit is

imposed on the number of shelves. The strip packing problem (SPP) is to pack a

set of rectangles into a strip of fixed width and minimum length, without overlapping

and without rotation (see, e.g., Côté et al. 2014). Several SPP variants including

multi-stage guillotine cuts have been studied in the literature (see, e.g., Silva et al.

2010 and Mrad 2015 among others), but, to the best of our knowledge, the 3SC2SPP

is a new problem.

With the exception of the trivial case, all the discussed problem variants are

NP-hard, so the same holds for the PRPP.

Table 1: Relevant PRPP variants under different input parameters.

colors machines slits problem

1 1 0 trivial
2 or more 1 0 traveling salesman problem
1 2 or more 0 identical parallel machines scheduling problem
1 1 1 or more three-stage two-dim. card.-constr. SPP
2 or more 2 or more 1 or more plastic rolls production problem (this paper)

A Compact Mathematical Formulation

In this section we propose a compact model for the PRPP that generalizes the one

presented by Lodi and Monaci (2003) for the two-stage two-dimensional knapsack

problem by considering three-stage cutting and setup costs. In the following, let

items be sorted by non-increasing width, breaking ties by non-increasing length.

6

Let us say that an item initializes a shelf if it is the lowest-index item in that shelf,

and that it initializes a block if it is the lowest-index item in that block.

Now, let us first model the cutting part of the PRPP by using the decision

variable

• xjik =

{
1 if item j is in shelf i of block k;

0 otherwise;
for 1 ≤ k ≤ i ≤ j ≤ n,

γk = γi = γj.

Variable x has a threefold meaning: if xkkk = 1, then item k initializes block k,

meaning that item k has the greatest width of all items in block k; if xiik = 1, k < i,

then item i initializes shelf i in the block initialized by a previous item k, meaning

that item i has the greatest width of all items in shelf i, but there is at least one item

with greater width that initializes another shelf in block k; if xjik = 1, k < i < j,

then item j is packed into the shelf initialized by a previous item i in the block

initialized by a previous item k, meaning that item j is placed in a shelf containing

at least one item of greater width. This is necessary to enforce items with lower

width to be packed to the right of the larger ones, therefore meeting the three-stage

two-dimensional guillotine cutting configuration of the problem. For example, in

Figure 2, the block containing items 2, 3, and 4 is the block number 2, because

the item 2 is the one with greatest width. Hence, we say that item 2 initializes the

block and shelf of the same number, and we have x222 = 1. Item 3 is packed on the

shelf initialized by item 2, so x322 = 1, and item 4 initializes the shelf number 4, so

x442 = 1. The other variables that take value 1 are x111, x555, x655, x755, x885, x999,

x10,9,9, x11,11,9, and x12,11,9.

Let us call for short “block k” the block initialized by item k and “shelf i” the

shelf initialized by item i. To model the scheduling part of the PRPP let us introduce

two dummy items, 0 and n+1, having 0 length and no setup costs from and to other

items. Item 0 represents the beginning of the activities and item n + 1 represents

the end. Let us also denote N = {1, 2, . . . , n} and N ′ = {0, 1, . . . , n, n + 1}. We

make use of the following decision variables:

• ξhk =

{
1 if block h is followed by block k;

0 otherwise;
for h, k ∈ N ′, h 6= n + 1,

k 6= 0, h 6= k;

• αk : setup required for block k, for k ∈ N ;

• βk : processing time of block k, for k ∈ N ;

7

• ϑhk : time flow between blocks h and k, for h, k ∈ N ′, h 6= n+1, k 6= 0, h 6= k;

• z : makespan.

In practice, the ξhk variables keep track of the sequences of blocks in each machine,

whereas the other variables are used to compute the completion times of the jobs

and the makespan. For the example depicted in Figure 2, we have: β1 = 5, β2 = 7,

β5 = 11, β9 = 10, ξ01 = 1, ξ15 = 1, ξ5,13 = 1, ξ02 = 1, ξ29 = 1, ξ9,13 = 1, α5 = 4,

α9 = 3, ϑ15 = 5, ϑ5,13 = 20, ϑ29 = 7, ϑ9,13 = 20, and z = 20.

The PRPP can then be formulated as the following MILP model:

min z (1)

subject to

j∑

i=1

i∑

k=1

xjik = 1 j ∈ N (2)

n∑

i=k

wixiik ≤ Wxkkk k ∈ N (3)

n∑

i=k

xiik ≤ σ + 1 k ∈ N (4)

xjik ≤ xiik j, i, k ∈ N, k ≤ i ≤ j (5)
∑

h∈N ′\{k,n+1}

ξhk = xkkk k ∈ N (6)

αk ≥
∑

h∈N ′\{k,n+1}

shkξhk k ∈ N (7)

βk ≥
n∑

j=i

ljxjik i, k ∈ N, k ≤ i (8)

∑

h∈N ′\{0,k}

ξkh −
∑

h∈N ′\{k,n+1}

ξhk =





m if k = 0;

−m if k = n+ 1;

0 otherwise

k ∈ N ′ (9)

∑

h∈N ′\{0,k}

ϑkh −
∑

h∈N ′\{k,n+1}

ϑhk =

{
0 if k = 0;

αk + βk otherwise
k ∈ N ′ \ {n+ 1} (10)

z ≥ ϑh,n+1 h ∈ N ′ \ {n+ 1} (11)

αk, βk ≥ 0 k ∈ N (12)

0 ≤ ϑhk ≤ Uξhk h, k ∈ N ′, h 6= n+ 1,

8

k 6= 0, h 6= k (13)

ξhk ∈ {0, 1} h, k ∈ N ′, h 6= n+ 1,

k 6= 0, h 6= k (14)

xjik ∈ {0, 1} j, i, k ∈ N, k ≤ i ≤ j,

γk = γi = γj (15)

The objective function (1) minimizes the makespan. Constraints (2) ensure that

every item is scheduled. Constraints (3) state that the maximum width of each

block is not exceeded. Constraints (4) impose that the number of shelves in a block

is not greater than the maximum number of slits plus one. Constraints (5) state

that an item j can assigned to a shelf i only if the shelf has been initialized by

i. Constraints (6) state that if a block k is used, then exactly one ξhk variable

incoming into k should be used. Constraints (7) and (8) compute, respectively, the

setup time and the processing time required for each block k, if any. Note that the

processing time of the block is given by the maximum of the sums of the processing

times on each shelf. Constraints (9) ensure that exactly m sequences are created

and that these sequences are connected. Constraints (10) use the variables ϑhk as

a commodity to compute the increasing time along the sequences. This has the

effect of disregarding subtours, and also allows to compute, through constraint (11),

the value of the makespan. Finally, constraints (12)-(15) impose the bounds on the

variables, with U being a valid upper bound value on the makespan.

