
19/04/2024 17:40

Layout analysis and content classification in digitized books / Corbelli, Andrea; Baraldi, Lorenzo; Balducci,
Fabrizio; Grana, Costantino; Cucchiara, Rita. - ELETTRONICO. - 701:(2017), pp. 153-165. (Intervento
presentato al convegno 12th Italian Research Conference on Digital Libraries, IRCDL 2016 tenutosi a
Firenze nel Feb. 4-5) [10.1007/978-3-319-56300-8_14].

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

Springer International Publishing

This is the peer reviewd version of the followng article:

Layout analysis and content classification in
digitized books

Andrea Corbelli, Lorenzo Baraldi, Fabrizio Balducci,
Costantino Grana, Rita Cucchiara

Dipartimento di Ingegneria “Enzo Ferrari”
Università degli Studi di Modena e Reggio Emilia

Via Vivarelli 10, Modena MO 41125, Italy
{name.surname}@unimore.it

Abstract. Automatic layout analysis has proven to be extremely im-
portant in the process of digitization of large amounts of documents. In
this paper we present a mixed approach to layout analysis, introducing
a SVM-aided layout segmentation process and a classification process
based on local and geometrical features. The final output of the au-
tomatic analysis algorithm is a complete and structured annotation in
JSON format, containing the digitalized text as well as all the refer-
ences to the illustrations of the input page, and which can be used by
visualization interfaces as well as annotation interfaces. We evaluate our
algorithm on a large dataset built upon the first volume of the “Enciclo-
pedia Treccani”.

Keywords: Layout analysis, content classification, SVM, annotation in-
terfaces.

1 Introduction

Document digitization plays a key role in the preservation and diffusion of his-
torical books: digital archives, indeed, protect fragile and valuable originals from
handling, while still presenting their content to a vastly increased audience. How-
ever, the simple digital copy of an archive is often not sufficient to present its
content in an effective and enjoyable way: beyond the application of Optical
Character Recognition (OCR) methods, which are nowadays almost completely
reliable, graphical elements, like tables, images and charts, should be automati-
cally segmented and categorized.

Despite the recent advances in this field, layout and content analysis are still
unsolved problems due to the high variability of the possible content. In this
setting, we propose a novel pipeline for the analysis of structured documents,
which includes a page layout analysis algorithm to segment the input document
into coherent regions, and a content classification strategy to classify the actual
content of each region. Our layout analysis builds upon the Recursive XY-Cut
algorithm, and extends it with an SVM-aided detector for graphical elements;
then, tables are identified by means of the Hough transform, and supervised

II

machine learning techniques are employed in conjuction with local features to
classify other graphical elements, like images, charts and scores. The final output
is a structured annotation in JSON format, which can be read and modified by
an annotation interface, useful for correcting mistakes in the automatic analysis,
and by a visualization interface.

The rest of this paper is structured as follows: Section 2 gives a brief dis-
cussion of the state of the art in layout analysis, Section 3 explains the main
components of our pipeline, and Section 4 reports the performance evaluation
and a comparison against the state of the art.

2 Related Work

Layout analysis has been an active area of research since the seventies. There
are two main approaches to layout analysis, bottom up and top down.

Top-down methods, such as XY cuts [11, 4] or methods that exploit white
streams [2] or projection profiles [9] are usually fast but tend to fail when dealing
with complex layouts. Bottom-up methods are instead more flexible and process
the image page from the pixel level and subsequently aggregate into higher level
regions but with an higher computational complexity.

These approaches are usually based on mathematical morphology, Connected
Components (CCs), Voronoi diagrams [13] or run-length smearing [20]. Many
other methods exist which do not fit exactly into either of these categories: the
so called mixed or hybrid approaches try to combine the high speed of the top-
down approaches with the robustness of the bottom-up ones. Chen et al. [5]
propose a method based on whitespace rectangles extraction and grouping: ini-
tially the foreground CCs are extracted and linked into chains according to their
horizontal adjacency relationship; whitespace rectangles are then extracted from
the gap between horizontally adjacent CCs; CCs and whitespaces are progres-
sively grouped and filtered to form text lines and afterward text blocks. Lazzara
et al. [14] provide a chain of steps to first recognize text regions and successively
non-text elements. Foreground CCs are extracted, then delimiters (such as lines,
whitespaces and tab-stop) are detected with object alignment and morphological
algorithms. Since text components are usually well aligned, have a uniform size
and are close to each other, the authors propose to regroup CCs by looking for
their neighbors. Filters can also be applied on a group of CCs to validate the
link between two CCs. Another algorithm based on whitespace analysis has been
proposed by Baird et al. [3]: the algorithm uses the white space in the page as
a layout delimiter and tries to find the biggest background empty rectangles to
extract connected regions.

