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Abstract  

This article reviews the present state of Quantitative Structure-Property 

Relationships (QSPR) in glass design and gives an outlook into future 

developments. First an overview is given of the statistical methodology, with 

particular emphasis to the integration of QSPR with molecular dynamics 

simulations to derive informative structural descriptors. Then, the potentiality of 

this approach as a tool for interpretative and predictive purposes is highlighted by 

a number of recent inspiring applications. 

 

1. Introduction  

 

Major global challenges in strategic fields such as chemistry, pharmaceutics, 

medicine, photonics, optics, electronics, clean energy and waste management can 

be addressed by the development of advanced technologies based on glassy 

materials. To this goal the correct understanding of the glass structure-property 

relationships is mandatory, since this is a prerequisite for improving specific 



properties and achieve greater focus on end-user application requirements, 

designing glass compositions for new applications, developing environmentally 

friendly processes and product, reducing development costs and speed time to 

market.[1-3] 

Notwithstanding the huge improvement in experimental methodologies, 

like X-ray Absorption Fine Structure, Neutron Diffraction, Nuclear Magnetic 

Resonance, Infrared and Raman spectroscopy, the elucidation of the glass 

structure still remain a difficult task.[4] In fact, often difficulties in data 

interpretation of multicomponent glasses and apparent contradictory structural 

evidences from different techniques have to be faced.  

In this contest, the use of large databases of experimentally measured glass 

properties [5,6] has facilitated the systematic modelling of glasses and prediction 

of their properties by statistical analyses of composition-property relationships. 

However, these tools suffer of important drawbacks: i) the range of compositions 

studied is determined by presence or absence of the experimental data required; ii) 

the treatment of glasses of complex compositions involving multiple network 

formers and modifiers is unpractical; and iii) their objective is exclusively 

predictive, thus they do not allow a detailed physical understanding for the 

observed property-composition dependence at the atomic scale.[7,8] 

The advent of computational simulation techniques as an accepted 

component of material development constitutes one of the most important 

advances in material research. Molecular Dynamics (MD) is nowadays well 

established as a powerful tool to provide an atomic scale picture of the structure 

and insight into the behavior of complex glasses in different environments and 

under different conditions. Recent advances in the interatomic potential for energy 

functions allow the correct quantitative evaluation of the numerical value of 

structural, mechanical, thermal, electrical and transport properties for simple 

glasses.[9-15] However, accurate and reliable evaluation of the same properties 

for multicomponent glasses has proved far more difficult.  

In these cases, i.e. when a direct comparison with experimental 

observables is not possible, the results of Molecular Dynamics simulations can be 

used to provide the numerical representation of structure (codified by structural 

descriptors) to be related with the experimental properties of interest through 

mathematical models. This imply a shift from empirical composition-property 

relationships to computational structure-property relationships, thus acquiring an 

immense practical importance in the development of predictive and interpretative 

models.[16] This approach, called Quantitative Structure-Property Relationships 

(QSPR), is well known and extensively apply in the area of drug discovery, and 

chemical toxicology modeling. However, its application in the field of material 

design is only recently being explored. [17-19]  

In the following a brief overview of the methodology used in QSPR of 

glasses is given. The mathematical method of choice in relation to the dataset 

under study is discussed together with the critical role of informative 

computational-derived descriptors and of appropriate model building and 



validation. Then, the potentiality of this approach as a tool for interpretative and 

predictive purposes is highlighted by a number of recent applications concerning 

the modeling of density, glass transition temperature, crystallization temperature, 

leaching, chemical durability, elastic properties, and NMR features. Finally, the 

future developments that will hopefully improve the QSPR approach described 

overcoming some current limitations are discussed. 

 

2. Quantitative Structure-Property Relationship analysis. 

QSPR methods are based on the hypothesis that changes in the structure 

are reflected in changes in observed macroscopic properties of materials. The 

basic strategy of QSPR analysis is to find optimum statistical correlations, which 

can then be used for a) the prediction of the properties for compounds as yet 

unmeasured or even not yet synthetized; b) the detailed analysis of structural 

characteristics that can give rise to the property of interest. 

Two very recent reviews provide an in-depth description of the main 

concepts involved in QSPR modeling of discrete molecules,[20] and 

materials.[21]Therefore, only a summary of the important elements of the QSPR 

modeling process in the context of glass design is provided here, underling the 

basic character of statistical analysis that has been ignored for too long in glass 

science. 

The process of constructing a QSPR model includes the following steps, 

summarized in Figure 1: 1) selection of a data set; 2) generation of various 

structural descriptors by means of MD simulations; application of variable 

selection or/and data reduction methods on the calculated descriptors in order to 

identify a small subset of these descriptors that are relevant to the macroscopic 

material properties being modeled (in some cases this step may not be required); 

3) generation of linear/multilinear or non-linear relationship between the 

descriptors and the global material property 4) validation of the model to assess its 

reliability, robustness, predictivity, and domain of applicability.  

  



 
Figure 1. Workflow of QSPR modeling.  

 

 

2.1 Data set 

 

The key requirement for QSPR modeling is a reliable data set of glasses 

whose macroscopic properties of interest are known and microscopic structures 

can be reasonably well-defined by computational simulations. This is termed 

training data.  