Lower Bounds based on a Decomposition Method

Model (1)-(15) has the merit of unambiguously describe the PRPP, but, as later

shown, it has a poor computational performance. In this section and in the following

one we study a natural decomposition of the PRPP into its two main components,

namely, cutting and scheduling, and show how this can lead to the computation of

lower and upper bounds on the optimal solution value. Figure 3 presents a flowchart

of our decomposition. The cutting component (CC) solves a pure cutting problem,

producing a set of possible cutting patterns and a set of selected blocks. The patterns

are passed to a scheduling component (SC), that computes a color sequence for a

pure scheduling problem and obtains a valid lower bound. Two algorithms, namely,

an iterated local search and an approach based on a generalized assignment problem,

9

use the selected blocks (the latter also uses the color sequence) to produce a feasible

solution of good quality.

problem input

feasible
solution

lower
bound

cutting
component

iterated
local search

scheduling
component

GAP
approach

selected blocksnormal patterns

color sequence

selected
blocks

Figure 3: A flowchart of the complete algorithm.

Cutting component (CC)

Let S be the set of all item classes, and Ns = {j ∈ N : γj = s} be the subset of items

whose class is s, for s ∈ S. As described in the problem description Section, the

problem of producing all items belonging to the same class from a film of minimum

length is the 3SC2SPP. In this section we propose a method to solve the 3SC2SPP

that is based on the arc-flow formulation introduced by Valério de Carvalho (1999)

for the one-dimensional cutting stock problem, and later extended to the two-stage

two-dimensional case by Macedo et al. (2010).

We need some additional notation to describe our formulation. First of all, let

us define, for each s ∈ S, m∗
s as the number of different item widths and W∗

s =

{w∗
1, w

∗
2, . . . , w

∗
m∗

s
} the corresponding width set. Additionally, we compute the set

Ls of all possible combinations of item lengths as

Ls =
{
x =

∑
j∈T

lj : 0 ≤ x ≤ Λs, T ⊆ Ns

}
, (16)

with Λs being an upper bound on the maximum length of a block of items of class

s. Using the definitions by Herz (1972) and Christofides and Whitlock (1977), Ls

can be either called the set of canonical dissections or of normal patterns. Here we

10

use the term normal patterns. The computation of Ls may be obtained by invoking

a standard dynamic programming procedure. We use Ls to determine the possible

positions of the first-stage cuts.

To model the second-stage cuts, we make use of a graph G′
s = (V ′

s , A
′
s). The

vertex set is V ′
s = {(a, b): a = 0, 1, . . . ,W ; b = 0, 1, . . . , σ + 1}. The arc set A′

s is

composed by so-called item arcs and loss arcs : items arcs represent a second-stage

cut corresponding to an item and their set is {((d, u), (e, u+1)): 0 ≤ u ≤ σ; 0 ≤ d <

e ≤ W and e − d ∈ W∗
s }; loss arcs represent unused portions of the film and their

set is {((a, b), (W,σ+1)): (a, b) ∈ V ′
s}. In addition, let A′

j∗s = {a = ((d, u), (e, v)) ∈

A′
s : e − d = w∗

j∗}, for w∗
j∗ ∈ W∗

s . Let also δ+(e, u), respectively δ−(e, u), be the

subset of arcs of A′
s that leaves, respectively enters, a node (e, u).

Third-stage cuts induced on a shelf by a width w∗
j∗ ∈ W∗

s , for j
∗ = 1, . . . , m∗

s, are

modeled by the use of a multi-graph G′′
j∗s = (V ′′

s , A
′′
j∗s), where the vertex set is V ′′

s =

{0, 1, . . . ,Λs} and the arc set is composed by a subset of item arcs and two subsets

of loss arcs as A′′
j∗s = {(k, d, e): 0 ≤ d < e ≤ Λs and ∃ k ∈ Ns: e− d = lk and wk ≤

w∗
j∗} ∪ {(0, d,Λs) : d = 0, 1, . . . ,Λs − 1} ∪ {(0, d, d + 1) : d = 0, 1, . . . ,Λs − 1}.

Moreover, for any j∗ = 1, . . . , m∗
s we define δ+j∗(e), respectively δ−j∗(e), as the subset

of arcs of A′′
j∗s that leaves, respectively enters, a node e.

Let us introduce the following decision variables:

• ϕp = number of times a block of length p ∈ Ls is chosen (first-stage vertical

cuts);

• ϕ′
pa = number of times arc a ∈ A′

s is chosen as a second-stage horizontal cut

on a block of length p ∈ Ls;

• ϕ′′
j∗a = number of times arc a ∈ A′′

j∗s is used as a third-stage vertical cut on a

shelf of width w∗
j∗ ∈ W∗

s .

The film of minimum length required to produce all items of class s ∈ S can be

obtained by solving the following MILP model:

min zCC
s =

∑

p∈Ls

pϕp (17)

11

subject to

∑

a∈δ+(e,u)

ϕ′
pa −

∑

a∈δ−(e,u)

ϕ′
pa =





ϕp if (e, u) = (0, 0);

−ϕp if (e, u) = (W,σ + 1);

0 otherwise,

(e, u) ∈ V ′
s , p ∈ Ls (18)

∑

a∈δ+
j∗

(e)

ϕ′′
j∗a −

∑

a∈δ−
j∗

(e)

ϕ′′
j∗a =





∑
p∈L

∑
a∈A′

j∗s

ϕ′
pa if e = 0;

−
∑
p∈L

∑
a∈A′

j∗s

ϕ′
pa if e = Λs;

0 otherwise,

j∗ = 1, . . . ,m∗
s (19)

∑

j∗=1,...,m∗

s ,w
∗

j∗
≥wk

∑

a∈A′′

j∗s

ϕ′′
j∗a = 1 k ∈ Ns (20)

ϕ′′
j∗(0pΛs)

=
∑

a∈A′

j∗s

ϕ′
pa j∗ = 1, . . . ,m∗

s,

p ∈ Ls (21)

ϕp ≥ 0, integer p ∈ Ls (22)

ϕ′
pa ≥ 0, integer p ∈ Ls, a ∈ A′

s (23)

ϕ′′
j∗a ≥ 0, integer j∗ = 1, . . . ,m∗

s,

a ∈ A′′
j∗s (24)

The objective function (17) minimizes the total used length. Constraints (18)

impose flow conservation among the ϕ′ variables, and also link together ϕ′ with ϕ

by stating that shelves can be created only in those blocks p that have a positive

ϕp value. Similarly, constraints (19) ensure flow conservation among the third-stage

cuts and allow to produce items only in shelves that have been created by second-

stage cuts. Constraints (20) ensure that all items are produced, while constraints

(21) force an empty space from p to Λs for shelves produced in block p.

