This is the peer reviewd version of the followng article:

GPU-accelerated algorithms for many-particle continuous-time quantum walks / Piccinini, Enrico;
Benedetti, Claudia; Siloi, llaria; Paris, Matteo G. A.; Bordone, Paolo. - In: COMPUTER PHYSICS
COMMUNICATIONS. - ISSN 0010-4655. - 215:(2017), pp. 235-245. [10.1016/j.cpc.2017.02.014]

Terms of use:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

20/04/2024 09:01

(Article begins on next page)

GPU-accelerated algorithms for many-particle
continuous-time quantum walks™

Enrico Piccinini®®*, Claudia Benedetti®, Ilaria Siloi®, Matteo G. A. Parisd,
Paolo Bordone®?

®Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione “Guglielmo
Marconi” - DEI, Universita di Bologna, I-40136 - Bologna, Italy
b Quantum Technology Lab, Dipartimento di Fisica, Universita degli Studi di Milano,
1-20133- Milano, Italy
¢Dipartimento di Scienze Fisiche, Informatiche e Matematiche - FIM, Universita di
Modena e Reggio Emilia, I-41125 - Modena, Italy
dCentro S3, CNR-Istituto di Nanoscienze, 1-41125 - Modena, Italy

Abstract

Many-particle continuous-time quantum walks (CTQWS) represent a resource
for several tasks in quantum technology, including quantum search algorithms
and universal quantum computation. In order to design and implement
CTQWs in a realistic scenario, one needs effective simulation tools for Hamil-
tonians that take into account static noise and fluctuations in the lattice, i.e.
Hamiltonians containing stochastic terms. To this aim, we suggest a parallel
algorithm based on the Taylor series expansion of the evolution operator,
and compare its performances with those of algorithms based on the exact
diagonalization of the Hamiltonian or a 4-th order Runge-Kutta integration.
We prove that both Taylor-series expansion and Runge-Kutta algorithms
are reliable and have a low computational cost, the Taylor-series expansion
showing the additional advantage of a memory allocation not depending on
the precision of calculation. Both algorithms are also highly parallelizable
within the SIMT paradigm, and are thus suitable for GPGPU computing.
In turn, we have benchmarked 4 NVIDIA GPUs and 3 quad-core Intel CPUs
for a 2-particle system over lattices of increasing dimension, showing that

"This paper and its associated computer program are available via the Computer
Physics Communication homepage on ScienceDirect (LINK).

*Corresponding author.
E-mail address: enrico.piccinini@unibo.it

Preprint submitted to Computer Physics Communications March 2, 2017

10

15

20

25

the speedup provided by GPU computing, with respect to the OPENMP
parallelization, lies in the range between 8x and (more than) 20x, depending
on the frequency of post-processing. GPU-accelerated codes thus allow one
to overcome concerns about the execution time, and make it possible simu-
lations with many interacting particles on large lattices, with the only limit
of the memory available on the device.

Keywords: GPU, CUDA, Continuous-Time Quantum Walks

PROGRAM SUMMARY
Program Title: cuQuWa
Licensing provisions: GNU General Public License, verson 3
Programming language: CUDA C
Computer: Any with a CUDA-compliant GPU
Operating system: Any
RAM: Problem dependent, from MB to GB of GPU memory
Ezxternal routines: cuBLAS, cuRAND
Nature of problem: Evolution of many-particle continuos-time quantum-walks on
a multidimensional grid in a noisy environment. The submitted code is specialized
for the simulation of 2-particle quantum-walks with periodic boundary conditions.
Solution method: Taylor-series expansion of the evolution operator. The density-
matrix is calculated by averaging multiple independent realizations of the system.
Unusual features: Simulations are run exclusively on the graphic processing unit
within the CUDA environment. An undocumented misbehavior in the random-
number generation routine (cuRAND package) can corrupt the simulation of large
systems, though no problems are reported for small and medium-size systems.
Compiling the code with the -arch=sm 30 flag for compute capability 3.5 and
above fixes this issue.
Running time: Problem dependent, from minutes to hours

1. Introduction

Quantum walks (QWSs) are a generalization of classical random walks
to the quantum regime. They were first introduced in the discrete-time
version [1] and later as continuous-time quantum walks (CTWQs) in the
context of quantum computation and decision trees [2]. In this framework,
it has been shown that single-particle quantum walk-based algorithms may
outperform the classical counterpart in terms of traveling time through a
graph. Since then, QWs, both in the continuous- and discrete-time versions,

30

35

40

45

50

55

60

65

have been the subject of extensive studies. Besides, QWs have been gen-
eralized to many-particle quantum walks, where the time evolution of the
walkers depends upon their statistics, indistinguishability and kind of in-
teraction [3, 4, 5, 6, 7]. CTQWSs on more complex structures, e.g., complex
graphs, have been also the focus of more recent analysis [8, 9, 10, 11]. Overall,
CTQWs have been proved a useful tool in a variety of contexts, ranging from
transport through a graph [12], to quantum search algorithms [13, 14], graph
isomorphism testing [15, 16, 17] and universal quantum computation [18, 19].