The use of heterogeneous experimental data from different sources and 

laboratories can affect the quality of QSPR models, by increasing the noise in the 

modeled response, thus affecting the stability and predictivity of models. Other 

potential obstacle in the development of robust, predictive, and reliable models is 

the insufficient data size (the range of composition is limited by the occurrence of 

crystallization, phase separation or other phenomena, or the range of measured 

property values is too small) and the dependency of the macroscopic property 

from additional factors besides microscopic structure, such as the history of the 

material: how it was synthesized, processed, and prepared for testing.  

 

 

2.2 Structural descriptors 

 



The formulation of informative QSPR models adequate for 

multicomponent disordered systems is anything but trivial and their predictive and 

interpretative power depends critically on the information content of the 

descriptors utilized.[22] The selection of descriptors for meaningful QSPR models 

implies the knowledge of what features of the structure are measured by a given 

descriptor and of  how the microscopic properties influence the macroscopic 

(measured) properties in a mechanistic way. Without this knowledge it is hard to 

apply a “reverse QSPR approach” to optimize materials directly. 

To this regard, MD simulations can provide a plethora of promptly 

available descriptors among which to select the most informative ones. The linear 

correlation matrix, made up of the correlation coefficients “r” between couples of 

descriptors, gives an overview of the collinearities existing between them and help 

in their selections in relation to the statistical model (simple or multilinear 

regression) of choice and to the interpretation of the properties of interest. The 

minimal number of orthogonal (not correlated) descriptors of possible relevance 

to important physicochemical parameters relating to the series of compounds 

under discussion must be selected for multilinear equations, so that the overall 

relationships are highly significant by standard statistical criteria.  

For oxide glasses, simple descriptors such as average bond lengths, bond 

angles, coordination numbers, percentage of bridging oxigens (BO) or non-

bridging oxigens (NBO) attached to different cations, etc… can be derived from 

simple statistical averaging or from radial and pair distribution functions and their 

deconvolution, once the appropriate cut-off distances are defined.[23-25] Others 

descriptors can be defined as a combination of these ingredients. Finally, useful 

descriptors of the mid-range structure of the glasses are derived from the Q
n
 

species (Q designates ‘quaternary’ and n the number of BO oxygens connected to 

other network former cations), ring size distribution, void size distribution and 

free volume.[23-27]  

 

 

2.3 Regression analysis 

 

There is no particular method that is ideal for all problems. The choice of 

an algorithm should be based on the nature of the data, and also whether the final 

goal is to build a predictive or interpretative model. 

Various statistical methods are nowadays available to build models that 

describe the empirical relationship between the structure and property of interest. 

Classical methods, such as single or multiple linear regression (MLR), partial 

least squares (PLS), neural networks (NN), and support vector machine (SVM), 

are being upgraded by improving the kernel algorithms or by combining them 

with other methods, including novel approaches, such as gene expression 

programming (GEP), project pursuit regression (PPR), and local lazy regression 

(LLR).[28] 



 To avoid the risk of “by chance” correlation, statistical models requires 

significantly more data points than descriptors, since any data set can be fitted to a 

regression line given enough parameters. For example, in MLR analysis a useful 

rule of thumb is that the ratio between the number of objects in the data set and 

the number of descriptors should be at least five to one. Moreover, statistical 

modelling techniques follow the principle of parsimony postulated by William of 

Occam and called Occam’s Razor (i.e. among a set of equally good explanations 

for a given phenomenon, the simplest one is the most probable) which means that 

the models should have as few parameters as possible (i.e. variable is retained in 

the model only if its removal causes a significant decrease of the statistical 

parameters compared to those of the current model) and simple explanations have 

to be preferred than those more complex.  

Therefore, according with the number of data point available in the data 

set, the simple or multiple linear regressions remain as popular choices for QSPR 

studies of glasses, since they allow an easier interpretation of the phenomena that 

determine the variation in the observable properties.  

The final model built from the optimal parameters will then undergoes 

validation with a testing set of glasses to ensure that the model is appropriate and 

useful for prediction and/or interpretation. 

 

 

2.4 Model Validation 

 

Several procedures are available to determine the reliability and statistical 

significance of the model. The performance of regression models is commonly 

measured by the “explained variance” for the response variable y, denoted R
2
, and 

the residual standard deviation (S
2
), calculated using the following equations:  

 

 R2 =  1 −
∑(∆2)

∑[(Observation−Average observation)2]
  (1) 

 

S2 = ∑(∆2)/𝐷𝐹       (2)
 

 

where,  are the model residuals (differences between the experimentally 

observed and the calculated property values), and DF the degrees of freedom 

(difference between the number of independent experimental data points and the 

number of variables including the intercept). 

Both statistical parameters provide a measure of how well the model can 

predict new outcomes, however S
2 

 is a more robust estimates of the predictive 

ability of models because, unlike R
2
 does not depend on the number of data points 

in the training set or on the number of descriptors in the model. Good QSPR 

models have R
2
 values close to 1.0 and S

2
 values small.  

Cross-validation methods are often also applied. This involves omitting in 

turn one (leave-one-out) or more (leave-many-out) data points from the training 



set, generating a QSPR model using the remaining data points, and then predicting 

the properties of the data point(s) omitted. However, it has often been shown that 

the use of only this criterion gives an overly optimistic estimate of the predictivity 

of models is often too optimistic for model validation. [29] 

The statistics of prediction of an independent external test set provide the 

best estimate of the performance of a model. However, the splitting of the data set 

in training set (used to develop the model) and the test set (used to estimate how 

well the model predicts unseen data) is not a suitable solution for small-sized data 

sets and an extensive use of internal validation procedures is recommend. 