For example, to model the solution depicted in the left-most block of the bottom

machine in Figure 2, supposing Λs = 9 and σ = 3, the following variables would take

value 1: ϕ7, ϕ
′
7((0,0),(1,1)), ϕ

′
7((1,1),(4,2)), ϕ

′
7((4,2),(5,4)), ϕ

′′
1(4,0,7), ϕ

′′
1(0,7,9), ϕ

′′
4(2,0,3), ϕ

′′
4(3,3,7),

and ϕ′′
4(0,7,9). For the right-most block in the same machine, the following variables

would instead take value 1: ϕ10, ϕ
′
10((0,0),(2,1)), ϕ

′
10((2,1),(5,2)), ϕ

′
10((5,2),(5,4)), ϕ

′′
2(11,0,6),

ϕ′′
2(12,6,10), ϕ

′′
2(0,10,19), ϕ

′′
3(9,0,3), ϕ

′′
3(10,3,9), ϕ

′′
3(0,9,10), and ϕ′′

3(0,10,19).

Model (17)–(24) may have a slow convergence to an optimal solution because it

may contain a large number of variables: O(Λs) for the first set of cuts, O(Λsm
∗
sσ)

12

for the second, and O(Λsm
∗
sn) for the third. We use a heuristic to limit the value of

Λs and some preprocessing techniques to improve its computational performance.

In terms of preprocessing, we adopted the two following techniques:

• for each item j ∈ Ns we compute, through dynamic programming, the maxi-

mum width w′
j ≤ W − wj that can be taken by a subset of items packed side

by side with j. If wj + w′
j < W , then the width of item j is increased to

wj = W − w′
j.

• let p be the item with smallest width and q the item with second smallest width.

If there is an item j (j 6= p 6= q), such that, wj + wp ≤ W , wj + wq > W , and

lj ≥ lp, then we pack items j and p alone in a single block of length lj .

A consequence of the first preprocessing is that if w′
j = 0 (that is, no item can be

packed side by side with j) then wj is set to W and j is packed alone in a block of

length lj .

Limiting the value taken by Λs may decrease consistently the number of variables.

We pursue this by means of a two-step algorithm. By remarking that any upper

bound for zCC
s is also a valid upper bound for Λs, we first solve model (17)–(24)

heuristically, by limiting Λs to a small value (in our implementation we chose Λs =

1.5 × maxj∈Ns
{lj}). If the solution obtained, say, z̄CC

s , satisfies z̄CC
s ≤ Λs, then we

terminate with a proof of optimality. If instead z̄CC
s > Λs, we set Λs = z̄CC

s and

solve the model once more. A solution obtained for a given Λs can be easily mapped

into a solution for another Λ′
s > Λs, thus, the solution obtained at the end of first

step is given as a “warm start” to the solver at the beginning of the second step.

Scheduling component (SC)

The second component of our decomposition approach is a scheduling problem that

takes as input the information provided by solution of the cutting component. Recall

that S is the set of item classes (defined by thickness and color). Let us now define

by C the set of colors, and by Sc ⊆ S the subset of classes whose color is c, for

c ∈ C. Model (17)-(24) is invoked for each class s ∈ S to determine the minimum

length film necessary to produce all items in that class. Let z̄CC
s be the optimal

solution value of the model and let

bc =
∑

s∈Sc

z̄CC
s (25)

13

be the minimum film length required to produce all items of color c. Let us also

determine all possible positions for a first-stage cut on items of color c by computing

Lc =
{
x =

∑
j∈T

lj : 0 ≤ x ≤ bc, T ⊆
⋃

s∈Sc

{Ns}
}
. (26)

Production typically happens on more than one machine, and in such a case

the length bc will be split among the machines. The values used to split bc can be

limited to those in (26). This consideration is at the basis of a MILP model that we

developed to solve the SC.

To this purpose, we build a graph G̃ = (C̃, Ã). The vertex set is C̃ = C ∪

{0}, where 0 is a dummy vertex that represents the beginning and the end of the

activities. The arc set Ã connects each pair of vertices in C̃. Let scd be the value

of the setup length when changing production from color c to color d (recall that

no setup occurs when keeping the same color and just changing the thickness). We

aim at creating a working sequence for each machine p ∈ M , specifying the order in

which colors are processed on that machine, and their corresponding quantity.

Let us first introduce a variable zSC indicating the value of the optimal makespan.

Let us also introduce two sets of three-index binary variables:

• ycdp =

{
1 if vertex c is followed by vertex d on machine p;

0 otherwise;
for c, d ∈ C̃,

p ∈ M ;

• ωcℓp =

{
1 if ℓ units of film of color c are used on machine p;

0 otherwise;
for c ∈ C,

ℓ ∈ Lc, p ∈ M .

The scheduling component can be modeled as the following MILP model:

min zSC (27)

subject to

zSC ≥
∑

c∈C̃

∑

d∈C̃

scdycdp +
∑

c∈C

∑

ℓ∈Lc

ℓωcℓp p ∈ M (28)

∑

c∈C̃

y0cp = 1 p ∈ M (29)

∑

c∈C̃

yc0p = 1 p ∈ M (30)

14

∑

p∈M

∑

ℓ∈Lc

ℓωcℓp = bc c ∈ C (31)

∑

d∈C̃

ydcp =
∑

d∈C̃

ycdp c ∈ C̃, p ∈ M (32)

∑

ℓ∈Lc

ωcℓp ≤
∑

d∈C̃

ydcp c ∈ C, p ∈ M (33)

∑

c∈T

∑

d∈T

ycdp ≤ |T | − 1 T ⊂ C, |T | ≥ 1, p ∈ M (34)

ycdp ∈ {0, 1} c, d ∈ C̃, p ∈ M (35)

ωcℓp ∈ {0, 1} c ∈ C, ℓ ∈ Lc, p ∈ M (36)

The objective function (27) minimizes the makespan of the schedule. This is forced

to be not lower than the total workload (including setup and production times) on

each machine p by constraints (28). Constraints (29) and (30) ensure, respectively,

that a single path starts and ends at vertex 0 for each machine. Note that y00p=1

would correspond to an empty path for machine p. Constraints (31) guarantee

that bc units are processed in total for each color c. Constraints (32) impose flow

conservation for each path on each vertex. Constraints (33) impose that if color

c is processed on machine p then the path adopted for p should enter vertex c.

Constraints (34) are the classical subtour elimination constraints and are used to

impose the connectivity of the solution.

The optimal solution value for zSC represents a lower bound on the optimal

PRPP solution value. The values taken by the y and ω variables are used to derive

also a valid upper bound, as explained in the following.

Upper Bounding Procedures

The solution of the CC consists of a series of selected blocks. These can be used to

produce all the items, but , in order to produce a feasible PRPP solution, they must

be allocated to the machines by taking into account set-up times and makespan

minimization. In this section we propose two upper bounding procedures that make

use of this idea, that is, they take in input the blocks generated by the CC and then

focus on the best way to schedule them on the machines.