In realistic experimental scenarios, imperfections in the fabrication of
the lattice may induce Anderson localization of the walkers [20, 21, 22, 23],
whereas stochastic fluctuations of the environment may come into play de-
stroying the quantumness of the system, i.e., the superposition of states and
the phase coherence, and, in turn, its peculiar propagation features character-
ized, for instance, by the single-particle position variance [24, 25, 26, 27]. A
more realistic description for noisy quantum walks should therefore take into
account the noise that may affect the evolution of the walkers. A convenient
way to describe noise is to introduce suitable stochastic terms in the Hamilto-
nian, in order to model static or dynamical fluctuations that may affect both
the on-site energies or the tunneling amplitudes of the walkers [28, 25, 26].
The dynamical evolution of the QW is then obtained as the ensemble average
over all possible realizations of the stochastic processes mimicking the noise.
In practice, the ensemble average is computed numerically as an average over
a finite number of realizations: the larger the number of the realizations, the
more accurate the simulation of the CTQW.

Evaluating the dynamics of a many-particle state over a noisy lattice
requires the numerical solution of a set of differential equations which in-
clude stochastic terms [29]. The total number of equations to solve grows
rapidly as long as the numbers of nodes, particles, and realizations increase,
thus making the problem more and more computationally demanding with
longer execution times. In fact, codes for simulating many-particle CTQWs
have been developed for high-performance clusters with distributed mem-
ory [30]. On the other hand, the evolution of computer architectures to-
wards multicore processors even in stand-alone workstations enabled impor-
tant cuts of the execution time by introducing the possibility of running
multiple threads in parallel and spreading the workload among cores. This
possibility was boosted up by the general purpose parallel computing ar-
chitectures of modern graphic cards (GPGPUs). In the latter, hundreds or
thousands of computational cores in the same single chip are able to process

70

75

80

85

90

95

100

simultaneously a very large number of data. It should also be noted that an
impressive computational power is present not only in dedicated GPUs for
high-performance computing, but also in commodity graphic cards, which
make modern workstations suitable for numerical analyses. In order to ex-
ploit such a huge computational power, algorithms must be first redesigned
and adapted to the SIMT (Single Instruction Multiple Thread) and SIMD
(Single Instruction Multiple Data) paradigms and translated then into pro-
gramming languages with hardware-specific subsets of instructions. Among
them, one of the most diffuse is CUDA-C, a C extension for the Compute
Unified Device Architecture (CUDA) that represents the core component of
NVIDIA GPUs. As a matter of fact, the use of GPUs for scientific analysis,
which dates back to mid and late 2000’s [31, 32, 33, 34, 35|, dramatically
boosted with a two-digit yearly increasing rate since 2010. Just looking at
the computational physics realm, several GPU-specific algorithms have been
proposed in the last three years, e.g. for stochastic differential equations [36],
molecular dynamics simulations [37, 38], fluid dynamics [39, 40], Metropolis
Monte Carlo [41] simulations, quantum Monte Carlo simulations [42], and
free-energy calculations [43].

The evolution of many-particle QWs in a noisy environment can be clas-
sified as an embarassing parallel problem, since there is little to none com-
munication among realizations. Problems of this kind take great advantage
of GPGPU computing, since the solving algorithms can be designed to run
directly on the GPU in such a way that communications are implemented via
shared memory on the device (graphic card) and data transfer between the
host (CPU) and the device and v.v. is limited to unavoidable input/output
operations.

In this paper, we have compared parallel algorithms for CTQWSs evolution
in a noisy environment based on the exact diagonalization of the Hamilto-
nian, the 4-th order Runge-Kutta integration method and the Taylor-series
expansion of the evolution operator. Solutions that avoid the diagonalization
of the Hamiltionian (besides those implemented in this work, see also, e.g.,
Refs. [44, 45, 46, 47]) result in a lower computational cost and pave the way
to highly parallelizable algorithms within the SIMT paradigm, thus leading
to a straightforward implementation directly on the GPU. We have then
benchmarked 4 NVIDIA GPUs and 3 quad-core Intel CPUs for a 2-particle
system over a lattice of increasing dimensions and have shown that the GPU
speedup with respect to the OPENMP parallelization fluctuates from 8x to
more than 20x, depending on the frequency of post-processing. Thus, GPU-

4

105

110

115

120

accelerated codes allow the design of simulations involving many particles or
large lattices, with the only limit of the memory available on the device.

The paper is organized as follows: In Sect. 2 we discuss and derive efficient
algorithms for the dynamics of CTQWs; in Sect. 3 we provide the main details
on their implementation and in Sect. 4 we compare the performances of the
algorithms on different CPUs and GPUs. Sect. 5 closes the paper with some
concluding remarks.

2. Algorithms for quantum walks in a noisy environment

Let us consider a g-dimensional regular lattice hosting m quantum par-
ticles, and let IV; and 2k; be the numbers of mesh elements (nodes) and of
neighbors to be considered along the i-th direction. The system in hand is
described by an N x N™ matrix, storing the elements of the Hamiltonian
H and by a N™ vector for the wave-function ¥, where N = [[, N; is the
total number of mesh nodes. When k =), 2k; < N, the Hamiltonian H is
largely sparse with a maximum filling factor (mk + 1) /N™.