 

2.4.1 Outliers For unimodal and symmetrical distributions, data point with 

deviations at least twice greater than the standard deviation of the data are usually 

considered outliers. Outliers that cause a poor fit degrade the predictive value of 

the model; however, care must be taken when excluding these outliers. They can 

be a clue in incorrectly measured experimental property or in the inadequacy of 

the model in capturing some important attribute of the material since important 

microscopic property of the material has not been accounted for in the model 

and/or the outlier represents an extreme point for this property. 

 

 

3. Applications of QSPR analysis 

 

Among the examples reported in the literature we focus here on three cases 

instrumental to demonstrate the achievements of this approach in: a) gaining 

insight into the physical processes determining the properties of interest 

(interpretative role of QSPR analysis); b) predicting missing data and optimize 

property for intended application (predictive role of QSPR analysis); c) assisting 

in experimental data collection and rationalization and support the design or 

assessment of foreseen experiments (assisting role of QSPR analysis). These are 

illustrate in relation to their performances on different properties.  
 

3.1 QSPR Models for Density  

 

Density, one of the most important property in industrial glass production, 

is perhaps the simplest physical property that can be measured; nevertheless its 

dependence upon composition is not straightforward. A number of linear 

expressions, empirically derived by assuming additivity upon components, are 

available in the literature to predict this property.[30] However, the underlying 

additivity assumption limited the validity of these equations to narrow ranges of 

concentration.[31] Moreover, success in the estimation of the density from the 

chemical composition has been demonstrated only for glasses containing one 

network former cation (for example Si);[32] corrections by more complex 

mathematical functions empirically determined from a very large number of 



experimental density determinations are necessary for glasses containing two or 

more network formers and/or intermediate ions, where the linearity assumption 

fails.[31] 

In this context, the successful example of QSPR approach for the 

prediction and interpretation of density of multicomponent silica-based bioglasses 

offered by the studies of Linati et al. [33] and Lusvardi et al. [34] is of great 

significance. In fact, a unique QSPR model derived is able to rationalize the 

variation of density in four series of glasses made up of three to five different 

components. 

The four series of glasses studied have the following general formula: 

Series 1 (KZ): 2SiO2•1 Na2O•1CaO•xZnO (x = 0, 0.17, 0.34, 0.68 mol%); Series 

2 (HZ): (2 – y)SiO2•1 Na2O•1.1CaO•yP2O5•xZnO (x = 0, 0.16, 0.32, 0.78 mol%; 

y = 0.10 mol%); Series 3 (HP5Z): (2 – y)SiO2•1 Na2O•1.1CaO•yP2O5•xZnO (x = 

0, 0.16, 0.36, 0.96 mol%; y = 0.20 mol%); Series 4 (HP6.5Z): (2 – y)SiO2•1 

Na2O•1.1CaO•yP2O5•xZnO (x = 0, 0.17, 0.36, 0.58 mol%; y = 0.26 mol%); 

Among the several structural descriptors derived by MD simulations of the 

glasses [33, 34] the one which better correlates with the experimental density 

values is NX-O-X /Otot, i.e., the total number of Si-O-Si, Si-O-Zn, Si-O-P, P-O-P, P-

O-Zn and Zn-O-Zn bridges found in the simulated glasses normalized for the total 

number of oxygen atoms (Otot). This quantity represents an overall descriptor of 

the degree of polymerization of the glass network. The QSPR model obtained is 

reported in Figure 2a and shows that the density increases with the overall 

packing degree of the ions in the glasses which is promoted by addition of Zn to 

the parent glass or substitution of P for Si. This is a not obvious result, since the 

increase in the density values is the effect of the balance between the variation of 

the weight of the components and of the molar volume of the different glass 

compositions.   

The statistical soundness of this correlation is confirmed by its ability to a) 

predict the density values of the training set with an average error of 0.012 g/cm
3
); 

b) predict the density values of two ternary glasses of significant different 

compositions (TG1:50.6 SiO2 •42.5 CaO •6.9 ZnO; TG2: 48.6 SiO2•31.7 

CaO•19.7 ZnO) chosen as test set, with a % error comparable to the one obtained 

for the training set (Figure 2a). Moreover, the QSPR model obtained performs 

better with respect to the ones obtained by the methods of Priven [35] and 

Demkina [36] (Figure 2b), especially in the range of high densities (high content 

of ZnO, more that 0.17 mol%).  