15

A Heuristic Based on a Generalized Assignment Problem

The solution of the CC consists of the blocks defined by the selected ϕ̄p variables

(selected first-stage vertical cuts of length p), whose total length is equal to z̄CC
s as

stated in (17). The set of selected blocks for a color c is thus given by the union of

the selected blocks for all s ∈ Sc, and their total length is bc as stated in (25).

The solution of the SC does not directly consider the item lengths, but parti-

tions bc into a set of film segments whose length is determined by the selected ω̄cℓp

variables, each corresponding to a segment of length ℓ (refer also to (31)) .

If we manage to allocate the selected blocks from the CC into the film segments

produced by the SC, then we would produce a proven optimal solution (being feasible

for both cutting and scheduling and having cost equal to the lower bound zSC). If

this is not possible, we can at least use the allocation of minimum excess, which

produces a heuristic solution. This idea is at the basis of our first upper bounding

procedure.

To simplify notation, letB be the set of blocks selected by the cutting component,

l′j the length of each block j ∈ B, and c′j the color of each block j ∈ B. Let F be the

set of film segments produced by the scheduling component, l′′i the length of each

segment i ∈ F and c′′i the color of each segment i ∈ F . Let also mi be the index

of the machine processing block i ∈ F anf ζp the total time (working and setup) of

machine p ∈ M in the solution of the SC.

By introducing the following decision variables

• xij = 1 if block j ∈ B is assigned to segment i ∈ F , 0 otherwise;

• si = value of the slack of segment i ∈ F ;

• z = makespan,

the problem of allocating blocks to segments can be modeled as the following MILP:

min z (37)

subject to

∑

i∈F

xij = 1 j ∈ B (38)

∑

j∈B,c′j=c′′i

l′jxij ≤ si + l′′i i ∈ F (39)

16

z ≥
∑

i∈F,mi=p

si + ζp p ∈ M (40)

xij ∈ {0, 1} i ∈ F, j ∈ B (41)

The objective function (37) minimizes the makespan. Constraints (38) state

that every block must be assigned exactly once. Constraints (39) force the sum

of the slack variable si and the length l′′i of the segment i ∈ F to be not smaller

than the sum of the lengths l′j of the blocks assigned to that segment. Constraints

(40) compute the makespan by forcing z to be greater than or equal to the original

working time of a machine p plus the total slack assigned to that machine.

Model (37)–(41) is reminiscent of the well-known generalized assignment prob-

lem (GAP), so our first upper bounding procedure is called GAP based approach

(GAPBA) in the following.

An Iterated Local Search Algorithm

Our second upper bounding procedure relies on scheduling the set B of blocks gen-

erated by the CC on m identical machines (see the previous Section for a formal

definition of B). The objective is to minimize the makespan, i.e., the maximum

completion time of a block, but, as the blocks may be of different colors, sequence-

dependent setup times must be taken into account. According to the three-field

notation proposed by Graham et al. (1979), this NP-hard problem can be denoted

as P |shk|Cmax.

The algorithm that we use to solve the P |shk|Cmax is an adapted version of the

ILS-RVND heuristic by Subramanian (2012), originally designed to solve vehicle

routing problems (VRPs). The most common objective function in VRPs is to

minimize the total tour length, which is equivalent, on scheduling problems, to

minimize the total time spent by the machines to process all jobs. However, the

objective function of the P |shk|Cmax minimizes the makespan, which is equivalent to

minimizing the longest route length on VRPs. The adaptations that we implemented

to take care of this difference essentially consist in modifying the way the objective

function is computed throughout the algorithm. The input data for the ILS-RVND

is basically a matrix that stores the time spent by a machine to process a block

k immediately after a block h, which is computed by summing up the processing

time of block k plus the setup time between h and k. The values for the processing

17

times are derived from the length of the blocks generated by the CC and the setup

times come directly from the PRPP input data, more precisely, from the setup times

between different colors.

In short, ILS-RVND is a multi-start heuristic that combines iterated local search

(ILS), see, e.g., Lourenço et al. (2010), with randomized variable neighborhood de-

scent (RVND), see, e.g., Mladenović and Hansen (1997) and Subramanian et al.

(2010). The algorithm alternates between local search and perturbation procedures,

where the latter modifies a local optimal solution by randomly moving or swapping

items between different machines. Initial solutions are generated using a greedy

randomized algorithm. A detailed and comprehensive description of ILS-RVND can

be found in Subramanian (2012).

The local search is performed in two different levels: (i) inter-machine, that is,

moves involving different machines; (ii) intra-machine, i.e., moves involving a single

machine. In what follows, we describe each of the neighborhood structures used

in ILS-RVND. They are exhaustively examined in a random order using the best

improvement strategy.

Inter-machine neighborhoods:

• Insertion inter(1,0): a block is removed and inserted in another machine;

• Insertion inter(2,0): two adjacent blocks are removed and inserted in

another machine;

• Swap inter(1,1): permutation of two blocks assigned to different machines;

• Swap inter(2,1): permutation of a block in a machine with two adjacent

blocks in another machine;

• Swap inter(2,2): permutation of two pairs of adjacent blocks in two different

machines;

• Cross: the sequences of two distinct machines are split into two, creating two

initial and two final subsequences. The initial subsequences are interchanged

to build two new sequences (each containing an initial and a final subsequence

provided by two distinct machines).

Intra-machine neighborhoods:

• Swap: permutation of two blocks in the same machine;

• 1-block insertion: a block is removed from its current position and inserted

in another position in the same machine;

18

• 2-block insertion: two adjacent blocks are removed and inserted in another

position in the same machine;

• 3-block insertion: three adjacent blocks are removed and inserted in an-

other position in the same machine.

Computational Experiments

The algorithms were coded in C++ and the experiments were conducted on a single

core of an Intel Core i7 processor with 3.4 Ghz and 16 GB of RAM, running Ubuntu

12.04. All formulations were solved using CPLEX 12.6. A time limit of 3600 seconds

and a memory limit of 10 GB were imposed for the compact formulation. For the

CC, we set a time limit of 1200 seconds because only one instance could not be

solved to optimality within such limit (and the remaining instances could not be

solved even allowing a much larger time). The ILS-RVND algorithm was executed

10 times for each instance by adopting the same parameter values as in the original

work Subramanian (2012). As for the SC, we first imposed a time limit of 3600

seconds but we later verified that this value was overestimated. Figure 4 depicts the

value of the average gap considering all instances (described in details in the next

section) between the lower bound after a particular runtime and the lower bound

found after 3600 seconds. We can observe that the average initial gap is already

small (0.17%) and after 300 seconds it reduces to 0.12%. The improvement obtained

from that point on is not significant. Therefore, we decided to adopt 300 seconds as

time limit for the SC, as it seems that this setting offers good compromise between

time spent and lower bound quality.