Since we are interested in quantum walks in a noisy environment, tran-
sitions from node « to node § are ruled by a deterministic (c,s) and a
stochastic (£,5) parameter, independently of which of the m particle jumps
between them. Let T = {z1,29...,2,} and ¥ = {y1,¥2...,Ym}, where
(xs,ys) € [1, N], be the initial and final sets of nodes of a transition. The
deterministic coefficients ¢ read: ¢, ,, = cqpg, for any s € [1,m| such that
rs = a and y; = . The same applies for the stochastic coefficients £.These
terms switch between multiple values at random times during the simulation
(switching times) in order to describe (generally time-dependent) fluctuations
induced by lattice imperfections and/or external sources of noise. Let

T=2(r,29...,2py) = 1+ZN5_1(xS -1,
s=1

Q: g(ylayQ"'aym> :1+ZN871(?J5_1),

s=1
in the position basis, the elements of the Hamiltonian H;; read
Ciz + &2y MY=1

Hig = Casys + &y, if (25, ys) such that z, is connected to y, . (1)
0 otherwise

125

130

135

140

145

150

155

The terms H;; quantify both the on-site energies of the walkers and
the interaction energy among particles, whereas the terms H;; with # y
describe the tunneling amplitudes between neighboring sites.

The interaction energy among particles is included in the diagonal de-
terministic terms cz;. A significant example concerning the case of nearest
neighbor interaction is reported in Ref. [26]. The repulsive or attractive na-
ture of the interaction does not play a role on the dynamics of the particles
here, as also noted in [48]. The applicability and the performances of the al-
gorithm are also independent of the specific kind of interaction, since dealing
with a different process only changes the numerical entries on the diagonal
elements of the Hamiltonian and does not affect the features of our code.
Moreover, our code is independent on the statistical nature of the particles,
since Hamiltonian (1) conserves the statistics. This implies that we are able
to describe both bosons and fermions dynamics by a suitable input param-
eter setting either symmetrized or anti-symmetrized initial quantum state.
Then, the time evolution preserves the initial symmetry.

Hamiltonian (1) allows us to describe a large variety of physical sys-
tems, ranging from many-particle QWs [25, 26], to Bose-Hubbard and Fermi-
Hubbard models [49, 50, 51], where dynamical noise has been a very chal-
lenging issue to address so far, due to the computational complexity of the
problem. The ability to explore in a systematic and detailed way the effect
of stochastic noise on the dynamics of many-particle systems is a relevant
tool to better describe realistic systems and to open up the road to the full
understanding of the mechanisms of transport and diffusion over complex
networks.

In particular, the decoherent dynamics of two interacting particles hop-
ping on a one-dimensional noisy lattice has been recently addressed [26],
showing that accelerated codes allow one to explore very different dynami-
cal regimes upon tuning the ratio between the time scale of the noise and
the interaction among the walkers. Under appropriate initial condition, the
dynamics in the presence of fast noise (e.g., fast decaying autocorrelation
function) leads to a faster propagation with respect to the unitary evolution,
as detected by the variance of the single particle probability distribution
0?(7); on the other hand, in the slow noise regime (e.g., slow decaying auto-
correlation function) the system displays an Anderson-like localization, and
propagation is suppressed. Results are reported in Figure 1. As it is ap-
parent from the plots, the behavior of the two fermions with next-neighbor
interaction (and starting from next-neighbor sites) is very close, at least qual-

6

160

165

170

175

180

185

itatively, to that of two bosons with on-site interaction (and starting from
the same site).

The time evolution of the system is provided by the Schrédinger equation

R AT

g

where A is the reduced Planck constant; the knowledge of |¥(¢)) at each

time step yields the N x N™ density matrix p(t) = |¥(¢))(W(¢)|, which is

used to evaluate the average over realizations (p(t)) and eventually further
post-processed to calculate any desired observable quantity.

Consequently to the introduction of random terms, in order to avoid over-
weighting of outliers and produce a reliable ensemble average it is required to
run a sufficiently large number R of simulations (a.k.a. realizations, usually
R >1000), and then averaging the density matrix. In order to speed-up the
calculation, and significantly cut the execution time, realizations can be run
in parallel, as they are independent from each other. However, in the parallel
execution memory usage rapidly increases because at least an Hamiltonian
matrix H; and a wave-function ¥; must be stored for each realization i. As
a matter of fact, memory occupancy may become quickly an issue when the
grid size or the number of particles increases.

= H|W), (2)

2.1. Diagonalization of the Hamiltonian

If we suppose that the Hamiltonians H; do not change significantly within
the time-step 0t, eq. (2) can be solved in the quasi-static approximation. The
exact time evolution of a QW is provided by the well-known eigenproblem

(Hi — &)|W;) =0, (3)

that yields the eigenvalues €;; and the eigenvectors w;; of the i-th Hamilto-
nian. The evolution of the wave function is then given by

The pseudocode for the parallel implementation is given in Algorithm 1.

It is worth noticing that a) this algorithm requires a large number of
computationally intensive events of the order ~ O(N®™) and b) it is necessary
to store N™ eigenvectors of N™ components per realization, which is exactly
the same memory space that the dense Hamiltonian matrix would occupy.
As a matter of fact, this issue may jeopardize the efficiency of the code, even
in the case of a parallel implementation.