Kaur et al. [12] and Zanibbi et al. [22] present surveys about the approaches
applied to table recognition. Mandal et al. dealt with the detection and segmen-
tation of tables and formulas [16, 17], and proposed a detector with the heuristic
that each table has distinct columns which implies that gaps between the fields
are substantially larger than the gaps between the words in text lines; a similar
approach was presented by Ferilli et al. in [7]. Liu et al. [15] deal with table

III

(a) XY-Cut (b) Detected illustrations (c) Final result

Fig. 1. The page layout segmentation pipeline. First the Recursive XY-Cut algorithm
is applied to detect candidate regions inside the page; then, illustrations are detected
using local autocorrelation features. A second application of the XY-Cut algorithm
gives the final segmentation.

boundary detection and content extraction considering the sparse-line property
of table rows, while Bertrand and Lemaitre [6] focuse on the recognition of tables
and forms.

3 Our proposal

3.1 Page Layout Segmentation

The first stage of our pipeline is the segmentation of the input page into co-
herent regions. Our layout analysis step builds upon the well known XY-Cut
algorithm [11], and extends it to go beyond its limitations. XY-Cut is an it-
erative top-down page segmentation algorithm, which takes as input a Region
of Interest (ROI) and segments it into rectangular regions which are separated
by white spaces. In particular, the algorithm projects the pixels’ values on the
vertical and horizontal axes of the ROI, and then finds low density regions in the
projection histograms, which corresponds to white spaces. If a low density point
is found on at least one of the projections, the ROI is split into two subregions,
which are then further analyzed (and possibly split) in the next iteration. The
resulting segmentation is therefore composed by a set of rectangular regions,
each of which is separated from the others by white space on all sides.

The XY-Cut algorithm works well with simple layouts, where elements are
actually rectangular and separated by vertical or horizontal white spaces which
span on all their sides. However, it often happens that illustrations have complex
shapes, or are surrounded by text on more than one side, thus making the
application of such a simple technique insufficient (see Fig. 1a for an example).
To complete the layout segmentation phase, we therefore apply an additional

IV

step whose aim is to detect illustrations (and their corresponding boundaries)
inside the page, and which is inspired by the algorithm proposed in [10].

The core assumption of this step is that local autocorrelation statistics are
sufficient to distinguish between text and illustration. The autocorrelation ma-
trix of a region, indeed, is an effective feature for finding repeating patterns
and is particularly suited in this case since textual textures have a pronounced
orientation that heavily differs from that of illustrations. The original image is
subdivided into square blocks of size n×n, and for each block the autocorrelation
matrix C(k, l), with k, l ∈ [−n/2, n/2], is computed. Then, the autocorrelation
matrix is encoded into a directional histogram w(·), in which each bin contains
the sum of the pixels along that direction. Formally,

w(θ) =
∑

r∈(0,n/2]

C(r cos θ, r sin θ) (1)

We compute the directional histogram in the range θ ∈ [0, 180], and quantize
θ with a step of 1, and r with a step of 1 pixel. The histogram is then concatenated
with the vertical and horizontal projections of the autocorrelation matrix, to
enhance the repeating pattern of the text lines. The resulting descriptor is fed
to a two-class SVM classifier with RBF kernel, trained to distinguish between
blocks of text and blocks of illustrations.

Given a region segmented by XY-Cut, we classify each block inside the region
as text or illustration, and identify the boundaries of illustrations by finding the
connected components created by illustration blocks. Once illustrations have
been detected, XY-Cut is again applied on a temporary image where illustrations
are removed. The final result of the layout segmentation process is the union of
the illustration regions and of the regions found by the second execution of XY-
Cut. Figure 1 gives an example of the overall process.