Instances

Two sets of instances have been created on the basis of observations of processes

in the industry producing plastic bags that was at the origin of our research. The

values of the parameters were generated using uniform distribution considering the

minimum and maximum values observed in practice. The first set contains 50 small

instances with number of items ranging from 10 to 50, while the second one is com-

posed of larger instances with number of items ranging from 100 to 250. For each

value of n (independently of the set), two different numbers of machines were selected

and two groups of instances were created, each group containing 5 randomly gener-

19

✥

✥�✥✁

✥�✥✂

✥�✥✄

✥�✥☎

✥�✆

✥�✆✁

✥�✆✂

✥�✆✄

✥�✆☎

✥ ✝✥✥ ✆✥✥✥ ✆✝✥✥ ✁✥✥✥ ✁✝✥✥ ✞✥✥✥ ✞✝✥✥

●
✟
✠
✡☛
☞

❚✌✍✎ ✏✑✒

Figure 4: Evolution of the lower bound produced by the SC.

ated instances. Table 2 shows the parameters adopted for each group of instances.

The number of colors (#colors), the number of classes (#γ), and the number of

slits (σ) were generated by using a random integer uniform distribution within the

indicated intervals. For all instances, the value of W was set to 180, whereas the

values of w, l, and s were uniformly randomly generated as integer values in the

intervals [30,180], [10,200], and [10,30], respectively, with s being restricted to take

values that are multiples of 5.

Table 2: Instance parameters
Small instances Large instances

n m #colors #γ σ n m #colors #γ σ

10
2 [2,3] [#colors,3] [1,2]

100
4 [4,6] [#colors,10] [1,4]

3 [2,3] [#colors,3] [1,2] 6 [4,6] [#colors,10] [1,4]

20
2 [2,3] [#colors,4] [1,2]

150
6 [4,8] [#colors,14] [1,4]

3 [2,3] [#colors,4] [1,2] 8 [4,8] [#colors,14] [1,4]

30
3 [2,4] [#colors,6] [1,3]

200
6 [4,8] [#colors,14] [1,5]

4 [2,4] [#colors,6] [1,3] 8 [4,8] [#colors,14] [1,5]

40
3 [2,4] [#colors,8] [1,3]

250
8 [4,10] [#colors,18] [1,5]

4 [2,4] [#colors,8] [1,3] 10 [4,10] [#colors,18] [1,5]

50
4 [2,5] [#colors,10] [1,4]
5 [2,5] [#colors,10] [1,4]

20

Algorithm performance

With respect to the small instances, we report the results for all algorithms proposed

in this paper, whereas for the larger instances, we only present the results found by

the lower bounding procedure (cutting plus scheduling component) and by the ILS-

RVND heuristic. In the latter case it is prohibitively expensive to use the compact

formulation, and the GAPBA approach produces poor upper bounds because it relies

on the output of the SC, which is executed for a short time period, thus generating

low quality sequences.

In the tables presented hereafter, #inst represents the number of instances

of a group, LB and UB correspond to the lower and upper bound, respectively,

#opt denotes the number of optimal solutions found, time (s) indicates the CPU

time in seconds, BKLB represents the best known lower bound and gap (%) is

the percentage gap between the UB found by a given method and BKLB, that

is: 100(UB − BKLB)/UB. Detailed results for each instance are provided in the

appendix (see Tables 6 and 7).

Table 3 presents the aggregate results obtained by the compact formulation on

the small instances. The formulation finds proven optimal solutions for 13 instances

with up to 20 items, but cannot prove optimality for any of the larger instances. The

average CPU time for the 10-item instances is acceptable, but it increases rapidly

with the number of items. Nonetheless, the average gaps between the UBs an the

BKLBs are of high quality, even for the 50-item instances. Furthermore, we notice

that the average gaps tend to increase with the number of machines.

Table 4 presents, for the small instances, the average results obtained in terms of

lower bound by the CC followed by the SC (CS-LB), and in terms of upper bounds

by GAPBA and ILS-RVND. For CS-LB we report the average CPU time spent by

the CC (timeCC) and by the SC (timeSC), and the average lower bound produced for

each group of instances. For GAPBA we provide the average values of CPU time,

gap, and upper bound, as well as the number of proven optimal solutions found

(#opt). As for ILS-RVND, we compute for each instance the average time, the best

and average gaps, and the average UB (by considering the 10 runs). Then in the

table we report the means of these values considering the 5 instances per line, as

well as the number of proven optimal solutions.

The combination of the two components clearly runs faster than the compact

model and the former finds much better LBs than the latter, except for some 10-

21

Table 3: Aggregate results for the compact formulation
Compact formulation

n m #inst
avg.

avg. avg. gap time
BKLB

UB LB (%)
#opt

(s)

10
2 5 571.2 571.2 571.2 0.0 5 18.3
3 5 287.8 287.8 287.8 0.0 5 32.5

20
2 5 1001.0 1001.0 993.5 0.0 1 2895.4
3 5 595.6 596.4 585.6 0.1 2 2961.7

30
3 5 826.1 827.6 819.5 0.2 0 3488.8
4 5 640.2 643.8 602.4 0.6 0 3153.6

40
3 5 1027.6 1035.2 834.2 0.8 0 3595.5
4 5 972.2 982.6 806.6 1.1 0 3595.8

50
4 5 1088.8 1092.4 682.9 0.4 0 3596.4
5 5 806.6 823.4 441.2 2.1 0 3595.9

avg/total 50 781.7 786.1 662.5 0.5 13 2693.4

Table 4: Results obtained by CS-LB, GAPBA, and ILS-RVND for the small in-
stances

CS-LB GAPBA ILS-RVND
n m #inst timeCC timeSC avg. time gap avg. avg. best avg. avg.

(s) (s) LB (s) (%) UB
#opt

time (s) gap (%) gap (%) UB
#opt

10
2 5 < 0.1 < 0.1 571.2 < 0.1 0.0 571.2 5 0.1 0.1 0.0 571.2 5
3 5 < 0.1 0.2 287.4 < 0.1 1.4 292.0 3 0.1 0.8 0.9 290.4 3

20
2 5 < 0.1 22.5 1001.0 < 0.1 0.0 1001.0 5 0.1 0.1 0.0 1001.0 5
3 5 0.1 3.9 595.6 < 0.1 0.9 601.0 3 0.1 0.9 1.0 601.0 3

30
3 5 0.7 58.8 826.1 < 0.1 0.2 827.4 2 0.1 0.2 0.2 827.4 2
4 5 1.2 146.4 640.2 < 0.1 0.5 643.2 2 0.1 0.5 0.5 643.2 2

40
3 5 1.6 155.8 1027.6 < 0.1 0.5 1032.8 2 0.1 0.4 0.4 1032.0 2
4 5 0.2 299.3 972.2 < 0.1 0.9 981.2 0 0.2 0.4 0.4 976.9 0

50
4 5 1.9 178.6 1088.8 < 0.1 0.2 1091.4 3 0.2 0.2 0.2 1090.8 3
5 5 10.2 299.6 806.6 0.1 0.9 814.2 0 0.2 0.7 0.7 812.6 0

avg/total 50 1.5 116.5 781.7 < 0.1 0.6 785.5 25 0.1 0.4 0.4 784.6 25

22

item instances and very few 20-item instances (see Table 6 for details). We can

also observe that scheduling is much more time consuming than cutting. GAPBA

and ILS-RVND have an equivalent performance and both methods were capable of

finding 25 proven optimal solutions, meaning that CS-LB was equal to the best UB

found by GAPBA and ILS-RVND in half of the total number of instances.