7

fermions bosons

80 80
— noiseless
| |- = noisy

2

Figure 1: Single particle variance o“ as a function of the dimensionless time 7 for two
interacting fermions (left) and bosons (right) starting from next-neighbors sites and same
site, respectively. In the present case fermions interact when occupying neighboring sites,
while bosons the same site. Each panel considers a different interaction strength V', whose
value is normalized to the next-neighbors lopping probability. The noiseless evolution
(solid black line) is here compared with the one obtained in fast noise regime (dashed red
line), where the stochastic terms &, (o #)switch between values £0.9 with a switching
rate (normalized to next-neighbors hopping probability) equal to 10.0.

190

195

200

205

Algorithm 1 Pseudocode for solving the CTQW dynamics via diagonaliza-

tion of the Hamiltonian matrix
1: Initialize Hamiltonians H;

2: Initialize switching times
3: while time ¢t < t,,,x do

4: for all realizations do > Begin Parallel Section
5: Diagonalize H; — {&;;, wi; }

6: [Wi(t +0t)) = 35, e i fwyg) (wis | W4 (t))

7 Update switching times

9: end for > End Parallel Section, ~ O(N®™)
10: t<t+0t

11: if postprocessing then

12: (p(t)) = & 22: [W:(1)) (Wi(2)] >~ O(N*")
13: Post-process (p(t))

14: end if

15: end while

2.2. Integration of ordinary differential equations

Going back to the general solution of eq. (2), we may directly tackle
the time-dependent Schrodinger equation as a set of ordinary differential
equations for the vector |¥;) and solve it by means of standard integration
techniques that dispose of the calculation of the eigenstates. A widely-used
integration scheme is represented by the 4th-order Runge-Kutta method.

In this case, there is no need of allocating a memory space as large as a
dense Hamiltonian would require. The Hamiltonian topology, i.e., how nodes
are connected to each other, is known a-priori from the definition of the mesh,
and holds true for all of the realizations. In principle, up to mk + 1 non-null
elements are present in each row of the Hamiltonian. As a consequence, each
of the N x N™ Hamiltonians H; can be stored as a N x (mk + 1) reduced
matrix #;. A common N™ x (mk + 1) topology matrix holding the indexes
of non-null elements also adds. Since transitions from node «a to node
and v.v. share the same rate, the symmetry of H; allows for further memory
savings down to N™ x (mk/2+1) elements. These relationships hold true for
a regular lattice; in the case of a general graph, where each site is connected
to a variable number of other nodes, the approach is still applicable with
the only difference that the number k£ of non-null elements per row in the

210

215

220

topology matrix is replaced by the number of connections.

The 4th-order Runge-Kutta procedure lets the wave-functions |¥;) evolve
by means of the linear combination of 4 intermediate states | K Z.(j)>, j=1...4.
The evaluation of any component belonging to the j-th intermediate state
requires only the knowledge of the wave-function at the current time step,
the reduced Hamiltonian and the (j — 1)-th state at the indexes stored in
the corresponding row of the topology matrix. Since nodes are topologically
equivalent to each other, SIMD and SIMT paradigms apply, allowing for a
second degree of parallelization over nodes. The parallelizations over realiza-
tions and over nodes can be collapsed into a larger loop (RN™ steps), which
may better balance the computational burden assigned to each computing
unit. The pseudocode for the implementation of the 4th-order Runge-Kutta
method is reported in Algorithm 2.

Algorithm 2 Pseudocode for solving the CTQW dynamics via integration
of the Schrédinger equation using the 4th-order Runge-Kutta method

1: Define Hamiltonian topology

2: Initialize reduced Hamiltonians 7—21

3: Initialize switching times

4: while time t < t,,,x do

5 for all realizations do > Begin Parallel /SIMT Section
6: for j=1—4do

7 (192, 1) 7,) = 1K)

8 end for '

9: Wit +dt)) — iy] K)

10: Check norm of |, (¢ + dt))

11: Update switching times

12: 7‘21 — ﬂz(t + 6t)

13: end for > End Parallel/SIMT Section, ~ O(RN™)
14: tt+4 0t

15: if postprocessing then

6 (p() — LY W))] > ~ O(RN?™)
17: Post-process (p(t))

18: end if

19: end while

The scheme in Algorithm 2 requires a single loop of sums and products;
the algorithmic complexity of time evolution is thus reduced to the order

10

225

230

235

240

~ O(RN™), with a large speedup compared to the case discussed in Sect.
2.1. The most computationally intensive routine is now represented by the
calculation of the average density-matrix, order ~ O(RN?™), whose number
of calls may vary depending on the desired precision of the output.

The 4-th order Runge-Kutta method does not conserve the norm, and
intermediate checks and corrective actions are required to avoid unphysical
outcomes. It may also happen that the norm of |W,;(¢)) strongly deviates
from its theoretical value within a single time step. In order to fix this issue
two strategies may be devised. In the first one, higher-order Runge-Kutta
methods can similarly be implemented to reach a better accuracy within the
same time step, but memory allocation would grow since a larger number
of intermediate states are required. On the other hand, one could reduce
the time step in such a way that the cumulative error does not drive the
simulation far away from its correct path. The immediate shortcoming is
the increase of the running time inversely proportional to the step reduc-
tion; nonetheless, this solution becomes mandatory if it is not possible nor
convenient to increase the memory allocation.

