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Three generalizations of the Timoshenko beammodel according to the linear theory ofmicropolar elasticity or its special cases, that
is, the couple stress theory or the modified couple stress theory, recently developed in the literature, are investigated and compared.
The analysis is carried out in a variational setting, making use of Hamilton’s principle. It is shown that both the Timoshenko and the
(possibly modified) couple stress models are based on a microstructural kinematics which is governed by kinosthenic (ignorable)
terms in the Lagrangian. Despite their difference, all models bring in a beam-plane theory only one microstructural material
parameter. Besides, the micropolar model formally reduces to the couple stress model upon introducing the proper constraint on
the microstructure kinematics, although the material parameter is generally different. Line loading on the microstructure results
in a nonconservative force potential. Finally, the Hamiltonian form of the micropolar beam model is derived and the canonical
equations are presented along with their general solution. The latter exhibits a general oscillatory pattern for the microstructure
rotation and stress, whose behavior matches the numerical findings.

1. Introduction

One truly remarkable feature of the theory of elasticity is the
possibility of dealing with the vast microscopic complexity
and diversity of real materials in a unified and “averaged”
fashion. Such feature is best illustrated by the broad class
of linear isotropic materials, which can be described from a
mechanical standpoint by means of just two material param-
eters. Of course, this far standing attitude cannot be expected
to work just as well when very small devices, whose size is in
the order of the microstructure length scale, are considered.
To overcome such short-coming and to effectively model the
current trend of micro- and nanoelectromechanical systems,
MEMS and NEMS, several nonclassical continuum theories
have been developed. Among these, we will mention the
micropolar continuum theory [1, 2], hereinafter referred to
as the Eringen-Nowacki (E-N) micropolar theory [3], which
adds at each material point a microstructure description in
terms of one rotation vector. In general, the adoption of a
nonclassical continuum theory takes a heavy toll in that either
extra boundary conditions are demanded or a considerable

number of material parameters need to be somehow deter-
mined. For the case of the E-N micropolar theory, three
microstructural material parameters are required. Conse-
quently, one very desirable feature of a workable nonclassical
continuum theory is the ability to capture the mechanical
bearing of the microstructure at the macroscale at the least
possible cost in terms of experimental effort for the deter-
mination of the material parameters. The desire to strike this
difficult balance has spawn a number of specialized versions
of the micropolar theory, such as the Koiter-Mindlin (K-M)
couple stress theory [4, 5] and, recently, the reduced couple
stress theory [6], wherein, respectively, two and one material
parameters are introduced. When such diverse models are
confronted with approximate theories, such as the beam’s,
generally unexpected results are in order [7]. The modified
couple stress theory has been applied to develop an Euler-
Bernoulli model in [8]. However, attention in the literature is
mostly focused on Timoshenko-like models, in light of their
advantages. Indeed, the Timoshenko model incorporates the
shear contribution to the deformation, which ismost relevant
in the thick-beam high-frequency regime proper of MEMS.
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Figure 1: Kinematics of a Timoshenko beam (a) and positivity conventions (b).

Besides, the Timoshenko model is variationally more apt
to a FE approximation (no locking effect). Plates and rod
models are mathematically justified through a proper scaling
in a small parameter from the three-dimensional theory
of linear micropolar elasticity in [9, 10]. A Timoshenko
beam model based on the reduced couple stress theory is
presented in [11], where static bending and free vibration of
a simply supported beam are studied. In [12], a First Order
Shear Deformation Beam Theory (FSDBT) is developed for
micropolar elastic beams and analytical results for the static
bending of a cantilever beam as well as for the dispersion
relation for longitudinal and flexural waves are given. Couple
stress Timoshenko beams have been investigated in [13],
where a closed-form solution valid in the static case and
for homogeneous materials is obtained and then applied to
analyze a cantilever beam. In a such a variety, the question
of whether such models reconcile and under what conditions
seldom appears and when it does the answer rests in the neg-
ative.This paper attempts to address precisely this matter and
to gather all models under a single variational framework.
The issue of what assumptions really matter for the reduction
in the number ofmaterial parameters is also investigated.The
paper is thus organized. Section 2 revises some feature of the
Timoshenko beam model, Section 3 introduces the couple
stress Timoshenko model, and Section 4 introduces the
broader linear micropolar model. The Hamiltonian form of
the latter and its general solution are presented in Section 4.1.
Finally, conclusions are drawn in Section 5.

