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APPENDIX A
ESTIMATION OF DISTANCE FROM CLUSTER CEN-
TROIDS IN PRESENCE OF CLUSTERING ERRORS

As pointed out in Section 3.3, the probability distribution
of VM distances from cluster centroids can be modeled
as a bivariate Gaussian distribution with parameters µi,
µj , σi, σj . However, the proposed technique assumes a
perfect knowledge of cluster composition. This assumption
is clearly an oversimplification because VMs belonging to
cluster i that are closer to the centroid cj of cluster j are mis-
classified. As a consequence, the actual distribution of points
for the estimation of the parameters follows a different
distribution, represented in Figure 1.
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Fig. 1: Probability density of centroid distances

An attempt to use the output of the clustering phase for
the estimation of the Gaussian parameters is most likely to
lead to errors in the computation of εj,i.

This section is devoted to the description of the statistical
technique for a correct estimation the Gaussian parameters
in the presence of mis-classified VMs.

For the sake of simplicity, we introduce for this analy-
sis a simplified notation: let us consider two uncorrelated
random variables X and Y . X is the random variable that
describes the distance from centroid ci, that is di, while
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Y describes the distance dj . For consistency we rename
the Gaussian distribution parameters as follows: µx = µi,
µy = µj , σx = σi, σy = σj . This probability density of
a bivariate Gaussian distribution can be described as the
product of the two Gaussian functions for the un-correlated
variables X and Y . However, we need to describe the
probability density of the bivariate distribution subject to
the bound that y ≤ x. It is worth to note that the problem
should include two additional constraints that are x ≥ 0
and y ≥ 0. However, in our case we can ignore this bound
because the conditions µx > kσx and µx > kσx, k = 3
typically apply. The resulting probability density is:

f(x, y) =

{
g(x,µx,σx)·g(y,µy,σy)

P (Y≤X) , if y ≤ x
0, otherwise

(1)

where g(·, µ, σ)is the Gaussian function with mean µ and
standard deviation σ, and P (Y ≤ X) is the probability that,
given two samples x and y of the random variables X and
Y , the condition y ≤ x is true.

We can compute P (Y ≤ X) as follows:

P (Y ≤ X) = P (Y −X ≤ 0)

but the difference of two Gaussian variables is another
Gaussian variable with average equal to the sum of aver-
ages and standard deviation equal to the sum of standard
deviations. Hence:

P (Y −X) ≤ 0 = P [g(z, µy − µx, σx + σy) ≤ 0] =

= P

[
g(z, 0, 1) ≤ µx − µy√

σ2
x + σ2

y

]
= Φ

(
µx − µy√
σ2
x + σ2

y

)
where:

Φ(t) = P [g(z, 0, 1) ≤ t] =

∫ t

−∞

e
−τ2

2

√
2π
dτ

Having described the probability density of the dis-
tances from the centroids, we now need to estimate
the parameters µx, µy , σx, σy given a set of samples
{(x1, y1), (x2, y2), . . . , (xn, yn)}.

To this aim we exploit the principle of maximum likeli-
hood, that is we aim to identify the parameters that maxi-
mize the likelihood function:

L
(
µx, µy, σx, σy; (x1, y1), (x2, y2), . . . , (xn, yn)

)
=

=

n∏
i=1

f(xi, yi;µx, µy, σx, σy)
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where f(·) is the probability density function in Equation 1.
We consider more convenient to consider instead of the
likelihood function L(·), its natural logarithm lnL(·). That
is, we aim to maximize:

lnL(·) = ln

(∏
i g(xi, µx, σx)g(yi, µy , σy)∏

i Φ
(
µx−µy√
σ2
x+σ

2
y

) )
=

= ln

(∏
i g(xi, µx, σx)

∏
i g(yi, µy , σy)∏

i Φ
(
µx−µy√
σ2
x+σ

2
y

) )
=

= ln
(∏
i

g(xi, µx, σx)
)

+ ln
(∏
i

g(yi, µy , σy)
)
− n ln Φ

(
µx − µy√
σ2
x + σ2

y

)

Finally, to identify the maximum of the likelihood func-
tion with respect to the four parameters µx, µy , σx, σy , we
must find the points where the likelihood function deriva-
tive becomes zero. This determines the following system of
four equation with four variables:

∂ lnL(·)
∂µx

= 0
∂ lnL(·)
∂µy

= 0
∂ lnL(·)
∂σx

= 0
∂ lnL(·)
∂σy

= 0

that is:

∑
i(xi−µx)
σ2
x

− n√
2π

e
∆2

2

Φ(∆) = 0∑
i(yi−µy)
σ2
y

+ n√
2π

e
∆2

2

Φ(∆) = 0

− n
σx

+
∑
i(xi−µx)2

σ3
x

+ n
2
e

∆2

2

Φ(∆) (σ2
x + σ2

y)
3
2 (µx − µy)σx = 0

− n
σy

+
∑
i(yi−µy)2

σ3
y

+ n
2
e

∆2

2

Φ(∆) (σ2
x + σ2

y)
3
2 (µx − µy)σy = 0

where ∆ =
µx−µy√
σ2
x+σ2

y

The exponential and the Φ(·) functions can be removed
through a linear combination of the equations in the system
as follows:

∑
i(xi−µx)
σ2
x

+
∑
i(yi−µy)
σ2
y

= 0

n
σ2
x
−

∑
i(xi−µx)2

σ4
x

− n
σ2
y

+
∑
i(yi−µy)2

σ4
y

= 0∑
i(xi−µx)2

σ4
x

− n
σ2
x

(σ2
x+σ2

y)
3
2 (µx−µy)

+
√

2π
n

∑
i(xi−µx)
σ2
x

= 0
∑
i(yi−µy)2

σ4
y

− n
σ2
y

(σ2
x+σ2

y)
3
2 (µx−µy)

−
√

2π
n

∑
i(yi−µy)
σ2
y

= 0

thus leaving a non-linear system of equations that can can
be solved using numerical approximations.

The values of µx = µi, µy = µj , σx = σi, σy = σj , can
thus be used in the formulas of Section 3.3 to cope with the
missing VMs that have been mis-classified by the clustering
step in the estimation of εj,i.
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