2.3. Series expansion of the evolution operator

Algorithm 2 may be modified in order to make the memory allocation
independent of the required precision and slightly reduced with respect to the
Runge-Kutta integration method. Upon introducing the evolution operator

~

U;(dt), such that
Wit +6t)) = Us(68) | Wilt))

we may rewrite Eq. (2) in terms of U;(6t) instead of |W,(t)), i.e.

md”(ft) — LU (5). (5)

The formal solution is given by
Upon expanding LA{i(ét) in Taylor series we have

~ 7 R 1 i R 2
Ui(dt) =1 + (—ﬁami) +3 (_ﬁami) +t

1 i\ i\

11

(6)

245

250

255

260

265

the wave-function can be recast as
T (t+ot) =3 [0V (¢ Lot 1) 10, 7
o) =3l @) +o((-pok) wey). @
where

and

. Ti . —
() = —Sotiler V().

The pseudocode for the evolution of the wave-functions by means of the
expansion of the evolution operator in Taylor series is shown in Algorithm
3. In order to understand the similarities and the difference between the two
methods, let us remind that the coefficients 11, in the Runge-Kutta expansion
are, in general, determined by an educated fitting of a formal Taylor series
expansion of the unknown functions in such a way that the truncation error is
the same. Due to the exponential form of the evolution operator, there is also
a perfect coincidence between the n-th order Taylor series expansion and the
n-th order Runge-Kutta method [52]. The advantage of the Taylor expansion
is represented by the progressive updating of |¥;(¢)) with the help of the
auxiliary vector |®;(t)), which is overwritten at each step of the expansion
loop. Thus, the memory allocation of auxiliary variables does not depend any
more on the precision of the calculation, without increasing the algorithmic
complexity. Notice that at the same time, all the arguments discussed in
Sect. 2.2 about the heaviest routines (and the influence of the time step on
the results) still hold true.

3. Implementation

Algorithms 1-3 have been implemented to run on multicore shared-memory
workstations and graphic accelerators, making use for linear algebra of the
BLAS and LAPACK or the cuBLAS and CULA [53] libraries on the host
system and on the device, respectively. We have not tackled any advanced
memory optimization: as it will be discussed in Sect. 4, benefits brought in by
a highly-optimized code are not expected to further increase the performance
gain significantly.

As far as Algorithm 1 is concerned, we envisage two workflows for parallel
execution. On the one hand, would memory not be an issue, one can split

12

270

280

Algorithm 3 Pseudocode for solving the CTQW dynamics via Taylor series
expansion of the evolution operator

1: Define Hamiltonian topology

2: Initialize reduced Hamiltonians 7—21

3: Initialize switching times

4: while time t < t,,.x do

5 for all realizations do > Begin Parallel/SIMT Section
6: (@ (1)) « |Wi(t))

7: (W, (t + 0t)) < |W,(t))

8: for j=1—ndo .

9: @9 (1)) = —LstH,|B7 ™ (1))

10: (W;(t 4 61)) < |Wi(t + 60)) + [®Y (1))

11: end for

12: Check norm of |W,(t + dt))

13: Update switching times

14: 7‘21 — 7‘21 (t + 6t)

15: end for > End Parallel/SIMT Section, ~ O(RN™)
16: t<«t+40t

17: if postprocessing then

18: (p(t) < & 22 [Wi(0)(Wi(t))] >~ O(RN*™)
19: Post-process (p(t))

20: end if

21: end while

realizations among non-communicating cores in such a way that, even though
the single realization is serialized, a number of realizations are handled at the
same time. On the other hand, it may be convenient to serialize realizations
and decrease the single-realization running time by spreading the matrix
diagonalizations and the matrix-matrix products on multiple cooperating
cores. In principle, the latter solution can be pushed farther if a large number
of computing cores are available to the programmer, as it is the case of GPUs.

The execution times required by the diagonalization of symmetric matri-
ces with single precision data (ssyev function of the Intel MKL 11.2 library)
have preliminarily been measured for 3 Intel processors, then the outcomes
have been projected over 10° calls, which is the typical number of diagonaliza-
tions required for the problem in hand. As shown in Figure 2, a simulation
may last for years, which is a virtually infinite time for a computational

13

285

290

295

300

10

A
= £ Xeon E3-1241 v3 @3.4GHz : i ‘ ,’
Core i5-4570R @2.7GHz /
o 8[|~ A Core i7-3770 @3.4GHz ' * Van
8 &
> /
o 8| |
£ / A
_— 7 7/
C / //
2 4 Koo i
-} 7 //
8 /// bl
> A
Lu 2 // .7
- A -7 /E
S8
: _-£e=-h : H
0@_ A A_ —— A.—.—, = 7 H H
0 2000 4000 6000 8000 10000

Matrix size (rows)

Figure 2: Projected execution time required for diagonalizing 10° times a symmetric matrix
in single precision with the MKL 11.2 library. The tests have been performed on 4 CPU
cores, as this configuration preliminarily proved to maximize the overall performance.

physics problem. According to CULA white-papers [53], the corresponding
routine ported to GPUs may achieve a speedup ranging from 3x to 10x,
a condition that still prevents any investigation from completing within an
affordable time.

Algorithms 2 and 3 have been implemented by means of 15 kernels directly
on the GPU, then the corresponding OPENMP versions have been derived
by replacing kernel invocations with loops. This approach allows for a direct
execution time comparison since the number of floating-point operations is
basically the same between host and device execution.