2. Variational Features of
the Timoshenko Beam

Let us consider a prismatic body (beam) of cross-sectional
area𝐴 and length 𝐿, whose central axis (the sections’ centroid
line) rests along the 𝑥-axis in the reference configuration,
Figure 1. Traditionally, a Timoshenko beam [14, Section 2.17]
is characterized by the following Lagrangian density:

L =
1

2
𝐸𝐼𝜓
2

1
+
1

2
𝐴𝐺 (𝑦

1
− 𝜓)
2

− 𝑞𝑦 − 𝑚𝜓, (1)

where𝐸𝐼 is the beam flexural rigidity,𝐺 is the shearmodulus,
𝑦 is the transverse displacement, 𝜓 is the cross-section
rotation (positive clockwise), and 𝑞 and 𝑚 are the transverse

and the torque line load density, respectively. (This notation
is Timoshenko’s and we abide by it for historical reasons.The
notation 𝑧 for the transverse displacement would better fit
with the reference system of Figure 1, which is commonly
adopted in the recent literature. However, confusion may
arise with the 𝑧 coordinate along the cross-section.) Since
this is a beam theory, all field quantities depend on the single
independent variable 𝑥, that is, 𝐸𝐼 = 𝐸𝐼(𝑥), 𝑞 = 𝑞(𝑥),
and so forth. Here, we use a subscript number to denote
differentiation with respect to 𝑥; that is, we use 𝑦

1
in the

place of 𝑑𝑦/𝑑𝑥. Besides, we will restrict ourselves to the static
theory. For the sake of notational compactness, the shear
factor 𝑘

𝑠
, usually associated with the Timoshenko model, is

here omitted, although it can be easily introduced whenever
a factor 𝐴𝐺 appears. The action integral is

A = ∫
𝐿

0

L𝑑𝑥 (2)

and according to Hamilton’s principle seeking for deforma-
tion makes the action integral stationary. Since here the axial
coordinate 𝑥 takes up the role which is usually played by time
𝑡 in discrete mechanics, we will refer to 𝑦

1
as the velocity and

to 𝑦
2
as the acceleration.The Euler-Lagrange (E-L) equations

for the Lagrangian (1) are

(𝐸𝐼𝜓
1
)
󸀠

+ 𝐴𝐺 (𝑦
1
− 𝜓) + 𝑚 = 0,

[𝐴𝐺 (𝑦
1
− 𝜓)]
󸀠

+ 𝑞 = 0,

(3)

where prime denotes differentiation with respect to 𝑥.
The Lagrangian (1) is noteworthy because it contains

the gyroscopic term 𝜓𝑦
1
, that is, a term which is linear in

the velocity. It is well known that a gyroscopic term arises
from the elimination of kinosthenic (or ignorable) variables
[15, Chapter V, Section 4]. Indeed, we easily show that the
Lagrangian (1) is obtained from the enlarged Lagrangian:

L =
1

2
𝐸𝐼𝜓
2

1
+
1

2
𝐴𝐺𝑤
2

1
− 𝑞𝑦 − 𝑚𝜓 − 𝜇 (𝑦

1
− 𝑤
1
− 𝜓) . (4)

Here, 𝑤
1
is the slope that arises from shear deformation

(see Figure 1(b)), on account of the shearing force 𝑉 =

𝐴𝐺𝑤
1
. On the other hand, the total slope 𝑦

1
is partly due to
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the rigid rotation of the cross-section,𝜓, and partly due to the
shear deformation, 𝑤

1
. The last term of (4) stems from such

kinematical connection and its dealing through the Lagrange
multiplier method. Nonetheless, the variational principles (1)
and (4) are not entirely equivalent. Indeed, the E-L equations
of (4) are

(𝐸𝐼𝜓
1
)
󸀠

− 𝜇 + 𝑚 = 0, (5a)

𝜇
󸀠
− 𝑞 = 0, (5b)

(𝐴𝐺𝑤
1
+ 𝜇)
󸀠

= 0, (5c)

together with the constraint

𝑦
1
= 𝑤
1
+ 𝜓. (6)

Comparing such equations with the rotational and vertical
equilibrium equations, respectively,

𝑀
󸀠
− 𝑇 + 𝑚 = 0,

𝑇
󸀠
− 𝑞 = 0,

(7)

shows that 𝜇 = 𝑇 is the shearing force acting on a cross-
section and participates with the bending moment 𝑀 =

𝐸𝐼𝜓
1
to rotational equilibrium. It is emphasized that only

the shearing force 𝑉 causes shear deformation 𝛾 = 𝑉/(𝐴𝐺),
while the shearing force 𝑇 is the traditional shearing force
associated with a Euler-Bernoulli model; that is, it causes no
direct deformation. So, it can be seen that this model is more
general than the traditional Timoshenko beam, for in it a
shearing force 𝑉 exists which causes shear deformation and
yet it is associated with no cross-section rotation; that is, the
bending moment required to warrant rotational equilibrium
appears at no energy cost. In such a model, the pure shear
deformation with no cross-section rotation shown at the
bottom right corner of Figure 1 may exist on its own right.
Only through the boundary conditions (BCs), the twomodels
may be entirely reconciled. Indeed, as it is the case with
kinosthenic variables, (5c) may be immediately integrated
giving

