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Abstract—The advent of next-generation many-core embedded plat-
forms has the chance of intercepting a converging need for predictable
high-performance coming from both the High-Performance Computing
(HPC) and Embedded Computing (EC) domains. On one side, new
kinds of HPC applications are being required by markets needing huge
amounts of information to be processed within a bounded amount of
time. On the other side, EC systems are increasingly concerned with
providing higher performance in real-time, challenging the performance
capabilities of current architectures. This converging demand, however,
raises the problem about how to guarantee timing requirements in
presence of parallel execution.

This paper presents the approach of project P-SOCRATES for the
design of an integrated framework for the execution of workload-
intensive applications with real-time requirements on top of next-
generation commercial-off-the-shelf (COTS) platforms based on many-
core accelerated architectures. The time-criticality and parallelisation
challenges are addressed by merging techniques coming from both
HPC and EC domains, identifying the main sources of indeterminism
and proposing efficient mapping and scheduling algorithms, along with
the associated timing and schedulability analysis, to guarantee the real-
time and performance requirements of the applications.

1 INTRODUCTION
High-performance computing (HPC) and embedded
computing (EC) systems have been traditionally running
in opposite directions. On one side, HPC systems are
typically designed to make the common case as fast as
possible, without concerning themselves for the timing
behaviour (in terms of execution time) of the not-so-often
cases. As a result, the techniques developed for HPC
are based on complex hardware and software structures
that make any reliable timing bound almost impossible
to derive. On the other side, real-time embedded sys-
tems are typically designed to provide energy-efficient
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and predictable solutions, without heavy performance
requirements. Instead of fast response times, they aim at
having deterministically bounded response times, in order
to guarantee that deadlines are met. For this reason,
these systems are typically based on simple hardware
architectures, using fixed-function hardware accelerators
that are strongly coupled with the application domain.

In the last years, multi-core processors hit both com-
puting markets [34]. The huge computational necessities
to satisfy the performance requirements of HPC systems
and the related exponential increments of power require-
ments (typically referred to as the power-wall) exceeded
the technological limits of classic single-core architec-
tures. For these reasons, the main hardware manufac-
turers are offering an increasing number of computing
platforms integrating multiple cores within a chip, con-
tributing to an unprecedented phenomenon sometimes
referred to as the multi-core revolution. Multi-core proces-
sors provide a better energy efficiency and performance-
per-cost ratio, while improving application performance
by exploiting thread level parallelism (TLP). Applica-
tions are split into multiple tasks that run in parallel on
different cores, extending to multi-core system level an
important challenge already faced by HPC designers at
multi-processor system level: parallelisation.

In the embedded systems domain, the necessity to
develop more flexible and powerful systems (e.g., from
fixed function phones to smart phones and tablets) have
pushed the embedded market in the same direction.
That is, multi-cores are increasingly considered as the
solution to cope with performance and cost require-
ments [14], as they allow scheduling multiple application
services on the same processor, hence maximising the
hardware utilisation while reducing cost, size, weight
and power requirements. However, real-time embedded
applications with time-critical requirements are still exe-
cuted on simple architectures that are able to guarantee
a predictable execution pattern while avoiding the ap-
pearance of timing anomalies [23]. This makes real-time
embedded platforms still relying on either single-core or
simple multi-core CPUs, integrated with fixed-function
hardware accelerators into the same chip: the so-called
System-on-Chip (SoC).