The two algorithms share the same 4-stage workflow (1. initialization;
2. wave-function evolution; 3. Hamiltonian update; 4. density-matrix calcu-
lation and post-processing) and approximately 90% of the code. Contrarily
to Algorithm 1, where the limiting factor is primarily represented by time,
the limiting factor of Algorithms 2 and 3 is given by the memory required to
store the (symmetric, complex) density-matrix (p(t)) and the wave-functions
|W;(t)). Top level, high-performance solutions for GPGPU computing like
NVIDIA Tesla K80 offer up 24 GB of GPU-RAM, which cap the maximum
size around 51000 rows (e.g., ¢ = 2, m = 2, Ny - Ny = 225).

14

305

310

315

320

325

330

4. Performance evaluation

In order to evaluate the performance of Algorithms 2 and 3 we tested the
case of unidimensional, 2-particle, nearest-neighbor CTQWs with periodic
boundary conditions (i.e., ¢ = 1, m = 2, k = 2) and random noise on the
tunneling energies. Simulations of 1500 time steps for R = 1000 realizations,
with different rates for post-processing (from 1 out of 1500 to 1 out of 10
time steps) have been run on the following hardware:

e Intel CPU: Core i5-4570R @ 2.7 GHz and 8 GB RAM (4 cores), OS
X 10.10.5

e Intel CPU: Core i7-3770 @ 3.4 GHz and 4 GB RAM (4 cores), 64-bit
Linux OS

e Intel CPU: Xeon E3-1241 v3 @ 3.5 GHz and 16 GB RAM (4 cores),
64-bit Linux OS

e NVIDIA GPU: Tesla M2050 with 3 GB VRAM, ECC enabled, Com-
pute capability 2.0, CUDA Toolkit 5.0

e NVIDIA GPU: Tesla K40 with 12 GB VRAM, ECC enabled, Com-
pute capability 3.5, CUDA Toolkit 7.5

e NVIDIA GPU: Tesla K80 with 24 GB VRAM, ECC enabled, Com-
pute capability 3.7, CUDA Toolkit 7.5

e NVIDIA GPU: GeForce GTX980 with 4 GB VRAM, no ECC, Com-
pute capability 5.2, CUDA Toolkit 6.5

The OPENMP source code has been compiled with the Intel C++ Com-
piler (ICC) version 15.0.3 for Linux and version 15.0.7 for OS X; the CUDA
source code with the NVIDIA CUDA Compiler (NVCC), with no further op-
timizations other than those provided by default. Preliminary runs on GPUs
proved that 256 threads per block maximize the efficiency.

The execution times of the 4-th order Runge-Kutta and of the series
expansion methods are basically the same. Depending on the hardware, very
few seconds in favor of one algorithm or the other are reported; differences
become negligible as long as the size of the mesh increases (see Figure 3 for
tests performed on the Tesla K40). Therefore, we proceed in the analysis

15

335

340

345

®—® 1 outof 10
B 1 out of 25
4—¢ 1 out of 1500

Execution time difference (%)

0 2000 4000 6000 8000 10000 12000 14000 16000
Matrix size (rows)

Figure 3: Runtime difference between Algorithms 2 and 3 on a K40 board as a function
of the post-processing rate. The 4-th order Runge Kutta method is on average 2 seconds
faster, which becomes a negligible time as long as the size of the problem increases.

only with Algorithm 3 and assume that the same conclusions hold true also
for Algorithm 2.

Figure 4 illustrates the execution time of the Series expansion algorithms
as a function of the problem size for the three CPUs under test. The run-
ning times for Core-i7 and Xeon E3 processors exhibit a similar qualitative
behavior: clear performance losses around 7500 and 12500 rows, and, in gen-
eral, a very similar shape of the execution time vs. matrix size curve. These
evidences are lacking in the Core-i5 case, where the execution time steadily
increases as a function of the matrix size without any particular gain or
loss. Since the main difference between the Core-i5 and the Core-i7/Xeon
E3 cases regards the compiler and the associated mathematical library (ICC
15.0.3 for Linux instead of ICC 15.0.7 for OS X), we attribute the underper-
formance to a failing code optimization or bad memory handling specific of
the compiler-mathematical library bundle.

The analogous execution time comparison for the codes running on the
four GPUs is shown in Figure 5. All tests are completed in less than 1
hour, with running times very similar to each other. The only exception is