𝐴𝐺𝑤
1
+ 𝜇 = 𝑉 + 𝑇 = 𝑉, (8)

where 𝑉 is a constant and it equals the boundary shearing
force conjugated with 𝛿𝑤. If 𝑉 = 0, then 𝑇 = −𝑉 and
the shearing force 𝑇 determines both shear deformation and
cross-section rotation at the same time; that is, a pure shear
deformation is impossible. This is the Timoshenko model,
where only two natural BCs appear, namely,

(𝐸𝐼𝜓
1
) 𝛿𝜓 + 𝐴𝐺 (𝑦

1
− 𝜓) 𝛿𝑦. (9)

However, if we were to consider 𝑉 different form zero, we
would allow for a distinction between the shearing forces
𝑇 and 𝑉. Indeed, in this general case, we would have three
natural boundary conditions, namely,

(𝐸𝐼𝜓
1
) 𝛿𝜓 − 𝜇𝛿𝑦 + 𝑉𝛿𝑤. (10)

This difference in the BCs is a major issue when dealing with
free boundary problems [16, 17].

3. The Couple Stress Timoshenko Beam

Many generalizations of the Timoshenko beam have been
recently proposed in the literature, which are based on the
micropolar linear continuum theory of Eringen-Nowacki (E-
N) [1] or its special cases, the couple stress theory of Koiter-
Mindlin [5] and the reduced couple stress theory [6], in an
attempt to incorporate a scale effect in the theory. In the
E-N model, a microstructure exists whose single degree of
freedom with respect to the macrostructure is the rotation
(a similar situation occurs in electro- or magneto-elastic
materials, where a vectorial microstructure is considered
[18–20]), described by the microstructure pseudorotation
vector 𝜃 (pseudo because it reverses sign upon passing from a
right-handed to a left-handed reference system). Micro- and
macrostructure share the same macromotion, described by
the displacement field u. In the special case of the Koiter-
Mindlin (K-M) couple stress theory, the microstructure
rotation is no longer an independent degree of freedom but
rather it is bound to the macrostructure deformation; that is,
it is a latent microstructure. Consequently [5, Eq. (2.17)],

𝜃 =
1

2
curlu, (11)

where, componentwise, (curlu)
𝑖
= 𝜖
𝑖𝑗𝑘
𝜕𝑢
𝑗
/𝜕𝑥
𝑘
and 𝜖

𝑖𝑗𝑘
is

the permutation symbol or alternator. Since we are here
considering a plane beam theory, every motion takes place
in the (𝑥, 𝑧)-plane and we let

u = [𝑢𝑥 0 𝑢𝑧] ,

𝜃 = [0 𝜑 0] ,

(12)

being

𝑢
𝑥
= 𝑢
𝑥
(𝑥, 𝑧) ,

𝑢
𝑧
= 𝑦 (𝑥) ,

𝜑 = 𝜑 (𝑥) .

(13)

Note that here 𝜑 is positive when being counterclockwise
(following the right hand screw rule about the 𝑦-axis),
as opposed to 𝜓, which is positive when being clockwise
(Figure 1). In a Timoshenko-like theory, the cross-section
originally at coordinate 𝑥 remains plane after deformation,
whence

𝑢
𝑥
= 𝑢
0
− 𝑧𝜓, (14)

which is sometimes referred to as a Timoshenko’s First
Order Shear Deformation Beam Theory (FSDBT) [12, 21].
More general theories can be constructed by considering the
general power series expansion along 𝑧 [21]:

𝑢
𝑥
(𝑥, 𝑧) =

𝑁

∑

𝑖=0

𝑧
𝑖
𝜓
(𝑖)
(𝑥) (15)

of which (14) corresponds to the case 𝑁 = 1. For simplicity,
we will neglect the axial extension; that is, 𝑢

0
= 0, given that
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it turns out to be decoupled from the transverse deformation.
Again, this is a beam theory and all field variables𝜓 and 𝑦 are
functions of 𝑥. Letting the strain energy for the beam occupy
the three-dimensional prismatic regionΩ [5, Eq. (2.25)],