3.2 Table detection

We developed a simple yet effective method for table detection which is based
on the Hough transform [8] and heuristic rules. The Hough transform allows to
automatically detect lines in an image, and it is therefore appropriate to detect
structures like tables which contain vertical and horizontal lines.

The Hough transform finds objects within a certain class of shapes using a
voting procedure, which is carried out in a parameter space from which object
candidates are obtained as local maxima, in a so-called accumulator space that
is explicitly constructed by the algorithm.

A straight line in the image space can be expressed as:

– y = mx + b in the Cartesian coordinate system, with the associated point
(m, b) in the parameter space

– r = x cos θ+y sin θ in the Polar coordinate system with the associated point
(r, θ), where r is the distance from the origin to the closest point on the
straight line, and θ is the angle between the x axis and the line connecting
the origin with that closest point.

V

(a) Input region (b) Detected lines

(c) Candidate tables (d) Final result

Fig. 2. The table detection pipeline.

The Polar coordinate system permits to overcome the problem of vertical
lines, which would rise unbounded values of the slope parameter m in the Carte-
sian one. Given a single point, the set of all straight lines passing through that
point corresponds to a sinusoidal curve in the (r, θ) plane, which is unique to
that point. A set of two or more points that form a straight line will produce
sinusoids which cross at (r, θ) for that line. In general, a line can be detected by
finding the number of intersections between curves: the more curves intersect,
the more likely is that a line may be found with those parameters. A threshold
can be defined on the minimum number of intersections needed to detect a line.

The proposed algorithm starts detecting all the lines of the image region,
using the implementation proposed in [18], and selects the most promising ones
using some heuristics; finally, recursively, it uses the detected lines to build a set
of rectangles merging those that have an intersection. In this way, starting from
small adjacent table pieces (often separated due to inaccuracies of the Hough
Transform), the table area is detected.

The pseudo-code for the table detector is provided in Algorithm 1.
It should be noted that, even if the goal of the system is the attribution

of meaning to a region which comes from the Recursive XY-Cut, the proposed
algorithm is able to detect multiple table structures in a whole page, ensuring
that each structure found is the largest (piece of) table which contains all other
detected pieces of (the same) table.

Even though the results of the Hough Transform depend on its parameters
values and on the properties of the original image, the implementation of the
proposed algorithm is scalable and permits great customization: in particular,
the method which finds the longest vertical line that intersects an horizontal one
(candidate to be a side of the rectangle) permits to specify:

VI

Algorithm 1: Table detection

Lines ← HoughLines(parameters);
/* each line identified by two points (xi, yi) and (xj , yj) */

Horizontal lines ← FindHorizontals(lines);
/* xi 6= xj ∧ yi = yj */

Vertical lines ← FindVerticals(lines);
/* xi = xj ∧ yi 6= yj */

tables = { };
forall the hl ∈ Horizontal lines do

if ∃ vl ∈ Vertical lines : vl ∩ hl 6= ∅ ∧ lenght(vl)>lenght(l) ∀ l ∈ { l : l ∈
Vertical lines, l ∩ hl 6= ∅} then

rect ← BoundingRectangle(hl,vl)
end
while ∃ t ∈ tables : t ∩ rect 6= ∅ do

tables = tables-{ t };
rect ← merge(rect,t);

end
tables ← rect;

end

– the minimum number of vertical lines which must intersect an horizontal one
for a candidate horizontal line to be considered

– the minimum length of the maximum vertical line which must intersect an
horizontal one

– the offset (number of pixels) for considering an horizontal line intersecting a
vertical one

– the offset (number of pixels) for considering a vertical line intersecting an
horizontal one

3.3 Content classification

The classification step is necessary to assign each region to a specific class. In
particular, in addition to tables, we consider six different classes: text, images,
charts and graphs, formulas, scores, and borderless tables. An example of each
class is given in Fig. 3.