16

300 150 A
Core 5-4570R A pat AT VSV
250 G £ Xeon E3-1241v3 L N
— 4 A Core i7-3770 BN 120 I
2 ’ 2 [&%
€ 200 . E
© A,AA © 90 st
£ 150 X £)3
= Ve = P 5|
s e A L aeTd S & ol i o2
3 100 e o 3 £ p 57
9] A 385“ 9] s et
) A gt] G fret ol
A OB 30 a8 O P
50 e £ BBE}'EH
TN e AEpHE
opaads’ opeBut®
2000 4000 6000 8000 10000 12000 14000 16000 2000 4000 6000 8000 10000 12000 14000 16000
Matrix size (rows) Matrix size (rows)
(a) (b)
120 90
B
1.
100 & 75 "
— 1 D
2 " k= P
€ 80 L E60 -
< i © Loaita
£ WU A £ N VY S
= 60 Pnps =45 v
s PE S IR
= / 5 A/ !
3 40 PG VA 30 LA !
: e/ 5 Pasaat® 4 @eo
Iy w
n 2® .. g @ bpeted 5 Ay Ao ouf B8
2 S dDL Sicraay é SR A o - B
A -5 A 3
A fagcl=ls A ARG T BaD
0 LasFET BBEET
2000 4000 6000 8000 10000 12000 14000 16000 2000 4000 6000 8000 10000 12000 14000 16000
Matrix size (rows) Matrix size (rows)
(c) (d)
90 180
A
75 i 150
g 0 B
£ 60 = £ 120 Ao aw
9] ! |V A
£ B N - [N
=45 BV AR = %0
g iavy 2 £
3 30 LA 3 £ B
8 A Apt o 60 7~ A
x Art aX [] ‘ / petn
nj X [nj AAﬁ Nl [\-UH
15 W -y HR P peEl 30 & %@ﬁa\ﬁ/
4 g e
A ﬁé/zxﬂasg(oo TEET g&f}gﬂﬁ @
A,Eé_@ omﬁegﬁ’
2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
Matrix size (rows) Matrix size (rows)

() (f)

Figure 4: Execution time of the OPENMP code for different rates of post-processing. 4(a):
1/10 time steps; 4(b): 1/25 time steps; 4(c): 1/100 time steps; 4(d): 1/250 time steps;
4(e) and 4(f): 1/1500 time steps. Panel 4(f) refers to the execution time of the single-core
case.

17

350

355

360

365

370

375

380

represented by the Tesla M2050 board that underperforms its competitors,
though retaining a substantial gain over any OPENMP execution. In general,
the fastest runs are achieved with the GeForce GTX980 board thanks to a
superior clock rate. Notice that GeForce boards are not certified for GPGPU
computing due to lack of ECC memory, and uncontrolled bit-flips or erratic
bits in the memory locations devoted to the storage of |¥;(¢)) can jeopardize
the reliability of the outcomes of the simulations. Though uncommon, this
aspect deserves care and double checks are mandatory in presence of odd
results.

In order to provide an overall comparative review of the performances, we
chose the Core-i5 as the reference processor and we calculate the simulation
speedup as

CPU or GPU-under-test execution time
Core i5-4570R 4-thread execution time

(8)

Data are shown in Figure 6. GPU implementation becomes efficient, i.e., with
a speedup greater than 1, roughly about 1000 rows, when the workload starts
to fill completely the computational power of the GPUs, and the higher clock
rate of the CPU does not compensate any longer for the reduced number of
computing units. Since a matrix size greater than 1000 rows is a very common
case for many-particle CTQWs (i.e., a lattice as small as N ~ 32 for the two-
particle case), GPU computing sounds a viable and efficient option to pursue
in order to reduce the execution time down to the minute-to-few-hour range.
It is important to stress that the simulation speedup strongly depends on
the post-processing rate. For an output generation as frequent as 1 out of
10 time steps (panel a) a gain about 5x-7x is obtained; the gain rises up to
8x-9x for an average post-processing rate of 1 out of 25 time steps (panel
b) and up to a 10x-13x for a moderate output generation around 1 out of
100 time steps (panel c¢). Panels d and e refer instead to cases where the
calculation of the density matrix is progressively reduced down to a single
time per simulation. In other words, this is the the speedup achievable for
the pure evolution of the wave-functions, which settles in the 20x range and
more. By comparing data reported in panels 4(e) and 4(f) of Figure 4, the
OPENMP parallelization introduces a further 2.5-3x gain with respect to
the single-core execution, this boosting up the speedup at a minimum gain
around 60x for the pure evolution of the wave functions, as shown in Figure
6(f), and around 15x when a high post-processing frequency is required.
The speedup depends also on the number of realizations considered dur-

Speedup =

18

(o2}
o
(]
o

-0 K40 N
=1 K80
,\50 A4 GTX980 X\’ ,\25
2 *— 2050 @
E a0 ¢ E20 +
£ /'“/ £ f»/
= 30 Y = 15 @Q
: - A,
3 20 /A V‘ﬁ 210 222y
: W : 4
10 5
(eeest 0
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
Matrix size (rows) Matrix size (rows)
(a) (b)
10 6
5 {
—~ 8 ’\\‘ —
@ 2
£ oo N
° 6 © /
c
5 pod E Y
g 4 ¥ 5 aA
: W/ Vol L :
X x
g, i ﬁtﬂ:ﬂrﬂk‘
00 2000 4000 6000 8000 10000 12000 14000 16000 00 2000 4000 6000 8000 10000 12000 14000 16000
Matrix size (rows) Matrix size (rows)

(c) (d)

e
3

IS

‘\3

il

% 35 /

E 3 {/\/N

°§’ 25 N““‘/N ‘e"w‘ﬁ'
s 2 peos ,—-..MM i
% Mr‘/k‘_‘

h

‘gg

o
3]

o

0 2000 4000 6000 8000 10000 12000 14000 16000
Matrix size (rows)

(e)
Figure 5: Execution time of the GPU code for different rates of post-processing. 5(a):

1/10 time steps; 5(b): 1/25 time steps; 5(c): 1/100 time steps; 5(d): 1/250 time steps;
5(e): 1/1500 time steps.