GAPBA and ILS-RVND are very competitive in terms of CPU time and solution

quality, the former is slightly faster, while the later provides solutions with better

gaps. Both find the same number of optimal solutions and the average gap difference

is of only 0.2%. Regarding the scalability of the methods with respect to the instance

size, they both appear to be much better suited for practical applications, as shown

by the experiments.

Figure 5 illustrates the average gap obtained by the compact formulation, GAPBA,

and ILS-RVND for the small instances. The formulation found, on average, the best

gaps for the instances with n ≤ 20, but it is outperformed by the other two ap-

proaches as the size of the instances increase. Moreover, the solutions found by ILS-

RVND appear to be systematically better than or equal to those found by GAPBA,

with just a very limited increase in the required computational effort. Overall, the

proposed decomposition manages to find good quality solutions and small average

gaps within a much smaller computational effort that the one required by the com-

pact formulation.

 0

 0.5

 1

 1.5

 2

 2.5

10_2 10_3 20_2 20_3 30_3 30_4 40_3 30_4 50_4 50_5

A
ve

ra
ge

 g
ap

 (
%

)

Subgroup of Instances

Compact formulation
GAPBA

ILS

Figure 5: Comparison of the upper bounds on some small instances

Table 5 shows the aggregate results obtained by CS-LB and ILS-RVND for the

large instances involving 100 to 250 items. We do not prove the optimality for any

23

instance, but we report significantly small gaps for instances with 100 items. The gap

is considerably small for instances with up to 150 items, but for the larger instances

(200 and 250 items) it tends to increase considerably, especially when the number of

machines is large. Nevertheless, this does not necessarily imply that the UBs found

by ILS-RVND are of poor quality, since one cannot ensure that the CS-LBs are of

high quality. In addition, the difficulty in producing high quality blocks by the CC

may affect the performance of ILS-RVND in finding high quality solutions.

Table 5: Results obtained by DM and ILS-RVND for the large instances
CS-LB ILS-RVND

n m #inst timeCC timeSC avg. avg. best avg. avg.
(s) (s) LB time (s) gap (%) gap (%) UB

100
4 5 18.4 300.0 2056.8 1.4 0.4 0.4 2065.8
6 5 4.2 300.0 1440.7 1.8 0.7 0.8 1452.7

150
6 5 188.4 300.0 1909.6 4.0 4.5 4.6 1990.4
8 5 123.0 300.0 1615.9 5.4 0.8 0.9 1631.2

200
6 5 225.5 300.0 2774.2 13.9 3.5 3.5 2857.4
8 5 496.0 300.0 1449.1 3.6 17.5 17.6 1771.7

250
8 5 360.2 300.0 1590.1 6.5 9.4 9.5 2260.4
10 5 634.3 300.0 2040.3 13.2 20.8 20.9 1965.8

avg/total 40 289.6 300.0 1859.6 6.3 7.2 7.3 1999.4

Concluding Remarks

In this paper we introduced the Plastic Rolls Production Problem (PRPP), which

integrates cutting and scheduling decisions, thus generalizing several well-known

optimization problems. We proposed different approaches for obtaining lower and

upper bounds for the PRPP. The first one is a compact mathematical formulation

that works quite well for instances involving up to 20 items. The second approach

is based on a two-phase decomposition method designed to generate improved lower

bounds, especially for instances with more than 20 items, and a heuristic informa-

tion on the way to cut items into blocks. These blocks are later used in a gener-

alized assignment problem based approach (GAPBA), as well as in a iterated local

search (ILS-RVND) heuristic, to produce feasible solutions. The compact formu-

lation found high quality lower and upper bounds for very small instances, but

failed in producing good solutions for larger instances. The decomposition method

found high quality lower bounds for instances with up to 100 items, although its

24

performance seems to degradate for larger instances. Both GAPBA and ILS-RVND

generated high quality solutions for instances with up to 50 items, but only the

latter managed to produce good solutions for larger instances with up to 250 items.

As for future work, one can improve the quality of the performance of the two-

phase decomposition by implementing a combinatorial branch-and-bound approach

for solving the cutting component, as well as a column generation based algorithm

for solving the scheduling component. Additionally, improved upper bounds could

be obtained by proposing alternative ways of generating blocks for the ILS-RVND

heuristic. The study of different problem variants, with alternative objective func-

tions or machine characteristics, is also of interest.

References

D.L. Applegate, R.E. Bixby, V. Chvátal, and W.J. Cook. The Traveling Salesman
Problem: A Computational Study (Princeton Series in Applied Mathematics).
Princeton University Press, Princeton, NJ, USA, 2007.

J.A. Bennell, J.F. Oliveira, and G. Wäscher. Cutting and packing. International
Journal of Production Economics, 145(2):449 – 450, 2013.

K. Cantor. Blown Film Extrusion: An Introduction. Hanser Publishers, Munich,
second edition, 2011.

N. Christofides and C. Whitlock. An algorithm for two-dimensional cutting prob-
lems. Operations Research, 25(1):30 – 44, 1977.

J.-F. Côté, M. Dell’Amico, and M. Iori. Combinatorial benders’ cuts for the strip
packing problem. Operations Research, 62(3):643 – 661, 2014.

M. Dell’Amico, M. Iori, S. Martello, and M. Monaci. Heuristic and exact algorithms
for the identical parallel machine scheduling problem. INFORMS Journal on
Computing, 20(3):333 – 344, 2008.

R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.Rinnooy Kan. Optimiza-
tion and approximation in deterministic sequencing and scheduling: a survey.
In E.L. Johnson P.L. Hammer and B.H. Korte, editors, Discrete Optimization
II Proceedings of the Advanced Research Institute on Discrete Optimization and
Systems Applications of the Systems Science Panel of NATO and of the Discrete
Optimization Symposium co-sponsored by IBM Canada and SIAM Banff, Aha.
and Vancouver, volume 5 of Annals of Discrete Mathematics, pages 287 – 326.
Elsevier, 1979.

25

M.C.N. Gramani, P.M. França, and M.N. Arenales. A lagrangian relaxation ap-
proach to a coupled lot-sizing and cutting stock problem. International Journal
of Production Economics, 119(2):219 – 227, 2009.

J.C. Herz. Recursive computational procedure for two-dimensional stock cutting.
IBM Journal of Research and Development, 16(5):462 – 469, 1972.