 

 

Commento [AP1]: Io ho un dubbio che 
mi porto dietro dai tempi della tesi. Se ho 
capito bene, il modello correla la densità 
con il numero di ponti normalizzati rispetto 
al numero di ossigeno. Questi ultimi dati 
sono ottenuti dalla dinamica. Se così è 
quando si vuole usare il modello per 
predire la densità di vetri di diversa 
composizione bisogna fare una dinamica 
molecolare ma questa richiede la 
conoscenza a priori della densità. Come se 
ne esce ? Se la densità di partenza è 
sbagliata vengono sbagliati anche i 
parametri strutturali (mi ricordo un lavoro 
di TAndia Adama, quello della corning che 
aveva costruito un modello per predire la 
densità sbagliato e quando faceva delle 
simulazioni MD con i miei potenziali su etri 
alluminosilicatici con anche il magnesio 
trovava il magnesio 6 coordinato. 
Ovviamente era sbagliato e quando glielo 
feci notare dopo alcuni test mi disse che 
avevo ragione). 
Un metodo potrebbe essere quello di fare 
una dinamica a P costante ma sappiamo 
che il vetro scoppia ad alte temperature. 
Quindi l’unica cosa che si può fare è usare i 
modelli empirici. 
Secondo me la bontà e la potenza del 
modello si vede dalla correlazione con la Tg 
… 
Un’altra obiezione che potrebbero fare è 
che non si tiene minimamente conto della 
natura degli ioni modificatori. Se 
prendiamo la serie dei vetri contenenti ioni 
alkalini a pqrità di % di tali ioni il numero di 
ponti Si-O-Si sono gli stessi ma la densità è 
diversa perchè le masse cambiano molto 
quindi quel descrittore strutturale non va 
più bene. Può essere buono per una serie 
di vetri binari SiO2-M2O ma se M cambia 
non va più bene. 



 

 

Figure 2. (a) Correlations between the experimental density data values (g/cm
3
) 

and the structural descriptor NX-O-X/Otot of multicomponent glasses.[34] The linear 

regression obtained is: Density = 0.9873 NX-O-X /Otot + 2.411 n = 16, R
2
=0.978, S

2
 

= 0.012. TG1 and TG2 are used as a test set. (b) Correlations between the 

experimental density data values and those predicted by means of the NX-O-X/Otot 

descriptor derived by MD, Priven [35] and Demkina [36] methods. The plots are 

reproduced by the data values reported in ref. [34]. 

 

3.2 QSPR Models for glass transition temperature (Tg) and crystallization 

temperature (Tc) 

 



The invaluable help that computational techniques furnish in the 

determination of QSPR models for amorphous materials and the importance of 

utilizing these models as interpretative tools to gain deep insight difficult to 

perceive only by the experimental data, is well depicted by the results obtained for 

complex glasses where two anions are contemporaneously present.[37, 38] In 

these studies the structural features of Bioactive Fluoro Phospho-Silicate Glasses 

obtained by classical MD simulations have been used for interpreting the 

experimental property Tg through a QSPR analysis. The parent compound is the 

45S5 Bioglass:[39] 

46.2SiO2•24.3Na2O•26.9CaO•2.6P2O5, hereafter named H. The series of glasses 

studied are: Series 1 (HNaCaF2): 46.2SiO2•(24.3 − x)Na2O•26.9CaO•2.6P2O5• 

xCaF2 (with x = 0, 5, 10, 15, 20, 24.3 mol%); Series 2 (HCaCaF2): 

46.2SiO2•24.3Na2O•(26.9 − x)CaO•2.6P2O5•xCaF2 (with x = 0, 5, 10, 15, 20, 26.9 

mol%); Series 3 and 4 (HZnO and HP5ZnO): (2 – y)SiO2•1 

Na2O•1.1CaO•yP2O5•xZnO (x = 0, 0.16, 0.32, 0.78 mol%; y = 0.10, 020 mol%); 

Series 5 (KZnO):  Na2O•CaO•2SiO2•xZnO (x = 0.00, 0.17, 0.34, 0.68 mol%)  

The variation of the Tg of silicate glasses upon composition is usually 

expected to depend on glass polymerization that can be quantified by the Q
n
 and 

BO (or NBO) distributions;[40-42] in particular, higher values of glass 

polymerization is expected to correspond to higher values of Tg. For the series of 

F-containing glasses analyzed in ref.s 37 and 38, neither of these two descriptors 

is able to explain the overall decrease of the Tg data values with respect the F-free 

H glass for the HCaCaF2 series and the decrease up to 15% CaF2 content for the 

HNaCaF2 series.  

The authors overcome this apparent disagreement by invoking 

simultaneous structural and energetic modifications of glass network upon F 

addition and they codified this behavior in the Fnet descriptor. From a structural 

point of view, the fluoride ions progressively substitute oxygens in metal 

coordination with a consequent formation of MFn ionic moieties, that cause the 

subtraction of Na and Ca ions from the phospho-silicate matrix. This leads to an 

increment of the polymerization degree of the phospho-silicate portion of the 

network (increment of %BO and mean <n> in the Q
n 

speciation).[43, 44] From an 

energetic point of view, the interaction of the MFn ionic zones with the phospho-

silicate network at low CaF2 (CaF2 <15%) is very weak, being mainly constituted 

by Na-F neutral pairs, whereas at CaF2 >15% the MFn zones are principally made 

of Ca-F+ pairs which link electrostatically the glass matrix, causing an increment 

in the strength of the glass network with a consequent increment of Tg values.  

The Fnet descriptor is computed as follow: 

    

(3) 



where N is the total number of atoms, ni is the number of atoms of the i-th species; 

CNij is the mean coordination number of ij pairs atoms (i = Si, P, Zn, Na, Ca; j = 

O2−, F−). BEij are the bond enthalpies, measured in the gas phase, for each type 

of bond in the corresponding molecules, as describe in ref. 45. The multiplicative 

factor mij represents the maximum number of SiO4 and PO4 units linked to the 

i−O or i−F bonds and is used as fine-tune modulation of the contribution of each 

bond to the overall network strength.  

