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AGATE: Adaptive Gray Area-based TEchnique
to Cluster Virtual Machines with Similar Behavior

Claudia Canali, Member, IEEE, and Riccardo Lancellotti, Member, IEEE

Abstract—As cloud computing data centers grow in size and complexity to accommodate an increasing number of virtual machines,
the scalability of monitoring and management processes becomes a major challenge. Recent research studies show that automatically
clustering virtual machines that are similar in terms of resource usage may address the scalability issues of laaS clouds. Existing
solutions provides high clustering accuracy at the cost of very long observation periods, that are not compatible with dynamic cloud
scenarios where VMs may frequently join and leave. We propose a novel technique, namely AGATE (Adaptive Gray Area-based
TEchnique), that provides accurate clustering results for a subset of VMs after a very short time. This result is achieved by introducing
elements of fuzzy logic into the clustering process to identify the VMs with undecided clustering assignment (the so-called gray area),
that should be monitored for longer periods. To evaluate the performance of the proposed solution, we apply the technique to multiple
case studies with real and synthetic workloads. We demonstrate that our solution can correctly identify the behavior of a high
percentage of VMs after few hours of observations, and significantly reduce the data required for monitoring with respect to

state-of-the-art solutions.

Index Terms—Cloud Computing, Clustering, Resource Management, Metrics/Measurement.

1 INTRODUCTION

Cloud computing has rapidly become a widely adopted
paradigm for delivering complex services over the Internet.
Both the number of cloud-based services and the complexity
of the infrastructures behind them have quickly increased in
the last years. The capability of cloud computing infrastruc-
tures to cope with the increasing resource demand in the
next few years will be critical for the future development
of the emerging digital society. Resource monitoring and
management are particularly critical tasks in Infrastructure
as a Service (IaaS) cloud systems, where a huge and ever-
growing amount of data is collected for the management
of the virtualized environment hosting customer applica-
tions [1]. In these cloud systems, data center administrators
typically apply a black-box approach where each virtual
machine (VM) is considered as independent from the others,
with negative consequences on the scalability of monitoring
and management tasks.

Recent studies in literature [2], [3] show that the scalabil-
ity issues in IaaS cloud systems may be improved by auto-
matically clustering VMs with similar behaviors in terms of
resource usage. For example, the automatic determination of
classes of similar VMs allows the system to identify for each
class few representative VMs, whose behavior is followed
by the other members of the same class: this knowledge
has been exploited to improve the scalability of monitoring
strategies and has recently been applied to a case of VM
management that is the server consolidation in laaS data
centers [4]. However, existing clustering techniques [2], [3]
show a clear trade-off between the capability to correctly
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cluster VMs and the length of the resource usage time
series needed to determine the VMs behavior: specifically,
long time series (up to days of collected measurements) are
necessary to achieve an accurate clustering for every VM.
The resulting mechanism is poorly reactive to changes in
VMs configuration, and may be suitable for quite static sce-
narios characterized by long-term commitments [5], where
cloud customers purchase VMs for extended periods of time
(for example, using the Amazon so-called reserved instances).
On the other hand, the emerging cloud scenario requires
solutions that support a dynamic behavior where VMs
frequently join and leave the system.

In this paper we present an adaptive technique, namely
AGATE (Adaptive Gray Area-based TEchnique), that dy-
namically selects the length of the resource usage time series
used to model the VMs behavior depending on the degree
of uncertainty resulting from the clustering process. The
proposed technique exploits elements of fuzzy logic for the
dynamic determination of the required time series length,
leaving uncertainly clustered VMs in a gray area of not-yet-
clustered items. This solution allows the system to take deci-
sions on the VMs behavior without the need to wait for long
monitoring periods, thus leading to a reactive mechanism
able to cope with a dynamic environment characterized by
deployments and removals of customer VMs in a cloud data
center.

A preliminary version of the gray area-based technique
was proposed in [6], but this study improves our previous
work in several ways. First, the original mechanism was
based on a fixed threshold parameter, while in this proposal
we adaptively compute the threshold depending on the
results of the clustering operation: this greatly reduces the
amount of data collected and the time required to deter-
mine the VMs behavior. Second, we apply the clustering to
short time series (up to 1 hour) and we discuss the novel
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issues arisen by the reduced series length. Third, we apply
the technique to diverse scenarios with varying demands
instead of limiting the evaluation to a single dataset.

The proposed technique is applied to datasets obtained
from different scenarios with both synthetic and real work-
loads. The experiments show that the application of our
adaptive technique allows the system to rapidly cluster the
majority of the VMs with an accuracy higher than 97%
for every considered scenario and without requiring any
parameter tuning. We also measure the potential reduction
in terms of data collected by the monitoring system with
respect to existing solutions. Finally, we consider the specific
case of clustering based on short resource usage time series:
we give insights on the best clustering algorithm to be
integrated in the proposed technique, showing the benefits
of an approach based on the correlation between usage
measurements.

The remainder of this paper is organized as follows.
Section 2 describes the reference scenario for the application
of VM clustering and motivates the need for an adaptive
technique. Section 3 presents the proposed technique, while
Section 4 details the issues related to cluster VMs based
on short time series. Section 5 describes the experimental
results. Section 6 discusses the related work and Section 7
concludes the paper with some final remarks.

2 VMs CLUSTERING IN CLOUD SYSTEMS

The reference system for the proposed technique is an
IaaS cloud data center where customer applications are
hosted in a virtualized environment. We anticipate that the
reference scenario described in this section has been imple-
mented in the data center of a small cloud provider. In such
systems, each customer application typically consists of
multiple software components (e.g., the tiers of a multi-tier
Web application), and each component runs on a separate
VM: automatic clustering aims to identify VMs running the
same software component of the same customer application.
Throughout this section, we discuss the potential benefits of
applying VMs automatic clustering to an laaS cloud system.
Then, we describe how VMs clustering can be integrated
in an laaS cloud system to achieve scalable monitoring
and management. Finally, we motivate the need for an
adaptive technique that overcomes the issues of the existing
clustering techniques.

2.1 Benefits of cluster-based approach

Providers and administrators of cloud IaaS systems typi-
cally consider each VM as a black-box that needs to be mon-
itored and managed independently from other VMs, thus
exacerbating the scalability issues of these tasks. The capa-
bility of automatically clustering similar VMs may improve
monitoring and management tasks of a cloud computing
system in several ways. Specifically, potential benefits can
be achieved in terms of:

 scalability of the monitoring system,
» scalability of the server consolidation process,
« efficiency of system resource demand estimation.

2

As regards monitoring scalability, exploiting the knowl-
edge of VMs clusters allows the monitoring system to signif-
icantly reduce the amount of data collected by introducing
a mechanism of differentiated sampling frequencies for the
VMs, as discussed in [2], [3]. Basically, few representative
VMs are selected for each identified class as soon as the
clustering is done. Only the representative VMs of each
class are monitored with high sampling frequency to col-
lect information for resource management purposes, while
the resource usage of the other VMs of the same class
is assumed to follow the representatives behavior. On the
other hand, the non representative VMs of each class are
monitored with coarser granularity to identify behavioral
drifts that could determine a change of class. This cluster-
based approach and its integration in an IaaS cloud system
are described in detail in Section 2.2.