In order to classify each region, dense SIFT descriptors are computed us-
ing the Harris-Laplace detector. This step results in a variable number of 128-
dimensional descriptors for each region. To obtain a representation for a region,
with fixed size, we summarize SIFT descriptors using the Bag-of-Words tech-
nique. To include spatial information into the feature vector we also add the
position, the dimensions and the aspect ratio of the image bounding box. A
SVM classifier with RBF kernel is then trained using the feature vectors de-
scribed earlier. The output of this classifier is the class that will be assigned to
the region.

VII

(a) Text (b) Images (c) Charts, graphs (d) Tables

(e) Borderless ta-
bles

(f) Formulas (g) Scores

Fig. 3. We consider seven different content categories: text, images, charts and graphs,
tables, borderless tables, formulas, and scores.

3.4 JSON Description

The output of the overall pipeline is a structured JSON description. For each
page, indeed, a JSON file is created with the corresponding OCR results for
each text entry and with all the illustrations found inside the page. Moreover,
the proposed JSON schema allows textual entries to be linked together. This can
be particularly beneficial in the case of encyclopedias, in which each paragraph
belongs to a lemma.

An example of the JSON description is reported in List. 1.1. The entries

element contains all the textual entries of the page. Each entry contains the
body of the paragraph, the column the entry belongs to (in case of multi-column
documents), a boolean is tabbed that indicates whether the first line of the
paragraph is tabbed or not, and a reference to the lemma. In case the considered
text entry is a lemma, the opening element is used set a lemma identifier, which
can in turn be used to reference other paragraphs, using the lemma ref element.
Each text entry also contains the location of the text region inside the page.

Graphical elements are instead grouped into the graphics element. Each of
them is described by its own caption, position and size inside the page, and
contain a reference to the lemma it belongs to. It also contains a type field
which reports the category of the graphic element, obtained with the content
classification pipeline.

3.5 Annotation and visualization interfaces

Two more tools have been developed, the first one is an annotation tool which
allows a user to visualize the result of the analysis process and, if needed, al-
lows for modifications to the segmentation results. This tool is useful for many
reasons: it makes the creation of an annotated dataset possible for all the sub-

VIII

{
"filename": "0006_00_T_V01.K_scaled.png",

"layout": {
"entries": [

{
"body": "Sottilissimo nell ’ordine ionico greco, era quivi ordinariamente ...",

"centered": false,

"closing": {
"author": "",

"selected": false,

"sign": "",

"valid": false

},
"col": 0,

"is_tabbed": true,

"lemma_ref": {
"major": "ABACO",

"minor": "",

"pageNumber": 5,

},
"opening": {

"major": "",

"minor": "",

},
"par": {

"rect": {
"height": 137,

"width": 562,

"x": 125,

"y": 835

},
},

},
],

"graphics": [

{
"caption": {

"rect": {
"height": 24,

"width": 347,

"x": 524,

"y": 788

},
"text": "CAPITELLI DELL ’ATRIO DI S. MARCO A VENEZIA",

},
"type": ’IMAGE ’,

"hascaption": true,

"image": {
"rect": {

"height": 639,

"width": 1162,

"x": 123,

"y": 150

},
},
"lemma_ref": {

"major": "",

"minor": "",

"pageNumber": 5,

"x": 0,

"y": 0

},
},

],

}
}

Listing 1.1. JSON Description of a sample page with one text entry and one graphic
element

IX

Fig. 4. The main view of the annotation tool. A processed page is visible on the left
while on the right all the information relative to a particular page element are displayed

sequent learning and evaluation processes and allows users to apply corrections
to the processed data. A screenshot of the annotation tool is reported in Fig. 4.

The second tool is a visualization interface used to present and browse the
content of the encyclopedia, making all the information easily accessible. This
tool lets the users access the content at different levels and from different points
of view, it’s possible to browse the encyclopedia page by page, lemma by lemma
and image by image in each volume. The full text is also accessible and readable
in HTML format. Hovering the cursor over a page shows the underlying extracted
content and double clicking on it takes the user to a different view which displays
the digitized version of the document. The visualization tool is visible in Fig. 5.