 

Figure 3. Correlation between experimental glass transition temperature (Tg) and 

the Fnet descriptor. The linear regression obtained is:  Tg = 0.2851 Fnet - 322.4, 

n=18, R
2 

= 0.912; S
2 

= 8. reprinted with permission from ref. 37  (to which refer 

for details). Copyright 2009 American chemical Society 

The linear correlation obtained between the experimental Tg and the Fnet 

descriptor is reported in Figure 3; the positive correlation (slope = 0.2851) 

accounts for the nature of the Tg measurement that represents the temperature 

necessary to overcome the flow activation energy. The robustness of the QSPR 

model is corroborated by the variety of glass compositions covered, which 

envisages ions with different structural role in the different environment of soda-

lime-silicate and phospho-silicate glasses. 

The same descriptor Fnet is able to explains the 68% of the variation in the 

crystallization temperature (Tc, first peak) of a series of phospho-silicate glasses 

doped with ZnO, giving a performance comparable with the descriptor NX−O−X 

/Otot, which represents the total number of bridges detected in the three-



dimensional structure derived by MD simulations, and thus accounts for the 

polymerization of the glass network.[33]  

 

 

3.3 QSAR models for leaching and chemical durability 

 

The chemical durability of a glass refers to its ability to resist to liquid or 

atmospheric attacks. The modulation of this physical property of glasses is of 

fundamental importance in a number of technological area. 

  Improve durability, i.e. mechanical strength, of glasses would not only 

enable exciting new applications, but also leads to a significant reduction of 

material investment for existing applications.[46] However, increasing the 

durability of a glass by changing its compositions can lead to prohibitively high 

working temperatures and, therefore, when formulating a commercial glass 

composition a compromise is made between durability and workability. On the 

opposite, the dissolution in body fluid is a major part of the functionality of 

bioactive glasses.[47] These glasses are designed to create chemical gradients 

which promote, early in the implantation period, the formation of a layer of 

biologically active bone-like apatite at the interface. Bone-producing cells, i.e. 

osteoblasts, can preferentially proliferate on the apatite, and differentiate to form 

new bone that bonds strongly to the implant surface.[48] Glass solubility increases 

as network connectivity is reduced, consequently, bioactivity occurs only within 

certain compositional limits and very specific ratios of oxides in the Na2O-K2O-

CaO-MgO-B2O3-P2O5-SiO2 systems.[49] 

The physico-chemical requirements for biocompatibility and bioactivity in 

terms of compositional limits and role of additional ions in tailoring new 

important mechanical and biological properties for specific clinical applications 

[39] are poorly known at present. In the following we show, by summarizing the 

results of two case studies, how sound relationships among the structural role of 

some key elements that appear to control bioactivity can by established and 

exploit for rational glass design. 

 

 

3.3.1 Zinc-containing bioglasses 

 

Zinc added to bioglasses improve their chemical durability, mechanical 

properties and endows antimicrobial activity; moreover, the release of small 

concentration of zinc incorporated into an implant material promotes bone 

formation around the implant and accelerates recovery of the patients, improve 

adhesion of denture adhesives, etc… Still, it is important to control the Zn 

releasing rate in order to prevent adverse reactions and to optimize the glass 

composition to reduce glass degradation without affecting the hydroxyapatite 

deposition.  



The first example of a complete cycle in rational glass design has been 

reported for these glasses, and is summarized in Figure 4. The authors [33, 50] 

derived the ratio of Zn/P concentration which produces an optimal dissolution in 

the body fluid in order to maintain the bioactivity. The QSPR model used 

accounts for the role of network polymerization on water chemical durability:  

%Xi = -1.92 NX-O-X/Otot + 1.33, n= 6, R
2 

= 0.865, S
2
 = 0.12, where is %Xi, is 

the total leaching of the glass constituent and the NX-O-X/Otot descriptor has been 

described in the previous paragraph. The number of data point in the data set is 

small, nevertheless the content of information of the descriptor chosen suggests 

that solubility is hindered by the zinc tendency to copolymerize with the Si 

tetrahedral, manifested by a significant increasing of the total number of X-O-X 

bridges detected in the glass. This model explains the slow rate of zinc dissolution 

into the media and provides insights into the overall reaction rate reduction of the 

zinc-containing glasses, regulated by the progressive reduction of the number of 

NBO species, which ensure the presence of large channels for alkali migration in 

the network and rapid exchange of Na
+
 with H3O

+
 at the glass surface, as 

summarized by the following linear regressions: %P(released) = 0.009 %P−NBO - 

0.46, n=6; R
2
= 0.93, S

2
=0.03; %Na(released) = 0.007 %Na−NBO - 0.32, n=6; R

2
= 

0.74, S
2
=0.12; %Ca(released) = 0.006 %Ca−NBO - 0.35, n=6; R

2
= 0.84, S

2
=0.03; 

where %P−NBO, %Na−NBO, and %Ca−NBO are the percentages of NBOs 

bonded to P, Na, and Ca ions.  