The application of an automatic clustering technique
may also improve operations related to the server consoli-
dation process used for cloud resource management. Server
consolidation is a widely used approach [7], [8] to minimize
the number of servers that an infrastructure requires, thus
avoiding waste of resources. VMs clustering can be applied
to improve the scalability of a critical step of server con-
solidation, that is the solution of a multi-dimensional bin-
packing problem where each VM must be assigned to one
server without exceeding its capacity in terms of available
resources [7], [9]. This problem is typically solved using
heuristics and simplifications (for example, considering only
one resource such as the CPU [10]). We argue that, by know-
ing classes of similar VMs, a cluster-based consolidation can
be applied to solve a much smaller optimization problem
(with the possibility to use global optimizations rather than
heuristics [11]); then, the solution can be replicated as a
building block to obtain the global placement solution for
the consolidation of the whole data center [4].

Another critical aspect of server consolidation is the need
to correctly estimate the VMs resource demand to allocate
them on physical servers, minimizing the total number of
servers and avoiding overload conditions at the same time.
This estimation must consider current VMs demands and
predict their evolution in the near future. Recent studies in
literature propose solutions to predict the resource usage
patterns based on historical data [12] and to aggregate VM-
level information by means of a hierarchical management
architecture [13]. However, these operations are hindered by
the black-box vision of IaaS providers, that are usually not
aware of the application running on each VM. On the other
hand, knowing which VMs are running the same software
component allows the system to perform an application
profiling; moreover, the analysis of each application can be
limited to few selected cluster representatives. For these rea-
sons, a cluster-based approach may improve both accuracy
and scalability of VMs demand estimation.

2.2 System model

We now detail the scenario of an IaaS system that exploits
VMs automatic clustering to achieve a scalable approach for
cloud monitoring and management. To this aim, we refer to
the prototype implementation deployed on the data center
of a small cloud provider. The considered system adopts a
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two-level management strategy, which is a widely adopted
solution in IaaS clouds [14], [15]. The first level consists in a
local management, that is performed on each physical server
of the data center: it detects overload conditions in real-
time making use of the VMs resource measurements hosted
on the server, and exploits live VMs migration whenever
overloaded servers are detected as in [16]. The second level
is a global management, which is hosted on a management
node: it is responsible for periodically executing a consoli-
dation technique to place VMs on as few servers as possible
to reduce infrastructure costs and avoid expensive resource
over-provisioning, as described in [4].

A VMs clustering technique [2], [3] is integrated in this
system to automatically group together similar VMs, that
are VMs running the same software component of the same
customer application. For scalability reasons, clustering is
applied to the VMs of the same customer. After the cluster-
ing, few representatives are selected for each identified class.
In our prototype, we choose to select at least three represen-
tatives due to the possibility that a selected representative
unexpectedly changes its behavior with respect to its class:
quorum-based techniques can be exploited to cope with
byzantine failures of representative VMs [17]. At this point,
the representative VMs of each class are monitored with
high sampling frequency (that is, 1 sample every minute)
to collect information for the periodic consolidation task.
On the contrary, the non representative VMs are assumed
to follow the behavior of the representatives of the same
class, and are monitored with coarser granularity (in our
system, one sample every 30 minutes) to identify behav-
ioral drifts that could determine a change of class. It is
worth to note that the fine-grained collection of data for
clustering purposes, and the subsequent VMs clustering,
are repeated after a given period of time; the frequency of
the VMs clustering is not correlated with the frequency of
the consolidation task (in our prototype we run clustering
every hour, while the consolidation task runs every two
hours). Moreover, the clustering process can be triggered
whenever new unclustered VMs are detected in the system:
this situation may occur either when newly deployed VMs
enter the system or when previously clustered VMs are
marked as “unclassified”. A VM is unclassified if it changed
its behavior with respect to the class it belongs to (for
example, due to software faults), or caused overload of the
physical server. In these cases, the VMs of the system are
monitored again with high sampling frequency to perform
re-clustering.

Let us now detail the interactions among the main com-
ponents of the system (shown in Figure 1). The monitoring
process on each server collects data about resource usage
of the hosted VMs and sends them to the local management
system (arrow 1). The local management is responsible for
triggering live VMs migration in case of server overload as
in [16]: this task is accomplished with the local management
system issuing a query to the global management system,
although other options, such as relying on a local exchange
of load information among neighbors, may be adopted.

Then, the monitoring process sends data to the VMs
clustering system in the management node (2), which auto-
matically groups similar VMs applying one of the clustering
techniques proposed in [2], [3]. The clustering results (VM
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Fig. 1: Cloud system using VMs clustering

classes and representatives) are sent to the global management
(3a) and to the monitoring system (3b). The monitoring sys-
tem exploits this information to differentiate the sampling
frequency between representative and non representative
VMs. The data collected with different granularity are sent
to the global management system (4) which is responsible for
two tasks. First, it periodically executes the cluster-based
consolidation strategy (as described in [4]), exploiting the
resource usage of the representative VMs to characterize the
behavior of every VM of the same class: the consolidation
decisions are finally communicated to the local management
system (5) to be executed. Second, the global management
system checks for behavioral drifts of non representative
VM s with respect to the class they belong to.

2.3 Background on clustering

Throughout our analysis we focus on two different ap-
proaches, namely Bhattacharyya-based [2] and PCA-based [3]
clustering techniques, that have been identified in previous
works by the authors as the most promising approaches for
VMs clustering. Both techniques share the common trait of
taking as input the usage time series of multiple resources
for every VM. From these time series a behavior description
for each VM is computed and used for a final clustering
step, that groups together VMs with similar behavior. The
two clustering techniques differ for the algorithms they use
to model the VMs behavior and to cluster similar VMs.

The Bhattacharyya-based clustering technique exploits
histograms to model the VM behavior. One histogram is
generated from the usage time series of each resource of a
VM to approximate its probability density. The VMs behav-
ior is described based on a subset of significant resources,
that are identified using the Autocorrelation function (ACF)
and the Coefficient of Variation (CV) of their time series [2].
Next, we use the Bhattacharyya distance [18] to measure the
similarity between two histograms representing the same
resource in different VMs: the Bhattacharyya distance is
0 for identical histograms and oo for histograms that are
completely non-overlapping. The result of this step is a set
of distance matrices, one for each considered resource. Then,
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the per-resource distance matrices are combined (using the
euclidean distance) in a global distance matrix, which is fed
into a spectral clustering algorithm [19] to obtain the final
clustering solution.

The PCA-based clustering technique [3] represents a
completely different approach where the representation of
the VM behavior is based on the correlation between the
usage time series of different resources of the same VM.
Basically, we create a correlation matrix for each VM; then,
the matrix is processed to extract the most significant infor-
mation for clustering purposes. Following a process based
on the Principal Component Analysis, we extract the first
eigenvector of the correlation matrix (that is, the eigenvector
related to the highest eigenvalue). This eigenvector is finally
used as the feature vector representing the VM behavior for
the subsequent clustering, which is based on the K-means
algorithm [20].