The needs for energy-efficiency (in the HPC domain)
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and for flexibility (in the embedded computing domain),
coming along with Moore’s law greedy demand for per-
formance and the advancements in the semiconductor
technology, have progressively paved the way for the
introduction of many-core systems, i.e., multi-core chips
containing a high number of cores (tens to hundreds)
in both domains. Examples of many-core architectures
include the Tilera Tile CPUs [36] (shipping versions
feature 64 cores) in the embedded domain and the Intel
MIC [17] and Intel Xeon Phi [18] (features 60 cores)
in the HPC domain. Many-core computing fabrics are
being integrated together with general-purpose multi-
core processors to provide a heterogeneous architectural
harness that eases the integration of previously hard-
wired accelerators into more flexible software solutions.
In recent years, the HPC computing domain has seen
the emergence of accelerated heterogeneous architec-
tures, most notably multi-core processors integrated with
General Purpose Graphic Processing Units (GPGPU),
because GPGPUs are a flexible and programmable accel-
erator for data parallel computations [33], [38]. Similarly,
in the real-time embedded domain, STMicroelectronics
P2012/STHORM [8] processor, which includes a dual-
core ARM-A9 CPU coupled with a many-core processor
(the STHORM fabric); and the Kalray MPPA (Multi-
Purpose Processor Array) [20], which includes four
quad-core CPUs coupled with a many-core processor.
In both cases, the many-core fabric acts as a processing
accelerator.

The introduction of many-core systems has set up
an interesting trend wherein both the HPC and the
real-time embedded domain converge towards similar
objectives and requirements. New types of applications
are challenging the performance capabilities of hardware
platforms, by crossing the boundaries between the HPC
and the embedded computing domains. The demand
for increased computational performance is even more
challenging when large amounts of data need to be
processed, from multiple data sources, with guaranteed
processing response times. This is the case of real-time
complex event processing (CEP) systems [22], a new area
for HPC in which the data coming from multiple event
streams is correlated in order to extract and provide
meaningful information within a bounded amount of
time. Examples include cyber-physical systems (CPS),
ranging from automotive and aircrafts to smart grids and
traffic management, and banking/financial computing
systems, where large amounts of real-time information
needs to be processed for detecting time-dependent
patterns, automatically triggering operations in a very
specific and tight time-frame [35].

The underlying commonality of the real-time sys-
tems described above is that they are time-critical
(whether business-critical or mission-critical) and with
high-performance requirements. In other words, for such
systems, the correctness of the result is dependent on
both performance and timing requirements, and the fail-
ure to meet those is critical to the functioning of the sys-

Fig. 1. P-SOCRATES approach integrating HPC paral-
lel programming models, high-end embedded many-core
platforms and real-time systems technology.

tem. In this context, it is essential to guarantee the timing
predictability of the performed computations, meaning
that arguments and analysis are needed to be able to
make arguments of correctness — e.g., performing the
required computations within well-specified bounds.

In this current trend, challenges that were previously
specific to each computing domain, start to be common
to both domains (including energy-efficiency, parallelisa-
tion, compilation, software programming) and are mag-
nified by the ubiquity of many-cores and heterogeneity
across the whole computing spectrum. In that context,
cross-fertilisation of expertise from both computing do-
mains is mandatory. Although some research in the em-
bedded computing domain has started investigating the
use of parallel execution models (by using customised
hardware designs and manually tuning applications by
using specialised software parallel patterns [30]), a real
cross-fertilisation of expertise between HPC and embed-
ded computing domains is still missing. FP7 project P-
SOCRATES [1] aims at bringing together the required ex-
pertise from the HPC and EC domains to jointly address
the challenge of providing timing criticality guarantees
to systems with huge performance requirements. As a
result, P-SOCRATES will enable the adoption of next-
generation many-core embedded platforms in both the
HPC and the embedded computing domains. Figure 1
summarizes the ambitious target of the project.

The paper is structured as follows. The next section
presents the main problems towards achieving time-
predictable systems integrating techniques from high-
performance and embedded computing domains. Then,
section 3 presents the vision and challenges of the pro-
posed real-time programming model, which builds upon
HPC programming models, augmented with dependen-
cies and timing information. Section 4 then provides a
brief summary of related work, whilst Section 5 summa-
rizes the paper.
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2 THE PREDICTABILITY CHALLENGE

We foresee that the next step towards the integration
of high-performance and embedded computing domains
will be the use of many-core embedded processors. Such
processors will provide the required performance level,
while still being energy-efficient and time predictable.
An example towards this integration is provided by
Mont-Blanc and Mont-Blanc2 FP7 projects [25], which
are developing a new hybrid supercomputer based on
energy-efficient embedded ARM CPUs coupled with
high-performance NVIDIA GPU many-core processors.
However, there is still one fundamental requirement that
has not yet been considered: time predictability as a mean
to address the time criticality challenge when computation is
parallelised to increase the performance.