S. Hu, S. Wang, Y. Kao, T. Ito, and X. Sun. A branch and bound algorithm
for project scheduling problem with spatial resource constraints. Mathematical
Problems in Engineering, 2015:9, 2015.

M. Iori, J. J. Salazar-González, and D. Vigo. An exact approach for the vehicle rout-
ing problem with two-dimensional loading constraints. Transportation Science, 41
(2):253 – 264, 2007.

J. Kallrath, S. Rebennack, J. Kallrath, and R. Kusche. Solving real-world cutting
stock-problems in the paper industry: Mathematical approaches, experience and
challenges. European Journal of Operational Research, 238(1):374 – 389, 2014.

A. Lodi and M. Monaci. Integer linear programming models for 2-staged two-
dimensional Knapsack problems. Mathematical Programming, Series B, 94(2):
257 – 278, 2003.

H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search: Framework
and applications. In Michel Gendreau and Jean-Yves Potvin, editors, Handbook
of Metaheuristics, volume 146 of International Series in Operations Research &
Management Science, pages 363 – 397. Springer US, 2010.

R. Macedo, C. Alves, and J.M. Valério de Carvalho. Arc-flow model for the two-
dimensional guillotine cutting stock problem. Computers & Operations Research,
37(6):991 – 1001, 2010.

N. Mladenović and P. Hansen. Variable neighborhood search. Computers & Opera-
tions Research, 24(11):1097 – 1100, 1997.

M. Mrad. An arc flow-based optimization approach for the two-stage guillotine strip
cutting problem. Journal of the Operational Research Society, 66(11):1850–1859,
2015.

E. Silva, F. Filipe Alvelos, and J.M. Valério de Carvalho. An integer programming
model for two- and three-stage two-dimensional cutting stock problems. European
Journal of Operational Research, 205(3):699 – 708, 2010.

E. Silva, F. Alvelos, and J. M. Valério de Carvalho. Integrating two-dimensional
cutting stock and lot-sizing problems. Journal of the Operational Research Society,
65(1):108–123, 2014. ISSN 1476-9360.

26

A. Subramanian. Heuristic Exact and Hybrid Approaches for Vehicle Routing Prob-
lems. PhD thesis, Universidade Federal Fluminense, 2012.

A. Subramanian, L.M.A. Drummond, C. Bentes, L.S. Ochi, and R. Farias. A parallel
heuristic for the vehicle routing problem with simultaneous pickup and delivery.
Computers & Operations Research, 37(11):1899 – 1911, 2010. Metaheuristics for
Logistics and Vehicle Routing.

J.M. Valério de Carvalho. Exact solution of bin-packing problems using column
generation and branch-and-bound. Annals of Operations Research, 86(0):629 –
659, 1999.

F. Vanderbeck. A nested decomposition approach to a three-stage, two-dimensional
cutting-stock problem. Management Science, 47(6):864 – 879, 2001.

Appendix

In Tables 6 and 7 we present detailed results for each instance. The name of the
instance is made by the number of items, followed by the number of machines and
by a progressive number from 1 to 5. The names of the columns have the same
meanings as those used in the computational experiments.

27

Table 6: Detailed results for the small instances
compact formulation CS-LB GAPBA ILS-RVND

instance time gap timeCC timeSC time gap best avg. time best
UB LB

(s) (%)
LB

(s) (s) (s)
UB

(%) UB UB (s) gap (%)
10 2 1 678 678.0 34.0 0.0 678.0 0.0 0.0 0.0 678 0.0 678 678.0 0.1 0.0
10 2 2 499 499.0 29.4 0.0 499.0 0.0 0.1 0.0 499 0.0 499 499.0 0.1 0.0
10 2 3 549 549.0 25.3 0.0 549.0 0.0 0.0 0.0 549 0.0 549 549.0 0.1 0.0
10 2 4 493 493.0 1.7 0.0 493.0 0.0 0.0 0.0 493 0.0 493 493.0 0.1 0.0
10 2 5 637 637.0 0.9 0.0 637.0 0.0 0.0 0.0 637 0.0 637 637.0 0.1 0.0
10 3 1 286 286.0 63.9 0.0 286.0 0.0 0.2 0.0 286 0.0 286 286.0 0.2 0.0
10 3 2 329 329.0 3.6 0.0 329.0 0.0 0.3 0.0 342 3.8 342 342.0 0.1 3.8
10 3 3 236 236.0 1.3 0.0 236.0 0.0 0.1 0.0 236 0.0 236 236.0 0.1 0.0
10 3 4 230 230.0 40.3 0.0 228.0 0.0 0.2 0.0 238 3.4 230 230.0 0.1 0.0
10 3 5 358 358.0 53.2 0.0 358.0 0.0 0.1 0.0 358 0.0 358 358.0 0.2 0.0
20 2 1 973 973.0 96.4 0.0 973.0 0.1 0.2 0.0 973 0.0 973 973.0 0.2 0.0
20 2 2 1112 1103.0 3595.1 0.0 1112.0 0.0 0.4 0.0 1112 0.0 1112 1112.0 0.4 0.0
20 2 3 804 799.5 3595.6 0.0 804.0 0.0 0.2 0.0 804 0.0 804 804.0 0.1 0.0
20 2 4 1228 1215.7 3594.7 0.0 1227.9 0.0 102.4 0.0 1228 0.0 1228 1228.0 0.3 0.0
20 2 5 888 876.5 3595.3 0.0 887.9 0.1 9.0 0.0 888 0.0 888 888.0 0.2 0.0
20 3 1 691 680.7 3594.3 0.0 690.9 0.0 13.4 0.0 691 0.0 691 691.0 0.6 0.0
20 3 2 433 426.0 3595.9 0.2 432.0 0.0 2.0 0.0 432 0.0 432 432.0 0.2 0.0
20 3 3 660 660.0 916.1 0.0 659.9 0.5 0.8 0.0 662 0.3 662 662.0 0.3 0.3
20 3 4 504 504.0 3106.7 0.0 501.0 0.1 0.4 0.0 526 4.2 526 526.0 0.1 4.2
20 3 5 694 657.2 3595.4 0.0 693.9 0.0 3.1 0.0 694 0.0 694 694.0 0.6 0.0
30 3 1 720 712.1 3596.6 0.3 717.9 0.0 28.9 0.0 720 0.3 720 720.0 0.5 0.3
30 3 2 640 633.4 3596.3 0.2 638.9 3.2 7.1 0.0 640 0.2 640 640.0 0.3 0.2
30 3 3 876 868.7 3596.2 0.4 872.9 0.2 11.8 0.0 876 0.3 876 876.0 0.4 0.3
30 3 4 949 934.4 3060.5 0.1 947.9 0.0 238.5 0.0 948 0.0 948 948.0 0.8 0.0
30 3 5 953 949.0 3594.7 0.0 952.9 0.1 7.6 0.0 953 0.0 953 953.0 0.6 0.0
30 4 1 769 747.7 3595.9 0.1 768.5 0.0 299.5 0.0 769 0.0 769 769.0 1.3 0.0
30 4 2 519 467.4 3595.3 1.4 511.8 0.4 299.2 0.1 517 1.0 517 517.0 0.4 1.0
30 4 3 524 497.7 3181.7 0.8 519.9 0.0 107.6 0.0 524 0.8 524 524.0 0.5 0.8
30 4 4 511 469.9 3596.4 0.6 508.0 5.7 16.0 0.0 513 1.0 513 513.0 0.4 1.0
30 4 5 896 829.2 1798.7 0.3 892.9 0.0 9.8 0.0 893 0.0 893 893.0 1.1 0.0
40 3 1 1074 1062.2 3595.3 0.0 1073.9 1.2 28.3 0.0 1074 0.0 1074 1074.0 0.9 0.0
40 3 2 919 700.0 3595.6 2.5 896.5 2.8 299.2 0.0 909 1.3 909 909.0 0.5 1.3
40 3 3 1092 893.2 3596.2 0.6 1085.9 0.3 64.1 0.0 1086 0.0 1086 1086.0 0.9 0.0
40 3 4 957 450.1 3595.5 0.1 955.9 3.8 87.9 0.0 957 0.1 957 957.0 0.5 0.1
40 3 5 1134 1065.7 3594.9 0.7 1125.8 0.1 299.4 0.0 1138 1.1 1134 1134.0 1.1 0.7
40 4 1 827 672.9 3596.0 0.7 821.3 0.6 299.3 0.0 824 0.2 824 824.0 1.0 0.2
40 4 2 1069 893.0 3595.6 0.8 1060.8 0.0 299.4 0.0 1064 0.3 1064 1065.3 2.7 0.3
40 4 3 1024 720.1 3595.5 1.5 1009.1 0.0 299.2 0.0 1037 2.6 1017 1017.0 1.2 0.7
40 4 4 1207 1093.2 3595.7 0.6 1199.6 0.0 299.3 0.0 1201 0.1 1201 1201.0 2.9 0.1
40 4 5 786 653.9 3596.1 2.0 770.4 0.6 299.2 0.0 780 1.2 777 777.2 0.8 0.8
50 4 1 885 432.4 3596.4 0.0 884.9 8.4 133.1 0.0 885 0.0 885 885.0 1.5 0.0
50 4 2 1356 870.7 3596.3 0.0 1355.9 0.0 142.2 0.0 1356 0.0 1356 1356.0 3.9 0.0
50 4 3 1057 912.6 3596.4 1.1 1045.1 0.1 299.3 0.0 1057 1.0 1054 1054.0 1.7 0.8
50 4 4 1353 681.1 3596.4 0.1 1352.0 0.0 299.1 0.0 1353 0.1 1353 1353.0 3.2 0.1
50 4 5 811 517.6 3596.7 0.6 806.0 1.1 19.2 0.0 806 0.0 806 806.0 1.3 0.0
50 5 1 848 428.1 3595.4 3.0 822.8 0.0 299.2 0.2 833 1.2 833 833.4 2.1 1.2
50 5 2 891 535.0 3596.6 0.5 886.6 0.1 299.3 0.1 893 0.7 891 891.0 2.2 0.4
50 5 3 797 412.0 3595.8 3.2 771.6 0.2 299.2 0.0 788 2.0 781 781.1 2.0 1.2
50 5 4 756 401.2 3596.1 2.2 739.0 50.6 299.3 0.0 743 0.5 743 743.0 1.1 0.5
50 5 5 825 429.8 3595.6 1.5 813.0 0.1 300.8 0.1 814 0.1 814 814.4 1.9 0.1