𝑈 =
1

2
∫
Ω

(𝜎 ⋅ 𝜖 +m∗ ⋅ 𝜅) 𝑑V, (16)

where 𝜎 is the Cauchy stress tensor, 𝜖 = Sym[grad u] is
the linear strain tensor, m∗ is the couple stress tensor, and
𝜅 is the microstrain tensor (also termed torsion-flexure or
wryness). (A concise account of the E-N model and other
micropolar theories can be found in the recent monograph
[3]. As far as the notation goes, the asymmetric strain tensor
𝛾 and the microstrain tensor 𝜅 are the transpose of our e and
𝜅, respectively, given that div and grad are also defined in a
“transposed” way.) Consider

𝜅 = grad 𝜃. (17)

The symmetric part of the wryness tensor is the curvature
tensor:

𝜒 = Sym [grad 𝜃] = 1
2
(grad 𝜃 + grad𝑇𝜃) . (18)

Here, the superscript 𝑇 denotes transposition and, compo-
nentwise, (grad 𝜃)

𝑖𝑗
= 𝜕𝜃
𝑖
/𝜕𝑥
𝑗
. Besides, a dot denotes scalar

product; namely, 𝜎 ⋅𝜖 = 𝜎
𝑖𝑗
𝜖
𝑖𝑗
.The usual constitutive equation

for linear elastic isotropic homogeneous material is assumed
as

𝜎 = 𝜆 (tr 𝜖) 1 + 2𝐺𝜖, (19)

where 1 is the identity tensor and 𝜆, 𝐺 are Lamé constants. In
light of (11)–(14), it is (cf. [11, Eq. (10)])

𝜖
𝑥𝑥
= −𝑧𝜓

1
,

𝜖
𝑥𝑧
= 𝜖
𝑧𝑥
=
1

2
(𝑦
1
− 𝜓)

(20)

and 𝜖
𝑦𝑦
= 𝜖
𝑧𝑧
= 𝜖
𝑥𝑦
= 𝜖
𝑦𝑧
= 0. Again (11)–(14) give

the connection between the microstructure rotation vector
𝑦-component and the cross-section macrorotation [11, Eq.
(11)]:

𝜑 = −
1

2
(𝜓 + 𝑦

1
) . (21)

Consequently, the only nonzero component of the wryness
tensor is

𝜅
𝑦𝑥
= 𝜑
1
, (22)

while the only nonzero components of the curvature tensor
are

𝜒
𝑥𝑦
= 𝜒
𝑦𝑥
=
1

2
𝜑
1
. (23)

Letting the couple stress tensor m∗ be conjugated to the
wryness tensor 𝜅, through the constitutive assumption (2) of
[13],

m∗ = 𝛼 (div 𝜃) 1 + 𝛾∗ grad 𝜃 + 𝛽∗grad𝑇𝜃, (24)

wherein 𝛼, 𝛽∗ and 𝛾∗ are three material constants. Here,
div 𝜃 = tr(grad 𝜃) or, componentwise, div 𝜃 = 𝜕𝜃

𝑖
/𝜕𝑥
𝑖
,

and summation over repeated indexes is implied. In light of
the constraint (11), it is div 𝜃 = 0. We then see that in the
couple stress theory the material constants pertaining to the
microstructure are reduced to two. Furthermore, by the same
constraint, the spherical part of 𝜅 is zero (i.e., its first invariant
vanishes, tr 𝜅 = 0), whence the spherical part of the couple
stress tensor rests undetermined [5]. Equations (22) and (24)
give

𝑚
∗

𝑥𝑦
= 𝛽
∗
𝜑
1
. (25)

In the case of the modified couple stress theory, only the
symmetric part ofm∗ is considered, thus further reducing the
number of material constants to just one [11]; that is,

m = Sym [m∗] = 2𝛽𝜒, (26)

where 2𝛽 = 𝛾∗ + 𝛽∗. Equations (23) and (26) yield

𝑚
𝑥𝑦
= 2𝛽𝜒

𝑥𝑦
= 𝛽𝜑
1 (27)

and regardless of whether the couple stress or the modified
couple stress theory is adopted only one constitutive parame-
ter appears for the 𝑥𝑦-couple stress component, respectively,
𝛽
∗ or 𝛽. When the constitutive assumption (26) is compared

with (8) of [11], namely,

m = 2𝑙2𝐺𝜒, (28)

it is clearly seen that the single material parameter, 𝛽, orig-
inating from the couple stress theory, is taken proportional
to the shear module 𝐺 through the material characteristic
length 𝑙. Besides, it is noted that the bending moment 𝑚

𝑦𝑥

appears owing to the microstructure, which requires a spe-
cific constraint to dispensewith the out-of-plane deformation
this would cause.

It is now possible to write the Lagrangian density whose
E-L equations are (17) and (18) of [13]; namely,

L =
1

2
𝐸𝐼𝜓
2

1
+
1

2
𝐴𝐺 (𝑦

1
− 𝜓)
2

+
1

8
𝛽𝐴 (𝜓

1
+ 𝑦
2
)
2

− 𝑞𝑦 − 𝑚𝜓.