As mentioned in the previous section, industries with
both high-performance and real-time requirements are
eager to benefit from the immense computing capa-
bilities offered by new many-core embedded designs.
However, these industries are also highly unprepared for
shifting their earlier system designs to cope with this
new technology, mainly because such a shift requires
adapting the applications, operating systems, and pro-
gramming models in order to exploit the capabilities
of many-core embedded computing systems. Real-time
methods to determine the timing behaviour of an em-
bedded system are not prepared to be directly applied
to the HPC domain and many-core platforms, leading to
a number of significant challenges. Although customised
processor designs could better fit real-time requirements
[30], the design of specialised processors for each real-
time system domain is unaffordable.

On one side, different parallel programming models
and multiprocessor operating systems have been pro-
posed and are increasingly being adopted in today’s
HPC computing systems. In recent years, the emer-
gence of accelerated heterogeneous architectures such as
GPGPUs, have introduced parallel programming mod-
els such as OpenCL [29], the currently dominant open
standard for parallel programming of heterogeneous
systems, or CUDA [27], the dominant proprietary frame-
work of NVIDIA. Unfortunately, they are not easily
applicable to systems with real-time requirements, since,
by nature, many-core architectures are designed to inte-
grate as many functionalities as possible into a single
chip. Hence, they inherently share as many resources as
possible amongst the cores, which heavily impacts the
ability to provide timing guarantees.

On the other side, the embedded computing domain
world has always seen plenty of application specific
accelerators with custom architectures, manually tuning
applications to achieve predictable performance. Such
types of solutions have a limited flexibility, complicating
the development of embedded systems. However, COTS
components based on many-core architectures are likely
to dominate the embedded computing market in the
near future. As a result, migrating real-time applications

to many-core execution models with predictable perfor-
mance requires a complete redesign of current software
architectures.

The main problem in applying classic real-time tech-
niques to many-core systems is related to the difficulties
in deriving reliable and tight upper bounds on the worst-
case execution time (WCET) and response time (WCRT)
of real-time tasks. The WCET represents the maximum
time needed to execute a real-time task when it runs
in isolation, e.g., without any interference from other
tasks or devices. Instead, the WCRT also accounts for
the worst-case interference that the task may suffer from
other executing tasks. Although different timing and
schedulability analysis techniques are available in the
real-time literature to derive tight WCET and WCRT
bounds in single-core systems, such techniques cannot
be easily extended to many-core systems.

In schedulability analyses, the objective is to check
analytically, at design or run time, whether all the timing
requirements of the system will be met. In its simplest
form, a schedulability test is just a mathematical con-
dition such that, if the condition is satisfied, then the
system is deemed schedulable, i.e., all the deadlines will
always be met at run-time. Unfortunately, most of the
analyses that can be found in the real-time scheduling
literature assume that the system activities are function-
ally independent. As a consequence, the same studies
also assume some of the parameters to be constant,
exact and known at design time. For example, most of
the schedulability tests that have been proposed so far
assume that the worst-case execution time of an activity
is known at design time and invariant. However, when
deployed on the same hardware architecture, activities
that are co-scheduled on different cores share some low-
level hardware resources, such as caches, communication
buses and main memory. These shared resources in-
herently introduce functional dependencies between the
activities as concurrent accesses to the same resource are
not allowed; the timing behaviour of activities sharing
the same resource is thus affected. Therefore, the exist-
ing techniques cannot be applied, but need to be aug-
mented by further analyses to factor-in all the sources of
contention due to shared resources. Preliminary results
toward this direction have already been presented (e.g.
[24], [12]).