For both clustering algorithms, we repeat the clustering
several times with multiple random starting points. For each
iteration we compare the sum of squares of distances of VMs
within the same cluster (W(C'SSS) and the sum of square
of distances between VMs belonging to different clusters
(BCSS). We consider as the final clustering solution the
iteration minimizing the ratio WCSS/BCSS, to avoid the
risk of being stuck in a local minimum during the clustering
operations.

We point out that the output of the clustering step is
also exploited to identify the representative VMs for each
identified class: although other solutions are possible, we
consider that the VMs closer to the cluster centroids are the
most straightforward choice as representatives. It is worth
to note that, whenever the clustering operation is repeated,
the cluster representatives may change according to the
centroids position.

2.4 Need for adaptive clustering

The existing clustering techniques previously described re-
quire long resource usage time series to achieve a high
clustering accuracy [2], [3]. Indeed, the accuracy tends to
decrease with the time series length, requiring a 24-hours
monitoring period to correctly cluster the 80% of the VMs
in the case studies analyzed in [3]: it is evident that the
misclassification of almost one fifth of the VMs is likely to
represent a major issue for cloud systems exploiting cluster-
based monitoring and management. On the other hand,
having a clustering accuracy close to 100% requires longer
time series of collected data (in the order of tens of days) [2],
[3]. The need to wait so long periods of time to have
clustering information causes cluster-based strategies to be
slow and scarcely reactive to changes in VMs configuration.
This delay is not suitable in the emerging dynamic cloud
scenario: to cope with these requirements we need an adap-
tive mechanism that can automatically determine the length
of the time series to provide fast and accurate clustering
of the VMs. The proposal of such adaptive technique is
described in the next section.

3 ADAPTIVE GRAY AREA-BASED TECHNIQUE

To provide highly accurate clustering within a time frame
that is compatible with cloud dynamic environments, we
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propose the novel Adaptive Gray Area-based TEchnique
(AGATE) that can be easily integrated within the IaaS cloud
system described in the previous section. The AGATE pro-
posal, which is run by the VMs clustering component on the
management node in Figure 1, extends previously proposed
clustering techniques [2], [3] to add adaptivity principles
to the cluster-based approach. It is worth to note that the
AGATE technique does not depend on any specific algo-
rithm for VMs clustering, but can easily integrate different
existing solutions. In the rest of this section we present the
proposed technique and describe the concept of gray area
and the mechanism to adaptively determine its size.

3.1 Technique Overview

The AGATE technique proposes two main novel ideas.
The first innovative contribution of the proposed technique
is to introduce concepts derived from fuzzy logic in the
belonging relationship between VMs and clusters. Such
approach is better suited to an adaptive technique than the
standard boolean logic used in existing solutions [2], [3].
Specifically, we take into account a degree of membership of a
VM to each possible cluster. The additional insight provided
by the fuzzy logic allows the clustering process to discern
between VMs that more likely belongs to a cluster and VMs
whose cluster attribution is still uncertain. To this aim, we
introduce the concepts of gray and white areas at the level of
clustering data space: a VM in the gray area does not clearly
belong to a specific cluster and additional information is
required to take a decision; on the other hand, a VM within
the white area is definitely assigned to one and only one
cluster. From the data center point of view, cluster-based
monitoring and management of a VM can start as soon as
the VM enters the white area, while every VMs in the gray
area must be finely-grained monitored for an additional
period of time.

Another qualifying point of our proposal is the use of re-
source usage time series with different lengths for clustering
purposes. We recall that clustering occurs on the basis of a
VM behavior model based on the time series collected by the
monitor system [2], [3]: longer time series determine higher
clustering accuracy as a result of a more accurate description
of the VM behavior [3]. We combine this observation with
the previously introduced concept of white/gray areas as
follows. After a clustering attempt, VMs within the white
area are described by a behavior model that is considered
sufficiently accurate to identify their membership. On the
other hand, for VMs in the gray area, we need to improve
the VM behavior description exploiting longer time series
collected during an additional monitoring period. This leads
to an adaptive selection of the time series length used to
describe the VM behavior that depends on the clustering
results.

Figure 2 shows how the basic principles discussed above
are combined into the main steps of the proposed adaptive
technique. In the flow chart, operations are marked with
a small gear in the upper right corner of the boxes, while
intermediate results are represented with the white icon of
a data matrix. The first step (upper left side of the flow
chart) represents the beginning of the technique, that starts
with a group of VMs with unknown behavior: new running



JOURNAL OF IBTEX CLASS FILES, VOL., NO., XXX

Start: New /
Unclustered VMs

Fine-grained
Monitoring

VM Behavior
Models
(time series)

Existing
Behavior
Models

Clustering
Solution

Adaptive Gray Area Selection

@ray Area Size!
|__Estimation !

{ Gray Area
i Selection |

[2]
Clustered VMs

(white area)

Unclustered VMs
(gray area)

Fig. 2: AGATE technique steps

VMs that just entered the system or VMs that are marked as
unclustered because they changed their behavior or caused
a server overload. Through fine-grained monitoring, we
obtain a set of time series that are used to define the VMs
behavior models, which represent the input for the sub-
sequent clustering operation. Then, the clustering solution
is processed according to the proposed adaptive approach
to separate the VMs into white and gray areas. The two
internal components of the Adaptive Gray Area Selection step,
namely Gray Area Selection and Gray Area Size Estimation, are
described in the rest of this section. Finally, VMs in the white
area are assigned to a cluster and no longer monitored with
fine granularity: their existing behavior model is stored and
re-used for subsequent clustering operations. On the other
hand, for VMs in the gray area we collect additional data
to determine a behavior model based on longer time series.
Then, the process is re-iterated.

3.2 Gray Area Selection

We now detail the Gray Area Selection step of the proposed
technique, that separates the VMs into gray and white
areas. We recall that the clustering step maps each VM
within a multi-dimensional space, where clusters and their
centroids are located. This mapping is a typical mechanism
for the majority of the clustering algorithms, including the
k-means and the spectral algorithms (used in [3] and [2],
respectively). Assuming that the space supports an eu-
clidean distance operator, we can define for each VM n a
vector D" = {dY,...,d}} containing the distances of VM n
from the centroids of the C' identified clusters. The existing
clustering techniques assign each VM to the cluster with
the closest centroid. However, if a VM is nearly equidistant
from two or more centroids, there is a high risk that the
clustering algorithm mis-classifies that VM. Hence, the basic
idea is to identify a gray area including VMs that are nearly
equidistant from at least two centroids, and classify them as
unclustered.