(29)

This Lagrangian density is obtained integrating (16) along
the cross-section, lying in the (𝑦, 𝑧) plane, having introduced
(19)–(26) together with the restricted kinematics (11), (12)
[11]. The result accounts for the first three terms at RHS of
(29), whereas the last two terms convey the potential of the
external loads. It is observed that a quadratic term in the
acceleration 𝑦

2
appears in the Lagrangian (29); that is, we

have an acceleration dependent Lagrangian. Furthermore,
an extra gyroscopic-like term exists, which is linear in the
acceleration, namely, 𝜓

1
𝑦
2
. The E-L equations are

[𝐸𝐼𝜓
1
+
1

4
𝛽𝐴 (𝜓

1
+ 𝑦
2
)]

󸀠

+ 𝐴𝐺 (𝑦
1
− 𝜓) + 𝑚 = 0, (30a)

{[
1

4
𝛽𝐴 (𝜓

1
+ 𝑦
2
)]

󸀠

− 𝐴𝐺 (𝑦
1
− 𝜓)}

󸀠

− 𝑞 = 0, (30b)
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Figure 2: Actions (a) on the macro- and (b) on the microstructure.

which are the self-adjoint form (i.e., the generalization to
inhomogeneous materials) of the static version of (17) and
(18) in [13]. (It needs to be considered that 𝑤 and 𝜔 there are
the counterparts of our −𝑦 and −𝑞, given that the 𝑧-axis is
oriented upwards; that is, 𝑤 󳨃→ −𝑦 and 𝜔 󳨃→ −𝑞. Besides,
𝜓 󳨃→ −𝜓.) Equations (30a) and (30b) may be rewritten in the
form of an equilibrium equation set (cf. (7)):

(𝑀 −𝑀
𝑚
)
󸀠

+ 𝑉 + 𝑚 = 0,

(𝑇
𝑚
− 𝑉)
󸀠

− 𝑞 = 0,

(31)

wherein 𝑀
𝑚
= −(1/4)𝛽𝐴(𝜓

1
+ 𝑦
2
) is the bending moment

brought in by the microstructure (cf. (23) of [11]), which
conveys the shearing force 𝑇

𝑚
= −𝑀

󸀠

𝑚
. It is observed that the

microstructure bending moment, 𝑀
𝑚
, and shearing force,

𝑇
𝑚
, are positive according to the convention of Figure 2.
Wewill now showhow, fromamechanical standpoint, the

couple stress theory appears in a new enlarged Lagrangian,
wherein the microstructure rotation is given the status of
dependent variable. The Lagrangian (29) may be rewritten as

L =
1

2
𝐸𝐼𝜓
2

1
+
1

2
𝐴𝐺 (𝑦

1
− 𝜓)
2

+
1

2
𝛽𝐴𝜑
2

1
− 𝑞𝑦 − 𝑚𝜓

− 𝑐𝜑 + 𝜆 (2𝜑 + 𝜓 + 𝑦
1
) ,

(32)

having introduced the Lagrangian multiplier 𝜆 and the
distributed torque 𝑐 acting upon the microstructure (positive
when counterclockwise, cf. Figure 2). The third term in (32)
may be reconciled with the couple stress theory in light of
(27). The Lagrangian (32) gives the following E-L equations:

(𝐸𝐼𝜓
1
)
󸀠

+ 𝐴𝐺 (𝑦
1
− 𝜓) − 𝜆 + 𝑚 = 0, (33a)

− [𝐴𝐺 (𝑦
1
− 𝜓) + 𝜆]

󸀠

− 𝑞 = 0, (33b)

(
1

2
𝛽𝐴𝜑
1
)

󸀠

− 𝜆 +
1

2
𝑐 = 0, (33c)

together with the constraint (21). Recalling the general form
of the equilibrium equation (7), (33c) may be interpreted as
giving the rotational equilibrium of themicrostructure, which
is acted upon by the bending moment𝑀

𝑚
= (1/2)𝛽𝐴𝜑

1
and

the distributed torque 𝑐/2 − 𝜆, while the shearing force 𝑇
𝑚
=

0. Equation (33a) enforces the rotational equilibrium of the
macrostructure:

𝑀
󸀠
+ 𝑉 + 𝑚 − 𝜆 = 0, (34)

which shows that the distributed torque 𝜆 is exchanged
with the microstructure according to the action-reaction
principle. Finally, (33b) is the vertical equilibrium for the
macrostructure, which is acted upon by the shearing force𝑉 =
𝐴𝐺(𝑦

1
− 𝜓) and the shearing force 𝑇 = −𝜆. This mechanical

interpretation of the equations, where the distributed torque
𝜆 appears also as a shearing force, derives from the formof the
last term in the Lagrangian (32), wherein 𝜆 is conjugated to
the rotation 𝜑, like 𝑐, and to the shear-like term 𝑦

1
+𝜓, like𝑉.