P-SOCRATES will identify the sources of interference
that can affect the timing behaviour of the system activi-
ties. These sources of interference include higher priority
workload, contention on the buses and interconnection
networks, concurrent accesses to cache memory, main
memory bottleneck, etc. The potential impact on the
timing behaviour of the activities will be identified by
thoroughly investigating the targeted many-core plat-
forms and the activity dependency graphs. Then, new
methods will be defined to upper-bound (and provide
probabilistic profiles of) the run-time interferences be-
tween the activities and between these and the hardware
architecture.
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Fig. 2. Typical distribution of execution times of a real-time
task.

Figure 2 shows a typical distribution of the execution
times of a real-time task on a single core system [3].
The range of possible execution times is typically large,
with a tail in the distribution that may be rather far
from the average-case behaviour. Moreover, it is often
very difficult to exactly compute the WCET, so that a
typical solution is to use upper timing bounds on the
worst-case performance to provide real-time guarantees.
The large variability in the execution times, along with
the uncertainties in determining the WCET, cause a
significant waste of computing resources. As real-time
systems are dimensioned to avoid pathological cases, a
considerable amount of computing resources is used to
correctly deal with worst-case situations that are very
unlikely to happen. In many-core systems, this problem
is magnified by the additional interferences due to the
simultaneous execution of multiple tasks, contending for
different memory and communication resources. There-
fore, smarter scheduling algorithms have to be devised
in order to efficiently exploit the available computing
units while guaranteeing the timing requirements.

Project P-SOCRATES intends to develop innovative
scheduling algorithms that take a holistic view of the
system, identifying the main scheduling bottlenecks of
the considered hardware architectures. Smart scheduling
solutions will be devised, considering not only cores, but
also other kind of resources, such as memories, commu-
nication and synchronisation mechanisms, to limit the
variability of the task execution times when running on
many-core systems. The proposed scheduling solutions
will lend themselves to a tight schedulability analysis for
extracting worst-case upper bounds that are sufficiently
close to the exact response times of each task.

3 P-SOCRATES APPROACH

P-SOCRATES will develop a complete and coherent
software system stack, able to bridge the gap between
application design and hardware many-core platform.
The project will investigate on a new programming
framework to combine real-time embedded mapping
and scheduling techniques with high-performance par-
allel programming models and associated tools, able to
express parallelisation of applications. The programming
model will be extended to support real-time properties

Fig. 3. P-SOCRATES approach integrating HPC paral-
lel programming models, high-end embedded many-core
platforms and real-time systems technology.

and timing information. The software stack (shown in
Figure 3) will extract a task dependency graph from the
application, statically mapping these tasks to the threads
of the operating system, which will be then dynamically
scheduled on the many-core platform.

Enhanced parallel programming models will be in-
vestigated, incorporating new annotations and compiler
techniques to automatically generate an extended task
dependency graph containing not only the data depen-
dencies among tasks, but also relevant information to
derive the impact on execution time due to sharing re-
sources when tasks communicate. This information will
be then used by the mapping and scheduling algorithms
to properly select the most suitable resource allocation
strategies. The mapping algorithm will be enhanced
to statically build the required run-time configuration,
efficiently assigning tasks-to-threads in order to guaran-
tee timing requirements without performance degrada-
tion. The underlying scheduling algorithm, implemented
within the operating system, will then dynamically inter-
pret the task-to-thread mapping into an efficient thread-
to-core allocation, selecting which thread to execute on
each core, and arbitrating the access to other shared
resources.