5

The vector D" of distances from the centroids is used
to define the criteria for the gray area selection. Let us now
consider a VM n: let ¢; be its closest centroid and dj the
corresponding distance; d7 is the distance between the VM n
and each other centroid ¢;, with j € [1,C],i # j. We express
the condition of near equidistance by means of a threshold
parameter ¢; ; (with ¢,j € [1,C],7 # j): the VM n is in the
gray area if and only if 3(4, j) such that 1 — ¢; ; < Z—Z. We

J

recall that Z—Z < 1, since ¢; is the closest centroid to VM n.
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Fig. 3: Gray area representation

To clarify the process of gray area selection, we consider
the representation of this area on a bi-dimensional space
(Figure 3), where the distances of a VM from centroids c;
and c¢; can be visualized on a plane. The bisecting line
represents the points where a VM is equidistant from the
centroid of the two clusters. Any point below the bisecting
line represents a VM assigned to cluster C; (d; < d;), while
VMs assigned to C'; are mapped in the space above the line.
The gray area aims to include the VMs whose classification
is more uncertain, that are located in the proximity of the
bisecting line. Figure 3 shows different possible extensions
of the gray area for different values of the threshold param-
eters €, ; and ¢; j: we see that the gray area increases in size
as the parameters grow from 0 to 1. It is worth to note that
we consider two different thresholds: ¢; ; is used to include
in the gray area the VMs that actually belongs to cluster C;
but are mis-classified and assigned to cluster C;, while ¢; ;
is for VMs of cluster C; that are wrongly assigned to C;.

The proposed approach considers the distance between
a VM and a centroid as a measure of the degree of member-
ship of the VM to the cluster. The alternative would be to
directly adopt a fuzzy clustering algorithm, such as the fuzzy
c-means [21], that returns directly a degree of membership
of the VM to each cluster. The degree of membership can
replace the distance from the centroids in the gray area
selection.

3.3 Gray Area Size Estimation

The effectiveness of the Gray Area Selection depends
on the correct dynamic estimation of the € parameters that
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determine the gray area size: if the adaptive thresholds are
too low (small gray area), we may reduce the accuracy of the
clustered VMs in the white area to an unacceptable level.
On the other hand, too high values tend to overestimate
the number of VMs that are in the gray area, thus reducing
the benefits of the adaptive clustering. The estimation of
the gray area size is the second fundamental component
of the automatic gray area selection step of the technique
described in Figure 2.

A preliminary task to determine the value of the ¢
parameters is the analysis of the data distribution of the
distances between VMs and centroids of the identified clus-
ters. To this aim, we consider the actual belonging of VMs to
clusters (thus removing clustering errors). It is worth to note
that this simplification does not hinder the applicability of
our approach, because we can extend our results to the real
case (that is, with clustering errors), as detailed in Appendix
A.

We consider the VMs belonging to each identified clus-
ter, and fit the data about their distances from each cluster
centroid to the closest theoretical distribution using the
Anderson-Darling (AD) Goodness of Fit test. We found that
the centroid distances can be approximated by a normal
distribution, that is the theoretical distribution with the
lowest AD-value. Figure 4 presents the Probability Density
Function (PDF) as an example of the similarity between the
empirical data on the VMs distance from a cluster centroid
and the theoretical distribution obtained as a result of the
fitting process.
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Fig. 4: PDF of distance from cluster centroid

In the space of the centroid distances used to define the
gray area, the generic VM n is a point with coordinates
(dy,...d%). For the definition of the gray area, we consider
a two dimensional view of this space, where each VM can
be represented as a point (d},d}') as in Figure 3. Let us
now consider the VMs belonging to cluster C;: since their
distances from centroids ¢; and c¢; may be approximated
by normal distributions with means p;, p;, and standard
deviations o3, 0;, the scatterplot of the points representing
the VMs assumes the shape of an ellipse with the following
properties. The ellipse, shown in Figure 5, is centered in the
point of coordinates (4, it;) with p; < p; for VMs belong-
ing to cluster Cj, and has semi-axes ko; and ko;, where
k is a multiplier. The choice of a value for k determines
the probability to include all the VMs of cluster C}; in the
ellipse; this probability can be expressed as a function of %

6

as erf(%), where erf(+) is the Gauss error function. Figure 4
shows the area considered if we truncate the Gaussian curve
to the interval [1— ko, 1+ ko]: in our experiments we use the
well known rule of thumb for Gaussian distributions and
we impose k£ = 3. A generic VM will fall within the ellipse
with 99.7% probability, thus reducing the error probability
to 0.3%.
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Fig. 5: Gray area definition

The elliptic area containing the VMs belonging to cluster
C; can thus be defined according to the following equation:

d? — i\ 2 no_ 0\ 2
() (=) =
]{?U‘j k‘O‘i

In Figure 5, the part of the ellipse above the bisecting line
contains the VMs that would be mis-classified. To address
this problem, this area must be included within the gray
area. From this observation, we can derive the value of ¢;;
as follows.

To find the boundary of the gray area, we need to
identify the lines that are tangent to the ellipse and pass
through the axis origin. Their angular coefficient can be
obtained through the following formula.

— i £ \/u]uz (ko? — p3)(ko? — 3)
kaj —

ai2 =
Hj

We are interested in the higher value of the two angular

coefficients (in our case ag, because ko; < p; and ko < p1;),

and we can obtain €; ; as follows:

k02 I

—piftj — \/ujul — p3) (ko — p3)

The same process is applied to every other couple of
clusters C; and C}, to determine the thresholds for the gray
area. We recall that the parameters of the ellipse (i, 115, 03,
0;) are derived from the set of VMs that actually belong
to cluster C;, not including clustering errors due to mis-
classification of VMs. When the knowledge of the ground
truth is not available, as in a real application of the proposed
technique, we can still estimate the ellipse parameters using
the process detailed in Appendix A.

€, =1—



JOURNAL OF IBTEX CLASS FILES, VOL., NO., XXX

4 CLUSTERING SHORT TIME SERIES

The proposal of an adaptive approach to VMs clustering
descends from the need to identify VMs similarities in short
periods of time to support a reactive resource management
within the cloud system. A basic requirement for a reac-
tive mechanism is to apply clustering techniques on short
resource usage time series (length of few hours), differ-
ently from previous studies where VMs were monitored for
long periods (one or more days). Considering short time
series poses new challenges for the accuracy of clustering
techniques: specifically, the presence of daily patterns in
the cloud workload may significantly hinder the capability
of previously proposed techniques [2], [3] to cluster VMs
whose behavior is monitored at different time of the day.

To understand this problem, we consider the example
shown in Figure 6a, representing the CPU utilization for
a Web server during a 24-hours period. In the graph we
clearly see a daily pattern, with a peak of resource utilization
during the daily hours and a low utilization in the night. We
recall that, in a dynamic cloud environment, newly acquired
VMs can enter the system at any time: as explained in
Section 2.2, in a system adopting a VMs clustering tech-
nique for monitoring and management purposes, new VMs
are monitored with fine-granularity and the collected time
series are given as input for a new clustering step along
with the information previously collected about the other
VMs. The asynchronous monitoring is not a problem when
the time series length is a multiple of the day, because
whole daily patterns are taken into account, but the situation
changes if we consider shorter time series. Let us assume a
monitoring period of 12 hours in a scenario where new VMs
enter the system at time ¢ = 20:00 and ¢ = 8:00. Figure 6b
shows the CPU time series with length of 12 hours for two
VMs: VM2 (entered at t = 20:00) is monitored during the
night and VM1 (entered at ¢ = 8:00) is monitored during
the day. It is important to note that the differences in the
behavior of the VMs is not related to a different software
component (both VMs are Web servers), but to the different
monitoring periods.