(It is observed that the Lagrangemultiplier 𝜆may be given yet
anothermechanical interpretation: the distributed torque 𝜆 is
mechanically equivalent to a line load distribution 𝑞

𝑚
= 𝜆
󸀠, in

amanner similar to the dealing with that boundary condition
for the twisting moment in the Kirchhoff-Love plate theory.
However, unlike the twisting moment in the Kirchhoff-Love
plate theory, here 𝜆 appears in the equations in two forms, i.e.,
both as the line torque 𝜆 and as the line load 𝜆󸀠.)

We now consider the special case 𝑐 = 0 and modify the
Lagrangian (32) so that 𝜑

1
is kinosthenic:

L =
1

2
𝐸𝐼𝜓
2

1
+
1

2
𝐴𝐺 (𝑦

1
− 𝜓)
2

+
1

2
𝛽𝐴𝜑
2

1
− 𝑞𝑦 − 𝑚𝜓

+ 𝜇 (2𝜑
1
+ 𝜓
1
+ 𝑦
2
) .

(35)

Note that this step reintroduces an acceleration term and that
4𝜇 is now conjugated with the curvature 𝜑

1
/2 just like the

microstructure bending moment 𝑀
𝑚
. As a result, this new

Lagrangian affords a simple mechanical interpretation. The
new E-L equations are

(𝐸𝐼𝜓
1
+ 𝜇)
󸀠

+ 𝐴𝐺 (𝑦
1
− 𝜓) + 𝑚 = 0, (36a)

𝜇
󸀠󸀠
− [𝐴𝐺 (𝑦

1
− 𝜓)]
󸀠

− 𝑞 = 0, (36b)

(
1

2
𝛽𝐴𝜑
1
+ 𝜇)

󸀠

= 0, (36c)

plus the derivative of the constraint (21), which determines 𝜑
as a function of 𝑦

1
+ 𝜓 up to a constant. (This indeterminacy

is the reason why we need consider the case 𝑐 = 0.) In this
new variational setting, 𝜇 is the exchange bending moment
between the macro- and the microstructure, the latter now
receiving no exchange distributed torque. The exchange
bending moment participates in the vertical equilibrium
equation (36b) in the formof a shearing force𝑇 = 𝜇󸀠. Since𝜑

1

is nowkinosthenic, it can be eliminated giving the Lagrangian
(29), in a similar manner as with the Timoshenko model.
Indeed, integrating (36c) gives

𝑀
𝑚
+ 𝜇 = 𝑀

𝑚
, (37)

where 𝑀
𝑚
is the BC imposing the microstructure bending

moment. When𝑀
𝑚
= 0, we have 𝜇 = −𝑀

𝑚
= (1/4)𝛽𝐴(𝜓

1
+

𝑦
2
) and (36a) and (36b) turn into (30a) and (30b), respec-

tively.

4. The E-N Micropolar Timoshenko Beam

When the E-N micropolar linear theory is employed,
the microstructure rotation 𝜃 is no longer bound to the
macrostructure rotation and, in particular, the constraint (21)
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drops out. As a consequence, the constitutive equation (24)
may be applied in full form:

m∗ = 𝛼 (div 𝜃) 1 + 𝛾∗𝜅 + 𝛽∗𝜅𝑇, (38)

which shows that three constitutive parameters come in from
the microstructure. Furthermore, the micropolar theory
entails that the stress tensor 𝜎∗ is no longer symmetric and
its skew-symmetric part, Skw[𝜎∗], is energy conjugated with
themacrostructure rotation; that is, it does provide an energy
contribution. Letting the linear micropolar strain tensor,

e = gradu +Ω,

Ω
𝑖𝑗
= 𝜖
𝑖𝑗𝑘
𝜃
𝑘
,

(39)

where Ω is the skew-symmetric tensor associated with the
rotation vector 𝜃; that is, the latter is the axial vector of the
former. The constitutive equation now needs to specify the
full stress tensor; namely,

𝜎
∗
= 𝜆 (tr e) 1 + 2𝐺Sym [e] + 𝜂Skw [e] . (40)

Obviously, 𝜆 and 𝐺 are the usual Lamé constants, which
specify the symmetric part of the stress tensor, while 𝜂
determines the skew symmetric part.The Lagrangian density
corresponding to the E-L equations (35)–(37) of [12] is

L =
1

2
𝐸𝐼𝜓
2

1
+
1

2
𝐴𝐺 (𝑦

1
− 𝜓)
2

+
1

2
𝛽
∗
𝐴𝜑
2

1

−
1

4
𝜂𝐴 (𝑦

1
+ 𝜓)
2

− 𝑞𝑦 − 𝑚𝜓 − 𝑐𝜑

− 𝐴𝜂𝜑 (𝜑 + 𝑦
1
+ 𝜓) .