The proposed techniques will be implemented on
open-source real-time operating systems ported on the
selected many-core platform. A timing and schedula-
bility analysis (including a schedulability analysis in-
tegrated with an interference analysis) and a module
that the mapping will use to check response time of the
allocation, will guarantee that the real-time requirements
of the application are met using the selected mapping
and scheduling algorithms. Finally, a general method to
express the COTS many-core processor design character-
istics will be derived to drive the allocation of tasks-to-
threads and threads-to-cores, along with the associated
timing and schedulability analysis.
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void compute ( i n t ∗A, i n t ∗B , i n t N) {
for ( i n t i =0 ; i<N; i ++) {

#pragma omp task in (A[ i −1]) inout (A[ i ] ) out ( B [ i ] )
foo(&A[ i −1],&A[ i ] ,&B [ i ] ) ;

#pragma omp task in ( B [ i −1]) inout ( B [ i ] )
bar (&B [ i −1],&B [ i ] ) ;

}
}

Fig. 4. OpenMP 4.0 code sample showing the data-flow
dependencies among tasks.

3.1 Real-time Parallel Programming Model

The use of parallel programming models is fundamental
to exploit the performance out of parallel architectures
and provide good programmability (and so productiv-
ity) of high-performance systems. Among the different
models, OpenMP [2] has become one of the most used
parallel programming models due to its simplicity and
scalability in shared memory systems such as current
many-core processors. OpenMP defines task annotations
to represent independent units of work that can run
concurrently. Recently, OpenMP has been extended with
new directives, in, out and inout, that allow introduc-
ing asynchronous parallelism by defining dependencies
among task.

Figure 4 shows a source code example using the
dependency annotations. Each instance of task foo de-
pends on data generated in previous loop iterations —
i.e., inout(A[i-1]). Similarly, the task bar depends on foo
outcome — i.e., out(B[i]).

This extension increases the freedom of task schedul-
ing: tasks are scheduled for execution as soon as all
depend tasks finished and there are available processor
resources.

OmpSs [13] is a parallel programming framework
compatible with OpenMP 4.0 whose effectiveness has
been widely demonstrated in the HPC domain [11].
In OmpSs, the data-dependencies annotations are inter-
preted by a compiler, Mercurium, that emits calls to the
runtime system Nanos++. Nanos++ is a parallel run-time
system that dynamically generates the task dependency
graph (TDG) at run-time. Each time a new task is created
its in and out dependencies are matched against those of
existing tasks. If a dependency, either read-after-write,
write-after-write or write-after-read, is found, the task
becomes a successor of the corresponding tasks. Tasks
are scheduled for execution as soon as all their prede-
cessor in the graph have finished and there are available
processor resources. Figure 5 shows the complete system
stack of OmpSs.

Current parallel frameworks base scheduling deci-
sions on information available at run-time — i.e., the task
dependency graph and processor resources availability
(see Figure 5) — which makes it difficult to provide real-
time guarantees. The reason is that the way tasks use
shared processor resources determines the interferences

that different tasks will suffer when accessing them,
affecting the overall execution time of the application.
A different usage of processor resources will result in a
different execution.

In order to provide real-time guarantees without suf-
fering any performance degradation, it is required to
statically identify at design time which run-time con-
figuration is needed, so the usage of shared processor
resources is fixed and time guarantees can be provided.
Therefore, it is of paramount importance to recover, at
design time, relevant information to fix the usage of
processor resources and so provide timing guarantees.

This challenge will be addressed by extending paral-
lelism annotations, which are extracted by the compiler,
to identify portions of the application (tasks) that can
run in parallel as well as relevant information to derive the
impact on execution time due to sharing resources when tasks
communicate. To do so, new compiler techniques must be
developed to generate an extended task dependency graph
(eTDG), containing relevant information required by the
mapping and scheduling tool and the timing analysis
method to allocate tasks to the different processor re-
sources, guaranteeing that the real-time constraints of the
application are accomplished. In other words, in order
to provide timing guarantees, there is a necessity to fix
the usage of shared processor resources.

Figure 6 shows the envisioned real-time parallel pro-
gramming framework in which relevant information
for task scheduling and timing analysis is recovered at
compile- and design-time to fix the usage of processor
resources.