 

 



Figure 4. The rational glass design cycle illustrated for Zn-containing Bioglasses 

[33, 50-53] 

The results of the QSPR study (in silico study) indicated the HZ5 and 

HP5Z5 as candidates for further studies. Chemical durability tests in water and in-

vitro observations in acellular medium [51, 52] confirmed that the HZ5, HP5Z5, 

but also the HP5Z10 glasses manifest the pre-requisite for bioactivity, since they 

are able to form a HA layer on their surface after soaking in SBF solution. 

Moreover, the results of cell culture tests with MC-3T3 osteoblast cells and 

related cytotoxicity tests allow the selection of the HZ5 and HP5Z5 glasses (not 

HP5Z10) as the ones with optimal ratio of Zn/P to maintain cell adhesion and cell 

growth comparable to the parent bioglass (H) used as a control. Finally, in vivo 

behavior performed on the HZ5 glass [53] matches that in vitro perfectly; they 

show comparable glass degradation processes and rates, ruled by the amount of 

zinc in the glass. 

These findings triggered furthers investigations on the chemical durability 

(express as total leaching % detected after different immersion time in bi-distilled 

water) of Phospho-modified bioglasses which has been rationalized by means of 

the Fnet descriptor defined in the previous paragraph (equation 3).[37] The linear 

correlations obtained after 1 and 4 h of soaking are: Tot.Leach.% = -0.01156 x Fnet  

+ 34.11; n=9; R
2
=0.965; S

2
=0.020, and Tot.Leach.% = -0.00808 x Fnet + 23.99; 

n=13; R
2
=0.851; S

2
=0.105, respectively (Figure 4). It is worth noting that the 

correlation coefficients decreases as a function of immersion time (R
2
 = 0.965, 

0.851, 0.682 and 0.640 after 1, 4, 24, 96 hours) due to the occurrence of 

precipitation processes that cannot be taken into account by the Fnet descriptor. 

The negative slope of the correlations indicates that the higher Fnet (i.e. the overall 

strength of the glass network), the greater the chemical durability.  

It is worth noting that the wide range of variation of the correlations is 

essentially due to the glasses of the HCaCaF2 series (Total Leaching %: 0.77-4.44 

mol%, 1hrs) which show much higher solubility with respect to the HNaCaF2 

series (Total Leaching %: 0.37-0.24 mol%, 1hrs). This behavior has been ascribed 

by the authors [37] to the conversion of Ca
2+

 and Na
+
 species to Ca−F

+
 and NaF 

ones upon addiction of the fluorine ions with an overall reduction of network 

complexation.  

 

 

3.3.2 Yttrium-containing aluminosilicate glasses 

 

A key requirement for successful application of glass delivery systems for 

radiation is a high durability of the glass used to minimize the release and the fatal 

results of circulation of the radioactive agent in the body. Therefore, also in this 

case a deep understanding of the way in which the glass composition controls the 

glass dissolution is needed. 



In a recent work by Christie et al.[54] the specific structural features of the 

glasses that control the solubility of a series of yttrium aluminosilicate glasses 

(parent glass composition: 17Y2O3-19Al2O3-64SiO2) have been extracted from 

MD simulations and used to predict the solubility of these materials. In particular, 

a linear combination of the following descriptors showed a high correlation with 

the experimental solubility: 1) CNSiOSi, which is the average O–Si coordination 

number of oxygen atoms already coordinated to at least another silicon atom. This 

count for the connectivity of the silicon atoms in the network; 2) the yttrium 

clustering ratio RYY using the ratio of the measured Y–Y coordination number (at 

a cutoff of 5 Å) to the number expected if the yttrium atoms were distributed 

uniformly (randomly) throughout the available space.[55] Values of RYY > 1 

denote spatial clustering, while RYY = 1 describes a uniform distribution of Y 

atoms throughout the available space; 3) number of intratetrahedral O–Si–O 

bonds per yttrium atom (Nintra). In general, any increase in the amount of 

intratetrahedral Y–O coordination will decrease the number of fragments of the 

glass network coordinated to yttrium. Because the strong Y–O interaction can be 

expected to reduce the mobility and increase the resistance to dissolution of these 

fragments, a positive correlation between the extent of intratetrahedral Y–O 

coordination and glass solubility can also be expected.[54]  

 

 

Figure 5. Correlation between Weight loss and the structural descriptor s. 

reprinted with permission from ref. 54  (to which refer for details). Copyright 

2009 American chemical Society  

The linear combination of these parameters s is given as: 



s = 0.310 CNSiOSi + 0.076 RY-Y -0.136 Nintra      (4) 

A good correlation between the solubility of the glasses in water 

(measured as weight loss) and the descriptor s (Figure 5) is obtained, the 

correlation coefficients being R
2
 = 0.955 (σ = 0.97 mg/cm

2
). The negative slope of 

the regression indicates that as s increases, the solubility of the glass decreases. 

The coefficients of the first two terms of s are positive, implying that increasing 

the (Si−)O–Si coordination number and/or increasing the Y–Y clustering ratio 

will lead to decreasing solubility. Conversely, the sign of the third term of s is 

negative, implying that an increase in the number of intratetrahedral O–Si–O 

bonds around the yttrium atoms will increase the solubility. 

It is worth noting that the R
2
 statistical parameter for the correlation 

between the solubility s and the CNSiOSi is 0.909 (σ = 1.38 mg/cm
2
), denoting that 

CNSiOSi captures most of the experimental trends; the observed small 

improvement in the linear fit for its combinations with other parameters in part 

arises from the larger number of parameters in the fit (overfitting).  
 