4 Experimental evaluation

The performance evaluation of layout analysis algorithms can be conducted using
two different approaches, namely pixel-level and region-level. The first evaluates
how each pixel has been classified in a single page comparing the class assigned to
the pixel with the class assigned to the same pixel in the ground truth annotation,
the accuracy for a single page is then calculated as the percentage of correctly
classified pixels. A region-level approach tries instead to find the best matching
between areas of a page that are semantically coherent, called regions, between

X

(a) (b)

Fig. 5. Displaying a page in the visualization interface. The page content is highlighted
in blue when the cursor hovers on it.

XY-Cut
Whitespace

Our method
Analysis

Accuracy 61.8% 71.4% 93.8%

Table 1. Page segmentation experimental results.

the analyzed page and the ground truth annotation. Once the matching process
is completed, the accuracy value for a single page is calculated with regard to the
matching quality. In both cases a cumulative accuracy measure can be calculated
as the mean accuracy over multiple pages.

Since we use a top-down page segmentation algorithm in our method and
the final output of the page processing pipeline consists of polygons contain-
ing pixels of a page classified of the same type, we have chosen a region-level
approach to performance evaluation. We used the matching method described
by Phillips and Chhabra [19], which has also been used in the ICDAR 2003
page segmentation competition [1]. We used the suggested acceptance thresh-
old and rejection threshold, respectively 0.85 and 0.05, and we used intersection
over union as a similarity function to determine match scores. To evaluate the
classification performances we compared the results against the ground truth
annotations creating a confusion matrix and calculating accuracy values, one for
each class and a cumulative one.

All our tests have been conducted on the first volume of the “Enciclopedia
Treccani” (http://www.treccani.it), which was published in 1929 and is com-
posed of 999 pages. The block size n was set to 64, and we used the Tesseract
OCR [21]. Considering the Table detector algorithm, all the parameters, both
for the Hough Transform and for the heuristic rules, have been set empirically
performing several tests on the first 20 tables of the dataset.

Concerning the page segmentation algorithm step we have compared three
different algorithms, the standard XY-Cut, the Whitespace Analysis algorithm,
proposed by Baird in [3], and, finally our method. Results are shown in Table 1
and it is clear how our method performs largely better than the other two.

Classification results are shown in Tables 2 and 3.

XI

Class # Elements Accuracy

Images 1102 0.71
Graphics 145 0.66
Formulas 535 0.77

Tables 91 0.99
Scores 132 0.08

Borderless Tables 142 0.10
Text 13628 0.96

TOTAL 15775 0.92
Table 2. Classification accuracies

Truth
I G F S BT Txt

P
re

d
ic

ti
o
n

I 74.8% 13.2% 5.2% 0.8% 0.8% 5.3%
G 6.6% 70.6% 11.0% 1.5% 1.5% 8.8%
F 3.2% 4.5% 77.4% 0% 2.1% 12.8%
S 16.0% 6.4% 62.4% 8.8% 1.6% 4.8%

BT 4.1% 7.4% 37.7% 0% 11.5% 39.3%
Txt 0.2% 0.3% 1.8% 0% 0.3% 97.3%

Table 3. Confusion matrix for classification results of the SVM classifier.

5 Conclusion

We presented a complete pipeline for layout analysis and content classification in
digitalized documents. The layout analysis algorithm is based on the Recursive
XY-Cut and an SVM-aided illustration detection, while the content classifica-
tion pipeline builds on the Hough transform for table classification and on local
features for the classification of images, scores, formulas and charts. The final
output is a JSON description, which can in turn be used by two tools, useful
for the display and correction of analyzed data. Experimental results showed the
effectiveness of our method when tested on the first volume of the “Enciclopedia
Treccani”.