3.2 Research Challenges
The envisioned approach presents multiple research
challenges at compile-time and at design-time. This sec-
tion summarizes the most important ones.

At compile-time, if all information is recovered, one
could potentially provide tight execution bounds. Unfor-
tunately, not all information can be recovered at compile
time as there is information only available at run-time.
This is the case, for instance, of data dependencies
based on pointers, variable values or loop boundaries. In
Figure 4, if the number of iterations (N ) is not known, we
cannot determine how many task instances of foo and bar
will be executed and so the eTDG cannot be generated.
Similarly, in Figure 7, if i and j values are not known
at compile-time, it is not possible to determine if a data-
dependency among tasks produce and consume exists.

In case the data-dependency cannot be solved or loop
boundaries are not known at compile-time, it is required
to consider conservative approaches in order to guarantee
the functional correctness of the program. Thus, if there
is an unknown data-dependency, the construction of the
eTDG must consider that this data-dependency exists.
Similarly, if a loop boundary is unknown, it is required to
determine an upper bound of the maximum number of
loop iterations [4]. Needless to say that following a con-
servative approach will affect the average performance
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Fig. 5. OmpSs parallel programming framework.

Fig. 6. Envisioned real-time parallel programming framework to provide timing guarantees.

void compute ( i n t ∗A, i n t i , i n t j ) {
#pragma omp task inout (A[ i ] )

produce(&A[ i ] ) ;

#pragma omp task inout (A[ j ] )
consume(&A[ j ] ) ;

}

Fig. 7. The value of i and j must be known to determine
the dependency among tasks producer and consumer.

of the application. That is, false data-dependencies in
the eTDG will force tasks to be executed sequentially.
Similarly, assuming loop boundaries with higher number
of iterations will make the eTDG to contain a higher
number of task instances than the ones actually created,
over-dimensioning the system due to tasks that are never
executed.

Figure 8 shows the expected trends in the average and
guaranteed performance when following conservative
approaches. X-axis represents different levels of data
recovered at compile-time, so the usage of processor
resources can be fixed. As more information is extracted
at compile-time, a more precise eTDG can be built
and so higher guaranteed performance can be provided

(light blue curve). However, due to the conservative
approaches, the eTDG can differ from the TDG created
at run-time, so that the average performance can be
degraded (dark blue curve). Although counter-intuitive,
it may happen that, in order to increase the guaranteed
performance, a core is kept idle even when there is some
pending workload to execute.

At design-time, it is necessary to provide the system
with appropriate means to map the task dependency
graphs to the underlying operating system threads (map-
ping), and dynamically schedule these threads to achieve
both predictability and high-performance (scheduling).
Although previous works [19], [15] have shown that
run-time characterisation and management of locality
has more potential than static locality analysis, dynamic
information usage is a stopper to provide the timing
guarantees for parallel applications on a many-core.
Therefore, further research about how to allocate tasks
to processor resources is needed, accounting for the
impact of such allocation on other tasks due to inter-
ference when accessing shared resources. To that end,
the programming model needs to be extended so that
the responsibility for managing locality is shared among
the programmer and the mapping tool. This will allow
providing timing guarantees to application customers
while also providing maximum performance. Data anno-
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Fig. 8. Extracting information at compile-time increases
guaranteed performance at the price of reducing the
average performance due to conservative decisions.

tations with in/out clauses provide a reasonable balance
between the programmer and the system in managing
locality [13], but further research is needed to minimise
the interferences when accessing shared resources.

Moreover, these challenges need to be tackled in a
holistic, integrated perspective. Our proposal is to con-
struct the eTDG graph in synergy with the mapping and
scheduling algorithms, with feedback from the timing
and schedulability analysis. The strategy cannot be to
search for all possible combinations in the whole design
space. A guided process needs to be introduced, which
is able to reason on the best mapping for a particular
result.