Depending on the approach adopted by the cluster-
ing technique to model the VM behavior (Bhattacharyya-
based [2] or PCA-based [3]), monitoring VMs in different
time periods may have side effects.

The Bhattacharyya-based clustering technique [2] mod-
els the similarity of two histograms using the Bhattacharyya
coefficient, that is the basis for the Bhattacharyya distance:
the coefficient is 1 for identical histograms and 0 for his-
tograms that are completely non-overlapping. Let us con-
sider again the 12-hours CPU time series of VM1 and VM2:
the resulting histograms are shown in Figure 6c. We observe
that the two behavior descriptions are completely different,
with a mode in the probability distribution close to 60% for
VM1 and to 20% for VM2, and a limited overlap between the
histograms. The resulting similarity of the two histograms is
rather low: in our example, the Bhattacharyya coefficient is
0.0334, that is a very low value typically identifying resource
histograms of VMs belonging to different clusters.

On the other hand, the PCA-based clustering tech-
nique [3] is based on the correlation between the usage time
series of different resources on the same VM. It is worth

7

to note that, differently from histogram-based distance, the
correlation among the resource usage remains quite sta-
ble over different periods of the day even in presence of
workload fluctuation. To verify this claim, we consider the
previous example of two Web servers monitored in different
periods of the day and we compute the correlation between
the resource usage of the VMs. Specifically, we consider a
set of six metrics: CPU utilization, input and output packet
rates, number of alive processes, frequency of system calls
and memory utilization.

TABLE 1: Correlation for short time series

Resources VM1 VM2 Correlation
(Day) | (Night) A
CPU/InputPkts 0.77 0.75 0.02
CPU/OutputPkts 0.80 0.79 0.01
CPU/AlivePr 0.18 0.21 0.03
SysCall/Memory | 0.17 0.14 0.03

Table 1 provides the correlation values between the
metric time series in the two considered VMs. The first
two rows of the table provide examples of highly correlated
time series, such as the CPU and the input/output packet
rates (that in a Web server are highly correlated), while the
latter rows present examples of uncorrelated time series. The
most interesting result is provided by the last column of
the table: for all the time series, the difference between the
correlation of VM1 and VM2 is quite low. As the correlation
matrices are quite similar for VMs observed during nightly
and daily periods, we can conclude that a behavior model
based on correlation is scarcely sensitive to the period of
the day during which the model is built. Hence, a clustering
technique exploiting this behavior model may provide a bet-
ter alternative with respect to histogram-based techniques
when dealing with time series of length below 24 hours.

5 EXPERIMENTAL RESULTS

In this section we evaluate the applicability and the effec-
tiveness of the proposed technique by applying it to three
different case studies. After describing the case studies, we
carry out multiple experiments showing that: (1) for short
time series the PCA-based clustering technique outperforms
the Bhattacharyya-based approach; (2) the dynamic deter-
mination of the parameters ¢; ; is effective to identify the
potentially mis-classified VMs; (3) the application of the
AGATE proposal allows the system to rapidly identify a
set of correctly clustered VMs that grows at every iteration
of the technique; (4) the amount of data collected by the
monitoring system can be significantly reduced with respect
to existing solutions.

Throughout the experimental evaluation, we measure
the clustering accuracy, that we define as follows. Let S =
{s"™,n € [1, N]} be the clustering solution that assigns each
VM n to a cluster (with /N being the number of VMs). We
define accuracy by comparing the clustering solution S with
the vector S* representing the correct clustering based on
the knowledge of the actual software components running
on the VMs. Accuracy is thus defined as:

[{s™:s" =s",Vn € [1,N]}|
N

accuracy =
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Fig. 6: Bhattacharyya distance problem for short time series

Basically, the accuracy represents the fraction of the VMs
which are correctly identified by the clustering algorithm.

5.1 Case studies

The first case study, namely EC2-Amazon, is based on a
data set coming from a virtualized data center hosting a
Web-based e-commerce application with a synthetic work-
load. The application, based on the TPC-W benchmark, is
deployed over the Amazon Elastic Computing infrastruc-
ture. The application uses a Java-based application server,
a DBMS and a set of emulated browser (EBs), issuing both
HTTP and HTTPS requests. The benchmark is hosted on a
set of 36 VMs (we use the M3 xlarge VM instances provided
by Amazon EC2), with 12 VMs dedicated to Web servers,
12 to DBMS and 12 VMs running the EBs. We consider two
workloads for this scenario: a Constant workload using 400
EBs on each VM, and a Step workload where the number
of EBs changes from 200 to 600. In both workloads, each EB
issues requests at a constant rate. Data collection is based on
a prototype cloud monitoring framework described in [22].
In our experiments every type of VM (EB, Web servers, and
DBMS servers) is monitored and considered in the cluster-
ing process. Figure 7 represents the two workloads used
in this scenario: the dashed line is the Constant workload,
where the number of EBs does not change over time, while
the Step workload is characterized by a varying number of
EBs, with a peak period and an off-peak period. For this
case study, we assume that the monitoring period, which
determines the length of the time series to consider for
VMs clustering, is equal to 7. We also assume that 50% of
the VMs enter the system at time ¢ = 0 (monitored until
t = T'), while the other 50% of the VMs enter at time ¢t = T
(monitored until t = 2T).

The second case study, namely Interactive-Web, is based
on a dataset coming from a real private cloud data cen-
ter supporting a customer Web-based application. Specif-
ically, the data center hosts Customer Relationship Man-
ager (CRM), that is deployed on 150 VMs according to a
multi-tier architecture. The VMs are divided between Web
servers and back-end servers (that are DBMS), with 100
VMs hosting a Web Server and 50 VMs hosting a DBMS.
Load sharing strategies are used so that the computation is
evenly distributed over the VMs hosting the same software
component. As the data refers to a real data center, the
workload intensity changes over time and exhibits daily
patters as in Figure 6a.
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Fig. 7: Constant and Step Workloads (EC2-Amazon)

The third case study, namely Mixed-Web, considers an-
other real scenario where a Web-based application (with
Web servers and DBMS) is joined with a batch processing
facility based on the map-reduce paradigm. The case study
refers to 200 VMs, divided into 80 Web servers, 50 back-
end servers and 70 map-reduce nodes. As for the other case
study, the Web application exhibit daily patters, while the
map-reduce nodes present a load that is evenly distributed
throughout the 24 hours.

The goal of the VM clustering is to correctly separate
the VMs running the different software components for
each considered customer application. For example, in the
Mixed-Web case study the goal is to identify three differ-
ent clusters: Web servers, DBMS and batch components.
It is worth to note that the target list of clusters does not
change for different workloads, but only depends on the
software components run by the VMs. For the map-reduce
application, special purpose nodes are present (e.g., hadoop
masters and HDFS name nodes). Although these nodes rep-
resent one-of-a-kind objects with a behavior that differ from
the typical computing node, we consider also these nodes
in the clustering process, as it would happen in a real world
application of the proposed technique. Our finding is that
these nodes are classified as members of the map-reduce
cluster. However, their different behavior places them far
from the cluster centroid and these nodes remains in the
gray area for the whole duration of the experiments.