 

3.4 QSPR models for Young’s modulus 

 

Elastic properties, specifically Young’s modulus E, have attained 

paramount interest for a variety of glass applications such as accelerated devices, 

including hard discs and surgery equipment, lightweight construction, and 

composite materials.[46] 

From a practical point of view, the mechanical properties of a glass often 

dictate whether a specific need or application can be met. Therefore, the 

prediction of these properties according to glass composition is becoming 

increasingly indispensable.  



 

Figure 6. Correlation between the calculated Young’s modulus (E) and the 

correlation length (L) of the first sharp diffraction peak of alkali silicate glasses. 

The plots is reproduced by the data values reported in ref. [56]. 

 

An interesting computational investigations on composition dependence of 

mechanical properties of multicomponent glasses has been performed by Pedone 

et al.[56, 57] This work represents the first detailed systematic computational 

study of the mechanical properties of three wide series of alkali silicate glasses, of 

general formula xM2O-(100-x)SiO2 (M=Li, Na, K; x=0, 10, 15, 20, 25, 30 mol%, 

obtained by means of the MD and energy minimization methods. Besides the 

correct quantitative calculations of the observable values of the mechanical 

properties (Young’s modulus, shear modulus, bulk modulus and Poisson’s ratio), 

the authors reported an important QSPR model between Young’s modulus (E) and 

the correlation length (L) of the first sharp diffraction peak (FSDP).  

Changes in the FSDP as a function of composition have been attributed to 

variation in the medium range order of the glass.[58] The quantitative 

rationalization of the Young’s modulus modulation by dopant addition reported in 

Figure 6 promotes the correlation length as an eligible descriptor both for 

quantitative predictions and interpretation of the structure dependence of the 

Young’s modulus for the alkali silicate glasses.  Since  the experimental Young’s 

modulus values are reproduced by computational simulations with maximal 

differences of 4%, 4% and 2% for lithium, sodium and potassium silicate glasses, 

the statistical significance of the correlations obtained is comparable when 

experimental or computed Young’s modulus data values are used:  E(GPa)(Exp) = 



10.993 L + 16.409  n = 14 R
2 

= 0.932 S = 3.025;  E(GPa)(Comput.) = 11.177 L + 

18.654 n = 16 R
2 

= 0.968 S = 2.191.  It is worth noting the positive slope and the 

distribution of the glasses in the E-L space according to the nature of the dopant: 

the characteristic correlation length decreases as a function of Na and K content, 

and increases as a function of Li content. Therefore, the intermediate range order 

decreases with Na and K concentration, whereas the high field strength of Li 

determine the ordering of the surrounding network and modifier regions. 

 

 

3.5 QSPR models for NMR spectra  

 

Solid State nuclear magnetic resonance NMR spectroscopy has been 

firmly established as a powerful technique for glass structure investigation [60, 

61], being very sensitive to the local environment (i.e., bond distances and angles, 

coordination numbers) and to the nature of the second coordination sphere. 

Unfortunately, the interpretation of the experimental spectra is hindered by the 

inhomogeneous broadening of isotropic line due to the different structural units 

present in the glass.  

In the past the interpretation of the NMR spectra was based on empirical 

correlations derived from the study of crystalline materials with known 

structure,[62] and, successively, on correlations with structural descriptors 

computed by ab-initio calculations on crystals or model clusters. [63-68] 

However, crystalline systems generally exhibit a limited diversity of local 

structures in contrast to the disorder and variety of structural units (different 

coordination numbers and Q
n
 distributions) present in multicomponent glasses, 

and the cluster approach does not account for the correlations between structural 

factors that exist in solids and disorder in glasses.[69-71]  

To overcome these limitations several studies focused on semi-quantitative 

comparisons between information derived from NMR spectra and structural 

features obtained from molecular dynamics simulations on large glass samples 

have been published. They mainly make use of connectivity between different 

types of Q
n
 species and related descriptors,[72-80] but attempts to investigate 

cation distribution and clustering have also been made.[81] Moreover, the 

interpretative and predictive relevance of statistical correlations between NMR-

derived and MD-derived descriptors (quantitative structure-properties 

relationships) has also been discussed.[25, 33]
 
  

A major breakthrough occurred in the early 2000, when the calculation of 

NMR parameters from first principles [82] and, successively, the simulation of the 

line widths and shapes of the NMR spectra have become possible, [83-85] 

through the MD-DFT/GIPAW (Gauge Including Projector Augmented Wave) 

approach. This approach has opened a new route for interpreting NMR parameter 

distributions and for refining the relationships between NMR parameters and local 

structural features. In fact, calculations of NMR parameters (chemical shielding 

and quadrupolar parameters) of each nucleus is performed on the three-



dimensional model of the glass obtained by MD simulations and refined by 

Density Functional Theory (DFT) calculations. Then comparison between 

experimental and theoretical spectra features is performed, and, being the results 

satisfactory, the establishment of quantitative structure-NMR parameter 

relationships is feasible. Accurate relationships between NMR parameters and 

structural descriptors are extremely useful for the interpretation of experimental 

data, as they make a reverse approach possible. [83, 86-88] In this way, structural 

descriptors (i.e. bond and angle distributions) of a glass sample could, in principle, 

be directly obtained from the experimental NMR parameters distribution. (Figure 

7) 

 

Some examples of QSPR results involving NMR computed parameters 

and structural descriptors obtained by MD obtained for a number of 

multicomponent silicate glasses are summarized in Table 1.  