4 RELATED WORK

In what concerns programming models, the HPC world
has seen a plethora of proposals for data or task paral-
lelism (e.g. [5], [37], [16]). Furthermore, approaches such
as [19] or [2], [13] also allow expressing dependencies
among tasks, being the run-time system responsible of
the dependencies to be satisfied before spawning de-
pendent tasks. Task-based models can be dynamically
managed by mapping the tasks to threads in a thread
pool, e.g., using the popular Work-Stealing algorithm
[9]. Yet, sources of non-determinism at run-time cause
timing divergences among threads. Dynamic schedulers
try to compensate by detecting them at run-time [10],
[28] and either (i) ”re-moulding” into more threads on-
the-fly; (ii) boosting relative priorities, or (iii) adapting
the mapping and number of allocated processing units.
Since performance is the major goal, mapping strategies
are mostly dynamic in nature, and, although being able
to provide better average behaviour, they may allow for
unpredictable unbounded delays.

General purpose computation on graphics processing
units (GPGPUs) has also received a lot of attention,
as it delivers high performance computing at rather

low cost. GPUs are many-core computing fabrics that,
integrated together with general-purpose processors, re-
sult in flexible and programmable accelerator for data
parallel computations, programmed in frameworks such
as OpenCL [29] or CUDA (Compute Unified Device
Architecture) [27]. This approach also does not allow for
supporting time-predictability and moreover is specific
to SIMD operations.

In the real-time community, scheduling techniques
have been the subject of extensive research. Traditional
techniques have been extended for the multiprocessor
case and more recently for parallel execution (e.g.[21],
[32], [6], [26]). After the majority of the works con-
sidering 1-to-1 mappings, where each parallel execu-
tion is mapped to a thread, new models are appearing
with more complex mapping approaches. Different map-
pings of parallel tasks to threads can be done, mostly
statically [32], [6] but also dynamically [26], in order
to increase system utilisation whilst maintaining pre-
dictability. These strategies need however to be extended
for exploiting the dependency graphs from compiler
generated parallel task graphs.

Static approaches for timing analysis typically infer
timing properties from mathematical models and logical
abstractions (e.g., [4]), while measurement-based tech-
niques exploit the results of extensive simulations to
derive worst-case estimations. Hybrid techniques com-
bine features from both static and measurement-based
approaches while avoiding (as much as possible) their
respective pitfalls (e.g. [31]). In what concerns schedu-
lability analysis, different tests have been proposed for
various kinds of workload and platform models, and
for different scheduling algorithms. In its simplest form,
a schedulability test is just a mathematical condition
such that, if the condition is satisfied, then the system
is deemed schedulable, i.e., all the deadlines will always
be met at run-time. Unfortunately, there are still many
open problems and NP-hard issues in the schedulability
analysis of multi-core systems [7]. Furthermore, timing
and schedulability analysis cannot be taken in isolation
from the mapping approach, since the mapping of tasks
to particular cores clearly impacts the timing analysis.

5 CONCLUSIONS
There is currently an increasing interest in the conver-
gence of High-Performance and Embedded Computing
domains. Not only new high-performance applications
are being required by markets needing huge amounts of
information to be processed within a bounded amount
of time, but also embedded systems are increasingly
concerned with providing higher performance in real-
time, challenging the performance capabilities of cur-
rent architectures. Meeting this dual challenge can only
be provided by next-generation many-core embedded
platforms, guaranteeing that real-time high-performance
applications can be executed on efficient and powerful
heterogeneous architectures integrating general-purpose
processors with many-core computing fabrics.
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This paper proposed a novel approach to address
time-criticality and parallelisation by an integrated
framework for executing workload-intensive applica-
tions with real-time requirements on top of next-
generation COTS platforms based on many-core accel-
erated architectures. The framework, that will be de-
veloped within the P-SOCRATES FP7 project [1], ad-
dresses the problem from both the HPC and real-time
computing domains, integrating the extraction of task
dependency graphs with timing information from the
applications code, with real-time mapping and schedul-
ing algorithms, along with the associated timing and
schedulability analysis.
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