For each case study, we collect data about the resource
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usage of every VM for different periods of time, ranging
from 1 to 48 hours with a sampling frequency of 1 minute.
For each VM we consider 10 metrics describing the usage
of different resources related to CPU, memory, disk, and
network. The complete list of the metrics is provided in
Table 2 along with a short description.

TABLE 2: Virtual machine resources

Metric Description
X1 SysCallRate| Rate of system calls [req/sec]
X2 | CPUSys System CPU utilization [%]

X3 | CPUUser CPU utilization (user mode) [%]

Xy CtxSwitch | Rate of context switches [CS/s]

X5 Memory Physical memory utilization [%]

X6 BlockOut Rate of blocks written to storage [Blk/s]

X7 | PgOutRate | Rate of memory pages swap-out [pages/sec]

Xg | OutPktRate| Rate of network outgoing packets [pkts/sec]

Xo | InPktRate | Rate of network incoming packets [pkts/sec]

AliveProc | Number of alive processes

5.2 Comparing clustering for short time series

The first experiment aims to evaluate the accuracy of dif-
ferent clustering techniques applied to short resource us-
age time series: we consider the Bhattacharyya- and PCA-
based techniques that emerged as best performing cluster-
ing solutions in previous studies [2], [3]. For this evaluation
we exploit two case studies with opposite characteristics.
The first case study is the EC2-Amazon scenario with the
two synthetic workloads previously described (Constant
and Step). For each workload we perform multiple exper-
iments: in each experiment the period 7" assumes a different
value between 1 and 48 hours. Then, we consider the real
Interactive-Web scenario, where the workload is subject to
the typical daily patterns characterizing Web traffic rep-
resented in Figure 6a. We carry out multiple experiments
also for this scenario: we assume that the entrance of the
VMs in the system is uniformly distributed in a time frame
of 24 hours, and each VM is monitored starting from its
entrance for a period of time that ranges from 1 and 48
hours depending on the experiment. This means that, for
short time series, VMs belonging to the same cluster are
monitored in different parts of the day, as described in
Section 4.

Figure 8 shows the accuracy achieved by the
Bhattacharyya- and PCA-based clustering techniques for
the considered scenarios and workloads. We first observe
that the accuracy for the EC2-Amazon scenario is generally
higher with respect to the Interactive-Web case: this result
is expected because EC2-Amazon exploits a synthetic work-
load, where the regular access patterns tend to increase the
effectiveness of the clustering algorithms. We also observe
that the accuracy generally tends to worsen as the time
series length decreases, because the identification of simi-
larities between VMs behavior becomes more challenging
when based on a limited number of observations (short
monitoring periods); these results are consistent with [2],
[3]. However, the magnitude of the accuracy reduction is
significantly different depending on scenarios and cluster-
ing techniques. We can clearly see that the Bhattacharyya-
and PCA-based approaches have similar performance for
the Constant EC2-Amazon case study, with an accuracy that
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Fig. 8: Clustering accuracy for short time series

remains quite stable for varying time series length. This
result is expected since the workload, and consequently
the VM resources usage, is constant over time. On the
other hand, the clustering techniques perform differently
in the other two scenarios. In the Step EC2-Amazon case,
the Bhattacharyya-based technique achieves worse accuracy
than the PCA-based for every time series length, decreasing
rapidly for short monitoring periods. A similar effect can
be observed for the Interactive-Web scenario, but with a
significant difference: the accuracy of the clustering tech-
niques is similar for longer time series (48 and 24 hours).
In presence of daily patterns, indeed, the Bhattacharyya-
based clustering is effective when the time series length is a
multiple of 24 hours because entire daily patterns are taken
into account; on the other hand, for time series shorter than
24 hours the accuracy rapidly decreases, dropping to 68%
for 1 hour time series. In the same scenario, the accuracy of
the PCA-based clustering is more stable and remains over
82% even for time series of 1 hour: the best performance
is due to the VM behavior model based on the correlation
between resource usages, as discussed in Section 4. These
results confirm that the PCA-based technique is a better
option for clustering short time series in a dynamic cloud
environment; for this reason, in the rest of the experimental
evaluation we consider the PCA-based approach as the
clustering technique used in the AGATE proposal.

5.3 Fuzzy gray area analysis

This experiment aims to evaluate the impact of the fuzzy
selection based on the gray area on the VMs clustering out-
put. To this aim, we apply just one iteration of the AGATE
technique to the entire set of VMs, considering behavior
models described by time series of different lengths. We
carry out our evaluation on the Interactive-Web and Mixed-
Web scenarios, that are characterized by the presence of
two and three clusters of VMs, respectively; analyses on
the EC2-Amazon scenario confirm our main findings and
are omitted for space reasons. To provide an insight on
the proposed technique, we evaluate the value of the ¢; ;
parameters, the fraction of VMs in the gray area and the
clustering accuracy of the VMs in the white area, as shown
in Figure 9.
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Figure 9a refers to the Interactive-Web scenario. The first
significant result is about the clustering accuracy computed
on the VMs in the white area (line with black squares in the
graph), which is very close to 100% for every time series
length. The high accuracy means that the selection of the
gray area size is effective in identifying the potentially mis-
classified VMs, while leaving in the white area the correctly
clustered VMs. A second important observation is about
the behavior of the ¢; ; parameters and their effect on the
number of VMs in the gray area. The line with black circles
in the graph shows the average values of the ¢; ; parameters,
while the error bars represent their variance. We observe
that, as the time series length increases, the average value
of € ; tends to decrease. The oscillations in the average
value of ¢;; are explained by the inherent variability of
the workload that shows significant changes over time: the
workload variability determines small fluctuations in the
correlation matrix used for the clustering, that causes the
small oscillations observed for the black circles curve. How-
ever, it is worth to note that the changes in the average «; ;
values are smaller than the variance of the ¢; ; parameters
for the different clusters, thus confirming the robustness
of the proposed approach. Similarly to the ¢; ; parameters
values, the percentage of VMs in the gray area (white circles)
decreases for longer time series. These results confirm that
the AGATE technique is effective in dynamically computing
the ¢; ; parameters to adjust the gray area size without
affecting the clustering accuracy of the VMs in the white
area.

Figure 9b mainly confirms our findings for the Mixed-
Web scenario. An interesting difference is about the ¢; ;
parameters, that show a slightly lower average value but
a higher variance than in the previous scenario. This is
motivated by the group of VMs that process map-reduce
jobs: as these VMs show a very different behavior with
respect to VMs belonging to other clusters, their cluster
has a more dense scatterplot (with the exception of a few
outliers that are the map-reduce manager nodes). The ¢; ;
parameters for the map-reduce clusters are characterized
by lower values that reduce the average and increase the
variance of the global set of ¢; ; parameters. We also note
that the percentage of VMs in the gray area shows a clear
reduction as the time series length grows. This effect can be
explained if we consider that clusters tend to shrink in size,
with VMs moving closer to the cluster centroid as the time
length increases. To better evaluate this effect, let’s consider
the example in Figure 10.