References

1. Antonacopoulos, A., Gatos, B., Karatzas, D.: Icdar 2003 page segmentation com-
petition. In: ICDAR. pp. 688–. IEEE (2003)

2. Appiani, E., Cesarini, F., Colla, A.M., Diligenti, M., Gori, M., Marinai, S., Soda,
G.: Automatic document classification and indexing in high-volume applications.
International Journal on Document Analysis and Recognition 4(2), 69–83 (2001)

3. Baird, H., Jones, S., Fortune, S.: Image segmentation by shape-directed covers. In:
International Conference on Pattern Recognition. vol. i, pp. 820–825 vol.1 (Jun
1990)

4. Cesarini, F., Lastri, M., Marinai, S., Soda, G.: Encoding of modified xy trees for
document classification. In: Document Analysis and Recognition, 2001. Proceed-
ings. Sixth International Conference on. pp. 1131–1136. IEEE (2001)

XII

5. Chen, K., Yin, F., Liu, C.L.: Hybrid page segmentation with efficient whitespace
rectangles extraction and grouping. In: Document Analysis and Recognition (IC-
DAR), 2013 12th International Conference on. pp. 958–962. IEEE (2013)

6. Coasnon, B., Lemaitre, A.: Recognition of tables and forms. In: Doermann, D.,
Tombre, K. (eds.) Handbook of Document Image Processing and Recognition, pp.
647–677. Springer London (2014)

7. Di Mauro, N., Ferilli, S., Esposito, F.: Learning to recognize critical cells in docu-
ment tables. In: Digital Libraries and Archives, pp. 105–116. Springer (2013)

8. Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves
in pictures. Communications of the ACM 15(1), 11–15 (1972)

9. Esposito, F., Malerba, D., Lisi, F.A.: Machine learning for intelligent processing
of printed documents. Journal of Intelligent Information Systems 14(2-3), 175–198
(2000)

10. Grana, C., Serra, G., Manfredi, M., Coppi, D., Cucchiara, R.: Layout analysis and
content enrichment of digitized books. Multimedia Tools and Applications (Nov
2014)

11. Ha, J., Haralick, R.M., Phillips, I.T.: Recursive xy cut using bounding boxes of con-
nected components. In: Document Analysis and Recognition, 1995., Proceedings
of the Third International Conference on. vol. 2, pp. 952–955. IEEE (1995)

12. Kaur, S., Sharma, D.V.: Table structure identification from document images: A
survey (2015)

13. Kise, K., Sato, A., Iwata, M.: Segmentation of page images using the area voronoi
diagram. Computer Vision and Image Understanding 70(3), 370–382 (1998)

14. Lazzara, G., Levillain, R., Géraud, T., Jacquelet, Y., Marquegnies, J., Crépin-
Leblond, A.: The scribo module of the olena platform: a free software framework
for document image analysis. In: Document Analysis and Recognition (ICDAR),
2011 International Conference on. pp. 252–258. IEEE (2011)

15. Liu, Y., Mitra, P., Giles, C.L.: A fast preprocessing method for table boundary
detection: Narrowing down the sparse lines using solely coordinate information.
In: The Eighth IAPR International Workshop on Document Analysis Systems. pp.
431–438. IEEE (2008)

16. Mandal, S., Chowdhury, S.P., Das, A.K., Chanda, B.: Detection and segmentation
of tables and math-zones from document images. In: Proceedings of the 2006 ACM
Symposium on Applied Computing. pp. 841–846. SAC ’06, ACM (2006)

17. Mandal, S., Chowdhury, S., Das, A., Chanda, B.: A simple and effective table de-
tection system from document images. International Journal of Document Analysis
and Recognition (IJDAR) 8(2-3), 172–182 (2006)

18. Matas, J., Galambos, C., Kittler, J.: Robust detection of lines using the progressive
probabilistic hough transform. Comput. Vis. Image Underst. 78(1), 119–137 (Apr
2000), http://dx.doi.org/10.1006/cviu.1999.0831

19. Phillips, I.T., Chhabra, A.K.: Empirical performance evaluation of graphics recog-
nition systems. IEEE Transactions on Pattern Analysis and Machine Intelligence
21(9), 849–870 (Sep 1999)

20. Sebastiani, F.: Machine learning in automated text categorization. ACM comput-
ing surveys (CSUR) 34(1), 1–47 (2002)

21. Smith, R.: An overview of the tesseract ocr engine. In: International Conference
on Document Analysis and Recognition. pp. 629–633. IEEE (2007)

22. Zanibbi, R., Blostein, D., Cordy, J.: A survey of table recognition. Document Anal-
ysis and Recognition 7(1), 1–16 (2004)