 

 
 

Figure 7. The structural inversion QSPR approach to extract structural 

distributions from NMR data. The example of the Si-O-T distribution for Sodium 

silicate glasses ig given.[86] 

 

Direct information on structural regions dominated by different Q
n
 species 

in Alkaline/alkaline earth silicate glasses have been obtained from linear and 

multilinear regressions. The statistical models achieved an accuracy in prediction 

of about 2 ppm for the 
29

Si δiso,[86]10 ppm for the 
23

Na δiso,[90] of 2–4° for the 



mean value of the Si-O-Si bond angle distribution, 2–4°,[86] and of less than 10 

ppm for the chemical shift anisotropy 
29

Si Δcs of the Q
3
 species.[90]   

Two of the most investigated relationships in aluminosilicate glasses are 

those between 
27

Al and 
29

Si iso and inter-tetrahedral angles. (83, 95-97) In general 

poor correlations are obtained unless the connectivity between Si and Al and the 

different oxygen species (BOs, NBOs, TBOs) is taken into account. [93] 

In the cases of phosphosilicate glasses (Bioglasses), the analysis of the 

correlation coefficients obtained for the linear correlations between the theoretical 
29

Si δiso and the mean Si−O−T angle (R
2
 0.55, 0.62, and 0.89 for Q

1
, Q

2
, and Q

3 
Si 

species, respectively) clearly indicates that the Q
n
 distribution of the Si species is 

controlled by the nonrandom distribution of Na and Ca atoms in the glass. [88, 94] 

The worst correlations coefficients have to be ascribed to the irregular 

distributions of Ca ions around the different Si Q
n
 species (its concentration is 

maximal around the Q
2
 and minimal around the Q

4
 species).  This is a general 

trend which has been observed in alkaline and alkaline-earth glasses and 

aluminosilicate glasses.[84, 98]  

Table 1. QSPR models of multicomponent silicate glasses involving NMR 

computed parameters and structural descriptors obtained by MD. 

 

Glasses NMR parameters MD structural descriptors 

Alkaline/alkaline 

earth silicate 

[84, 86, 88- 91] 

29
Si δiso of each Q

n
 

species 

mean Si-O-T angle (T denotes the 

Q
n
 connected tetrahedron) 

29
Si Δcs of Q

3
 species <Si-O>BO and <Si-O>NBO bond 

lengths 
17

O δiso of BO and 

NBO 

average Si-BO, Si-NBO and M-BO, 

N-NBO  distances (M=Na,Ca) 
23

Na δiso
 

number of coordinating NBO atoms 

to a given Na, mean Na-O bond 

length  

Alumino silicate  

[79, 88, 91, 92] 

27
Al and 

29
Si iso

 <Al-O-T> and <Si-O-T> bond 

angles 
29

Si δiso
 

amount of modifier cations in the 

silicon second coordination sphere 
27

Al iso
 the fractional population of Al 

polyhedra 

Phospho silicate 

(Bioglasses) 

 [33, 88, 94] 

29
Si NMR δiso of each 

Q
n
 species

 
mean Si−O−T angle 

Boro silicate 

[87, 88] 

29
Si and 

11
B δiso

 
mean Si−O−T angle 

 

 



Finally, an elegant example of structural inverse correlations is reported by 

Soleilhavoup et al.,[87] for borosilicate glasses. The methodology, derived for the 

first time for vitreous silica,[83] consists in extracting the distribution of NMR 

parameters (i.e. the distribution of isotropic chemical shifts for each boron 

resonance) from 
11

B 3QMAS spectra; establishing a quantitative relationship 

between the 
11

B isotropic chemical shift and each B–O–B angle; and mapping the 

NMR parameter distribution into a distribution of the B–O–B angle (structural 

inversion of the 
11

B NMR spectrum). 

 

 

4. Outlook 

 

The main goal of computational material design is to gain "rational" 

control of the structure of complex real-life systems at all relevant length scales, 

thus the optimization and prediction of specific properties which fulfil end-user 

application requirements become possible. Notwithstanding the great advances 

achieved in computation, glass design is still in its infancy and constitutes an 

important avenue for future research.  

To this respect, QSPR is a precious tool since it can be used at different 

steps of the problem-solving strategy for glass design: a) in a preliminary step, to 

assist end-users in the choice of the hierarchic level of theory and simulations to 

provide the most comprehensive description of the glass system at hand; b) in an 

intermediate steps, to map the amount of information derived from the 

computations to the space of the glass relevant properties. This might be devised 

to obtain the correct esteem of the numerical value of the property or to discover 

connections, trends and relationships that would otherwise be very difficult to 

detect by simple observation, i.e. to create a chemical model that is easy to 

understand; and c) at the final step to predict properties of new glass formulations 

in a cheap, efficient and environmentally friendly manner. 

Such ambitious tasks require the development of improved atomistic 

simulation methods and/or new mathematical approaches that enable the quick 

derivation of specific descriptors for non-covalent amorphous systems at low 

computational costs.  

For the time being, combination of MD and QSPR analysis helps to gain 

valuable information for the understanding of materials and chemical processes 

and furnishes a useful tool for predictive purposes. 
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