Figure 10 refers to the Interactive-Web workload: the
graphs show the scatter plots of the distances of all the
Web servers VMs from the two cluster centroids. The three
graphs are referred to time series of 6, 12 and 72 hours
respectively and aims to provide an insight on the evolution
of the clustering outcome as a function of the time series
length. The Web servers VMs are represented as dots, with
white dots representing the correctly identified VMS, and
black dots the WMs potentially mis-classified that should
be enclosed in the gray area. We recall that the parameters
of the ellipse that should contain all the dots are approx-
imated by the analysis of the distances between the VMs
assigned to cluster C; and the centroids using the formulas
of Section 3.3 and Appendix A; the tangent line to the ellipse
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Fig. 9: Gray area analysis

is used to determine the value of €3 ;. From Figures 10a
and 10b we observe that the estimated ellipse successfully
encloses all the VMs of the cluster (including the black dots):
hence, the identified gray area includes all the potentially
mis-classified VMs for this cluster. This result explains the
clustering accuracy close to 100% for VMs in the white area.
We also note that the distance of the Web servers VMs from
their centroid (C) decreases as the time series length grows
(ellipse moving towards the lower side of the figures), with
the subsequent reduction of € ; and of the number of VMs
in the gray area. Finally, for a 72 hours time series, every
point in the scatter plot is on the right side of the bisecting
line, and no gray area is required for the Web servers cluster
(62,1 =0).

5.4 AGATE technique evaluation

Having demonstrated the effectiveness of a single iteration
of the proposed technique, we now focus on the complete
process for adaptive VMs clustering considering multi-
ple consecutive iterations. To this aim, we focus on the
Interactive-Web and Mixed-Web scenarios considering a 24
hours-long experiment. For each scenario, we assume that
50% of the VMs enter the system at time ¢ = 0, while the
remaining 50% of the VMs at time ¢t = 12. We execute an
iteration of the AGATE technique every hour.

Figures 11a and 11b show the results of the experiment
for the Interactive-Web and Mixed-Web scenarios, respec-
tively. Each graph shows the evolution over time of the gray
area size (the white circles represent the percentage of VMs
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Fig. 11: Application of AGATE technique

belonging to the gray area), together with the clustering
accuracy of the VMs in the white area (black squares).
From Figure 11a we have a first confirmation that, start-
ing from the first iterations, our solution is able to correctly
cluster a significant set of VMs: at the end of the second and
third iterations, we have in the white area the 59% and the
67% of the VMs, respectively; moreover, we note that the
clustering accuracy for the VMs in the white area is close
to 100%. This means that a cluster-based management can
be applied to the VMs in the white area, which represent
a large percentage of the total VMs, without having to

wait longer monitoring times or cope with misclassification
errors as in existing clustering solutions. The same effect
can be observed when new VMs enter the system at time
t = 12h. Another interesting result is that the size of the gray
area monotonically decreases in the periods [1-12h] and [13-
24h], thus leading to a number of correctly clustered VMs
that grows at each step: the percentage of VMs in the gray
area is reduced from 48% to 18% in the first 12 hours and
from 33% to 15% in the second period. The discontinuity in
the graphs that occurs in the interval [12-13h] is due to the
new VMs entering the system.

The Mixed-Web scenario is analyzed in Figure 11b and
basically confirms the results observed for the previous
scenario. It is worth to note that the number of VMs in the
gray area tends to be lower with respect to Figure 11a: this
can be explained considering that the VMs belonging to the
map-reduce cluster are more easily identified and less likely
to fall within the gray area compared to Web server and
DBMS clusters, as already pointed out in Section 5.3.

5.5 Monitoring overhead reduction

We now evaluate the reduction of the monitoring overhead
in an IaaS cloud system achieved by the adoption of the
proposed AGATE technique. For this experiment we apply a
cluster-based monitoring to the VMs of the Interactive-Web
and Mixed-Web scenarios for a period of time of 12 hours,
with the aim to measure the reduction of the data collected
by the monitoring system when the adaptive technique
is applied instead of the existing PCA-based clustering
solution [3]. For a fair comparison, we made the following
assumption. In the case of PCA-based solution, we apply the
VMs clustering to different time series lengths (ranging from
1 to 12 hours), while for the AGATE technique we carry out
the VMs clustering and the gray area selection once every
hour. In both cases, we assume that all the VMs enter the
system at the beginning of the experiment. Tables 3 and 4
show the results of the experiment for the Interactive-Web
and Mixed-Web scenarios, respectively.

For both tables, second and third columns refer to the
existing PCA-based solution. For each time series length
(first column of the table), the second column shows the
amount of data collected by the monitoring system: in this
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case, every VM is monitored with fine granularity (sampling
frequency equal to 1 minute) for all the monitoring period
(we indicate with K the amount of data collected to monitor
with fine granularity a single VM for 1 hour). The third
column indicates the percentage of misplaced VMs for the
corresponding clustering step.

The last three columns of the tables refer to the adaptive
AGATE technique, showing for each interaction the amount
of collected data, the percentage of VMs in the gray area
and the percentage of misplaced VMs within the white
area. For the AGATE proposal, we recall that the collected
data depend on the results of the gray area selection at
the previous iteration. Let us consider, as an example, the
first two rows of Table 3. The first iteration of the adaptive
technique occurs at the end of 1 hour of data collection
(first row of the table), during which all the 150 VMs are
monitored with fine granularity (150 x K collected data);
as a result of the gray area selection, we have 47.8% of
VMs (72 VMs) in the gray area. During the second hour
of monitoring (second row of the table), we collect data
with fine granularity only for the VMs of the gray area
(72 x K data), plus 3 representative VMs for each cluster
(6 <K, having 2 clusters), for a total amount of data collected
over the two hours equal to 228 x K. In a similar way we
compute the data collected in the next iterations. We omit
the contribution of coarse-grained samples on non repre-
sentative cluster VMs because the corresponding amount
of data collected is not significant, being typically at least
one order of magnitude less with respect to fine-grained
sampling.

TABLE 3: Data reduction in Interactive-Web scenario

Time | Existing Solution AGATE
[h] Data | Misplaced | Data | Gray Area | Misplaced
(xK) | VMs[%] | (xK) | VMs[%] | VMs [%]

1 150 17.9 150 47.8 1.8

2 300 17.5 228 41.1 2.8

4 600 16.1 296 27.8 2.3

6 900 15.4 344 22.3 1.9

8 1200 15.2 383 19.9 1.7

10 1500 15.1 419 18.7 2.4

12 1800 14.8 453 17.8 2.1

TABLE 4: Data reduction in Mixed-Web scenario

Time | Existing Solution AGATE

[h] Data | Misplaced | Data | Gray Area | Misplaced
(xK) | VMs[%] | (xK) | VMs [%] VMs [%]

1 200 14.6 200 44.8 12

2 400 14.1 299 43.4 1.5

4 800 13.3 395 30.9 1.8

6 1200 12.6 466 19.6 1.6

8 1600 11.9 514 18.2 2.3

10 2000 11.3 559 17.2 2.1

12 2400 10.8 603 16.1 1.8

For both scenarios we observe that the amount of VMs
assigned to the gray area by the adaptive proposal is al-
ways higher than the percentage of misplaced VMs for the
existing solution for the same period of time. However, it’s
important to emphasize that with the existing solution there
is no way to know which VMs are correctly classified by the
clustering, hence the management of the data center has
to cope with a not negligible percentage of misclassified
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VMs (after 12 hours, 14.8% and 10.8% for the Interactive-
Web and Mixed-Web scenario, respectively). On the other
hand, as soon as the first iteration of the AGATE technique
is completed, a large percentage of VMs is assigned to the
white area. These VMs are classified with high accuracy (the
percentage of misplaced VMs remains below 2.8% and 2.3%
in the Interactive-Web and Mixed-Web scenario, respec-
tively) and the cluster-based management can be applied
to them without having to wait any longer. Moreover, the
fine-grained monitoring is limited to the VMs remaining
in the gray area, thus significantly reducing the amount of
data collected with respect to the existing solution: at the
end of the second hour of monitoring we have a reduction
of collected data equal to 24% and to 25% for Interactive-
Web and Mixed-Web scenario, respectively; at the end of
the twelfth hour, the amount of data collected is reduced by
almost 75% in both cases.