(41)

This Lagrangian has been obtained integrating along the
beam cross-section the strain energy

𝑈
∗
=
1

2
∫
Ω

(𝜎
∗
⋅ e +m∗ ⋅ 𝜅) 𝑑V (42)

and accounting for the external load potential. Introducing
the constraint (21) and assuming the special case 𝑐 = 0, the
fourth term and the last term cancel each other andwe are left
with the Lagrangian density (35). Indeed, this result may be at
the root of the equivalence observed in [8] for the deflection
expression of a cantilever beam within the modified couple
stress and the micropolar theory. However, attention should
be drawn to the fact that the material constant 𝛽∗ appears
instead of 𝛽 = (𝛽∗ + 𝛾∗)/2. Besides, the last of (12) and the
beam theory assumptions (13) give

div 𝜃 = 0, (43)

whence the material parameter 𝛼 never appears. Indeed, in
this plane deformation, only the microstructural constitutive
parameter 𝛽∗ plays a role. In the general case 𝑐 ̸= 0, the
external load potential appears as

1

2
𝑐 (𝑦
1
+ 𝜓) . (44)

This loading potential provides us with an example of a
monogenic yet nonconservative loading [15, Chapter I, Sec-
tion 7], just like the case of a follower force. It is then seen that
the E-N micropolar beam model and the couple stress beam
model formally reconcile, although they actually coincide
only in the very special case when 𝑐 ≡ 0 and 𝛾∗ ≡ 𝛽∗.
Furthermore, the case 𝜂 = 0 is especially interesting because
then the E-N model and the couple stress model formally
coincide apart from the last term of (35).The latter disappears
when neither exchange distributed torque 𝜇 acts nor the
constraint (21) holds. Obviously, in the case 𝜂 ≡ 0, the macro-
and the microstructure equilibrium equations decouple and
the former reduce to the Timoshenko model. Clearly, the
further assumption 𝐴𝐺 → ∞ lends the Euler-Bernoulli
model.

4.1. Hamiltonian Form and General Solution. For the E-N
model, we now derive the Hamiltonian form and the corre-
sponding canonical equations. Following [16], let the gener-
alized momenta

𝑝
1
= 𝐴𝐺 (𝑦

1
− 𝜓) −

1

2
𝜂𝐴 (𝑦

1
+ 𝜓) − 𝐴𝜂𝜑,

𝑝
2
= 𝐸𝐼𝜓

1
,

𝑝
3
= 𝛽
∗
𝐴𝜑
1
,

(45)

be the shearing force, themacrostructure, andmicrostructure
bending moment, respectively. The Hamiltonian function is

H =
𝑝
2

1

𝐴 (2𝐺 − 𝜂)
+
𝑝
2

2

2𝐸𝐼
+
𝑝
2

3

2𝐴𝛽∗

+
2𝜂𝜑 + (2𝐺 + 𝜂)𝜓

2𝐺 − 𝜂
𝑝
1
+
2𝐴𝜂𝐺 (𝜓 + 𝜑)

2

2𝐺 − 𝜂
+ 𝑞𝑦

+ 𝑚𝜓 + 𝑐𝜑,

(46)

and hence the canonical equations read (a first order system
is given in (39)–(41) of [12])

𝑦
󸀠
− 2

𝑝
1

𝐴 (2𝐺 − 𝜂)
−
2𝜂𝜑 + (2𝐺 + 𝜂)𝜓

2𝐺 − 𝜂
= 0, (47a)

𝜓
󸀠
−
𝑝
2

𝐸𝐼
= 0, (47b)

𝜑
󸀠
−
𝑝
3

𝐴𝛽∗
= 0, (47c)

𝑝
󸀠

1
+ 𝑞 = 0, (47d)

𝑝
󸀠

2
+
2𝐺 + 𝜂

2𝐺 − 𝜂
𝑝
1
+ 4
𝜂𝐴𝐺

2𝐺 − 𝜂
(𝜓 + 𝜑) + 𝑚 = 0, (47e)