28

Table 7: Detailed results for the large instances
CS-LB ILS-RVND

instance timeCC timeSC best avg. avg. best
LB

(s) (s) UB UB time (s) gap (%)
100 4 1 1746 9.6 300 1755 1755.9 0.8 0.5
100 4 2 2133 7.5 300 2147 2147.2 1.1 0.6
100 4 3 1731 68.4 300 1736 1736.5 0.5 0.2
100 4 4 2516 0.0 300 2519 2519.0 3.1 0.1
100 4 5 2159 6.4 300 2169 2170.3 1.4 0.4
100 6 1 1366 9.3 300 1379 1380.7 0.7 0.9
100 6 2 1310 5.3 300 1319 1320.9 1.0 0.7
100 6 3 1665 0.0 300 1672 1674.6 3.3 0.4
100 6 4 1190 6.1 300 1199 1200.4 0.6 0.8
100 6 5 1675 0.0 300 1686 1687.0 3.4 0.7
150 6 1 1772 118.6 300 1787 1788.7 1.7 0.8
150 6 2 2102 12.3 300 2112 2112.9 3.4 0.5
150 6 3 1366 624.0 300 1721 1723.8 1.8 20.6
150 6 4 1807 187.1 300 1814 1814.0 2.0 0.4
150 6 5 2503 0.1 300 2512 2512.6 11.2 0.4
150 8 1 1941 0.0 300 1958 1960.5 11.3 0.8
150 8 2 1398 50.6 300 1409 1409.8 2.0 0.8
150 8 3 2004 0.0 300 2014 2016.2 11.1 0.5
150 8 4 1326 424.9 300 1339 1341.7 1.4 1.0
150 8 5 1412 139.4 300 1426 1427.8 1.3 1.0
200 6 1 2516 220.2 300 2524 2525.0 4.2 0.3
200 6 2 1931 709.7 300 2295 2296.1 3.3 15.9
200 6 3 2646 197.5 300 2656 2657.8 4.8 0.4
200 6 4 3232 0.0 300 3244 3246.2 29.2 0.4
200 6 5 3547 0.0 300 3559 3562.0 28.0 0.3
200 8 1 1656 364.0 300 1666 1668.0 3.8 0.6
200 8 2 1583 629.9 300 1707 1709.1 2.7 7.3
200 8 3 1751 89.0 300 1757 1759.3 3.4 0.3
200 8 4 1713 200.8 300 1883 1884.5 4.0 9.0
200 8 5 544 1196.3 300 1836 1837.5 4.3 70.4
250 8 1 2328 115.5 300 2345 2345.7 7.8 0.7
250 8 2 2163 244.1 300 2168 2170.3 5.7 0.2
250 8 3 2152 418.6 300 2173 2174.4 8.0 1.0
250 8 4 1540 596.4 300 2311 2313.4 5.7 33.4
250 8 5 2022 426.4 300 2296 2298.1 5.4 11.9
250 10 1 1856 388.6 300 1869 1872.0 5.5 0.7
250 10 2 762 1091.4 300 1869 1870.7 4.6 59.2
250 10 3 2724 0.1 300 2730 2732.0 47.4 0.2
250 10 4 1065 1094.1 300 1697 1698.5 3.8 37.2
250 10 5 1546 597.2 300 1653 1655.9 4.8 6.5

29