6 RELATED WORK

Monitoring and management of large cloud data centers
are critical tasks that have been receiving a lot of attention
from academic and commercial communities in the last few
years [23], [24].

Current approaches typically address monitoring scala-
bility issues by aggregation and filtering the collected data
before sending them to the management process in order to
reduce their volume. Most of the proposed solutions require
a specialized software layer, such as a library, or rely on
agents, which are responsible for data collection, filtering
and aggregation [25]-[29]. Different aggregation strategies
have been proposed: extraction of high-level performance
metrics by mean of machine learning algorithms [26]; ex-
traction of predicted parameters by combining metrics from
different layers (hardware, OS, application and user) and
by applying Kalman filters [25]; linear combination of OS-
layer metrics [27]; extraction of high-level statistics from OS
and application layers [28], [29]. Several commercial and
open source platforms have also been proposed to monitor
cloud systems. Among the most popular platforms, some
examples deserve a mention. Amazon CloudWatch [30]
is a Web service for monitoring Amazon Web Services
(AWS) cloud resources; LogicMonitor [31] is a commercial
tool characterized by low complexity and ease of use to
monitor physical and virtual infrastructures; DARGOS is
a distributed monitoring architecture using a push/pull
approach to distribute information [32]. However, all these
solutions share a common limitation, that is considering
each monitored object (being it a VM or a host) as indepen-
dent from the others: such approach fails to take advantage
from the similarities of objects which are sharing a common
behavior.

Multiple proposals have been proposed in literature for
the management of cloud systems, starting from the first
studies about autonomic concepts applied to cloud com-
puting [33]. Among the notable examples, Bobtail [34] is a
library allowing VMs of a same application to identify place-
ment problems that may cause long latencies in inter-VMs
communication. The solution in [35] provides a mechanism
to allocate VMs when multiple frameworks (e.g., Hadoop
and MPI) compete for the same resources of a data-center.
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However, these techniques require the intervention of the
cloud consumers that must install specific software and
libraries on their VMs, while in this paper we adopt the
point of view of a IaaS cloud provider having no access
to customer VMs. An approach based on distributed and
dynamic VMs allocation is proposed in [36]: this local-based
migration solution could be integrated with our AGATE
technique. A study on how VMs clustering can be used to
improve the scalability of data center management has been
recently published by the authors [4].

The identification of similarities between VMs in cloud
systems represents the core of our proposal. Relevant works
are worth to be cited in this field. A method for VMs
clustering in cloud systems is presented in [37], but the
similarity detection is limited to storage resources to apply
storage consolidation strategies. Another study [38] investi-
gates similarities of VMs static images used in public cloud
environments to provide insights for de-duplication and
image-level cache management. While these studies apply
clustering to a very limited set of resources for specific pur-
poses, our approach considers several resources to model
the general VMs behavior and leverage similarities that
could improve the overall scalability of cloud monitoring.

Recent studies of the authors [2], [3] propose clustering
approaches that group together VMs with similar behavior
in terms of resource usage: the PCA-based technique [3] ex-
ploits resource correlation and Principal Component Analy-
sis [39] to model VMs behavior, and a k-means algorithm for
clustering; the Bhattacharyya-based technique [2] relies on
a histogram-based representation to model VMs behavior,
Bhattacharyya distance [18] to measure VMs similarity and
a spectral algorithm for clustering. These techniques are
applied to time series longer than 24 hours, and even in
these conditions they share the common limit of a non-
negligible amount of misclassified VMs that hinders the ap-
plicability and the effectiveness of these solutions for large
cloud systems. The adaptive AGATE technique addresses
this issue by separating the VMs clearly belonging to one
cluster (in the white area) from the VMs that are undecided
(in the gray area) and need further monitoring to be carried
out; the clustering accuracy close to 100% for the VMs
in the white area enables effective management for these
VMs and scalable monitoring for the cloud system. As our
proposal provides the first clustering results after just a few
hours of observation, it enables the application of cluster-
based monitoring and management to a much larger set of
scenarios with respect to previous solutions.

A preliminary version of the gray area-based technique
was proposed in [6], but this previous work has many
limitations. First, the size of the gray area was determined
on the basis of a fixed value instead of being adaptively
computed according to the results of clustering, resulting
in a significant increase in the amount of collected data
and in the time needed to take decisions on VMs behavior.
Second, the technique was applied to a single case study,
which limited the evaluation of its applicability as it could
potentially omit unexpected behaviors with different kinds
of workloads. Third, metric time series shorter than 24
hours were not considered for clustering, thus preventing
us to discover the performance issue of the histogram-based
clustering applied to short time series, which is analyzed

and discussed in this paper.

7 CONCLUSIONS

The success of cloud computing as a key enabling technol-
ogy for the emerging digital society has determined new
scalability issues for IaaS cloud infrastructures in terms of
monitoring and management. We focus on techniques aim-
ing to address scalability issues by clustering together VMs
with similar resource usage behaviors. Existing solutions for
VMs clustering require long resource monitoring periods
to provide accurate classification, and are not viable for
modern dynamic cloud systems. This observation motivates
our proposal of a novel approach that, exploiting principles
of fuzzy logic, adaptively selects the length of the resource
time series used for clustering each VM. Such approach
allows the cloud system to rapidly determine the VMs
behavior, thus coping with the need for fast deploying and
disposing of new VMs in a IaaS cloud datacenter.

The proposed AGATE technique, based on the introduc-
tion of a gray area (a set of VMs not yet assigned to any
cluster), can automatically separate VMs that are assigned
to clusters from VMs with a still undetermined behavior.
Another qualifying point of our study is the effort to iden-
tify clustering techniques able to cope with short resource
time series (e.g., few hours) in presence of daily workload
patterns. We extensively test our proposal using both real
case studies and synthetic benchmarks. Our results demon-
strate that our solution is fully adaptive with respect to the
workload characteristics and, without need of parameter
tuning, can correctly identify most of the VMs after just few
hours with an accuracy of 97% or higher. Furthermore, we
evaluate the potential benefit of our proposal in terms of
monitoring scalability with respect to existing approaches:
in our experiments the data reduction reaches 25% after just
two hours of monitoring and grows to 75% in twelve hours.
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