𝑝
󸀠

3
+
2𝜂

2𝐺 − 𝜂
𝑝
1
+ 4
𝜂𝐴𝐺

2𝐺 − 𝜂
(𝜓 + 𝜑) + 𝑐 = 0. (47f)
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In this system 𝑦 never appears, whence (47a) may be solved
independently. Indeed, (47a) and (47d) give 𝑦 and 𝑝

1
by a

quadrature, respectively. In particular

𝑝
1
(𝑥) = 𝑃

1
(𝑥) = 𝑝

1
+ ∫

𝑥

0

𝑞 (𝜏) 𝑑𝜏, (48)

and 𝑝
1
is given by the BC 𝑝

1
(0) = 𝑝

1
. Furthermore, taking

the difference of (47e) with (47f), it is

(𝑝
3
− 𝑝
2
)
󸀠

= 𝑚 − 𝑐 +
2𝐺

2𝐺 − 𝜂
𝑃
1
, (49)

where the RHS is known. Let

𝑃 (𝑥) = ∫

𝑥

0

(𝑚 − 𝑐 +
2𝐺

2𝐺 − 𝜂
𝑃
1
)𝑑𝑥 + 𝑐

0
, (50)

where 𝑐
0
= 𝑝
3
(0) − 𝑝

2
(0). Then, the remaining equations

(47b), (47c), and (47e) read

𝜓
󸀠
−
𝑝
2

𝐸𝐼
= 0, (51a)

𝜑
󸀠
−
𝑝
2

𝐴𝛽∗
=
𝑃 (𝑥)

𝐴𝛽∗
, (51b)

𝑝
󸀠

2
+ 4
𝜂𝐴𝐺

2𝐺 − 𝜂
(𝜓 + 𝜑) = −𝑚 −

2𝐺 + 𝜂

2𝐺 − 𝜂
𝑃
1
. (51c)

Such linear system can be easily reduced to a single second
order linear inhomogeneous ODE in 𝑝

2
; namely,

𝑝
󸀠󸀠

2
+ 4𝜉
2
𝑝
2
= −𝑚

󸀠
−
2𝐺 + 𝜂

2𝐺 − 𝜂
𝑞

− 4
𝜂𝐺

(2𝐺 − 𝜂) 𝛽∗
(𝑚 − 𝑐 +

2𝐺

2𝐺 − 𝜂
𝑃
1
) ,

(52)

where it is let that

𝜉 = √
𝜂𝐺 (𝐸𝐼 + 𝐴𝛽

∗
)

𝐸𝐼𝛽∗ (2𝐺 − 𝜂)
. (53)

The coefficient (53) corresponds to (44) of [12], although a
factor √2 seems to be missing. Besides, the limit of 𝜉 as
𝜂 → ∞ appears in the first of (24) of [13], which deals with
the couple stress situation. Indeed, it is observed that (23)
of [13], which governs the behavior of the shearing force, is
equivalent to (52), although aminus sign in front of 𝜉 appears.
Such minus sign determines an exponential-type solution,
which is clearly unphysical in the case of an infinite beam.
The ODE (52) is the celebrated linear pendulum equation,
which gives rise to oscillatory solutions. The finding of an
oscillatory behavior for the couple stress and microrotation
in the cantilever beam numerically investigated in is then
motivated [12]. In the special case 𝜂 = 0, (52) reduces to
the shearing force equilibrium for a Timoshenko beam. Once
(52) is solved,𝜓 and 𝜑may be found by a quadrature through
(51a) and (51b), respectively.

5. Conclusions

In this paper three Timoshenko-like beam models, available
in the literature, have been considered: the first model is
based on the micropolar linear continuum theory of Eringen
and Nowacki (E-N), the second is based on the couple stress
theory of Koiter and Mindlin (K-M); and the third model
is based on the modified couple stress theory proposed
in [6]. A comparison of such models has been developed
together with a confrontation with the original Timoshenko
model. The analysis is carried out in a variational setting,
making use of Hamilton’s principle. It has been shown that
both the Timoshenko and the couple stress model are based
on a microstructural kinematics which disappears owing
to it being governed by kinosthenic (ignorable) terms in
the Lagrangian. Both the micropolar and the couple stress
models, within a restricted beam-plane kinematics, require
a single microstructural material parameter, regardless of
whether the modified couple stress theory is adopted. Fur-
thermore, it has been shown that the micropolar model
formally reduces to the couple stressmodel upon introducing
the proper constraint on the microstructure kinematics,
although the material parameter is generally different (cf.
[13]). Line loading on the microstructure results in a non-
conservative force potential. Finally, the Hamiltonian form of
the micropolar beam model has been derived together with
the corresponding canonical equations. The general solution
of the micropolar model has been presented, which shows a
general oscillatory behavior for the microstructure rotation
and couple stress. Such behavior is found in the numerical
studies available in the literature.
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