19

s f 8 A e
v L

o s | Ag%wwxw v\w

j;; . J‘,,H*‘ '/\/\,v/ (% \ /M \./

’AAAA PN AArAA—g\ ﬁ;AA,&AA

2 2
- A A
A~ AA&AAAAA—AAAA»AA A pSAALND

[ApApAnadh
\\é’}?namt OO E 38 BE- BE-0E B AgRE a5

B o e g3 56T BEER 586 48885 588 EEE

00 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
Matrix size (rows) Matrix size (rows)
(a) (b)
15 21
18
12 7 W'V] /\/“\x‘
/H! 15 NA. v{,‘
S 9 / 'd A S12 Vot
B e ¥te v/ 2 /:.f"‘ ° M\/’
8 /‘4 Wy g9 b ﬂ Aot s el
N 6 /ad 7] /f/.. /«‘
6 // 5/
8 AAALA
ALL AA ANAA-ALN AL 3 =
AMEDLEp bl /AFJEH;EW \, A A g s S LA Acbbbichboy FEEALR
Rgetyae88-0800e S pgaeega0 \g EDeEBEEH}Elﬂ\éf 588 85-88wanesate
002000 4000 6000 8000 10000 12000 14000 16000 00~ 2000 4000 6000 8000 10000 12000 14000 16000
Matrix size (rows) Matrix size (rows)
(c) (d)
25 80
xﬂf 70 Core i5-4570R 2%
u G £1 Xeon E3-1241v3 Ay
20 A-A Core i7-3770 / my
f ‘.’I‘If 60| 0-@ K40 A
'(..’\ = K80 w.,-\'"i a4
= 50| 4 GTx980 .',-r'/i |
215 o ! +— M2050 ((/“ Nw
§ MVO"“ § 40 A mm e
2 v s 2 ST e
@10 o @ 50 e e
X $as Y soladl
/ 20
5
AAAAA | ADALDAY KADpALD 10 P N S S #
eéﬁ‘%é‘gaaerea&»emeaﬂﬂ g\gi:ﬂ}aaﬂm s Sﬁé\é’égaaﬁaaé@namaaﬂﬂgghas 580
00" 2000 4000 6000 8000 10000 12000 14000 16000 00" 2000 4000 6000 8000 10000 12000 14000 16000
Matrix size (rows) Matrix size (rows)

() (f)

Figure 6: Performance comparison for different rates of post-processing. 6(a): 1/10 time
steps; 6(b): 1/25 time steps; 6(c): 1/100 time steps; 6(d): 1/250 time steps; 6(e) and 6(f):
1/1500 time steps. In panel 6(f) the comparison at post-processing rate 1/5000 time steps
refers to the single-core execution.

20

385

390

395

400

410

415

420

ing parallel execution. About a +3x gain is observed when the number of
realizations increases from 500 to 5000 (Figure 7), irrespectively of the size
of the mesh. While the GPU codes scale with the number of realizations
(as should be according to the discussion of Sects. 2.2 and 2.3), a perfor-
mance loss is found for the OPENMP implementation. For the sake of truth,
we recall that the OPENMP code was derived from the CUDA code with
the strict constraint of adhering as much as possible to it and allowing a
fair direct comparison of the computational burden, without introducing any
further memory nor algorithmic optimizations. Since the performance loss
does not significantly depend on the size of the problem in hand, but only to
the number of realizations, this poor behavior can primarily be ascribed to
the larger number of calls to the BLAS functions.

The influence of the post-processing rate in GPU execution is even more
evident from the shape of the curves of Figure 5 that changes from parabolic
to linear. Though not immediate at first sight, the same also applies for the
curves of Figure 4 and is validated by numerical regression. Further informa-
tion stem from code profiling. We have tracked the execution time of the four
stages composing the software for the two opposite cases of very frequent and
tiny output generation on the K40 board (Figure 8): the initialization and
the Hamiltonian update stages contribute with a negligible running time (less
then 0.3% in total), while the wave-function evolution and the density-matriz
calculation and post-processing stages largely prevail.

The running time in case of a very limited output generation is substan-
tially dictated by the wave-function evolution stage, which grows linearly
with the size of the problem as discussed in Sect. 2. On the contrary, in
case of a frequent output generation, the heaviest stage is represented by
density-matriz calculation and post-processing, whose influence quickly grows
up and saturates about 90% of the total execution time. Going into details,
more than the 99.3% of the time spent for post-processing is required by
the cublasCher library function that builds up the average density-matrix
(p(t)). As a consequence, the peaks in panels a, b and ¢ of Figure 6 are
due to outperforming conditions of the cuBLAS library. Also in the wave-
function evolution stage most of the time is spent in calls to system or library
functions (see Figure8(e)). As a matter of fact, even for large matrices (i.e.,
N™ > 10000), only up to approximately one third of the time is dedicated
to the series expansion, whereas the remainder is due to device-to-device
memcopy and norm evaluation (cublasScnrm2 and cublasCsscal). As we
already pointed out, memory optimization for speed using, e.g., shared mem-

21

40

400
-0 \’°_1600
. =8 N’-2500
@ 30 A—4 N*24900 // @ 300 A
€ +—* N’=10000 =
\é ’/«/‘ ; ’
£ €
=20 /” = 200 r/
% ,// — % //
o (5] A
50 e 5 100 / 7
ir_él‘”—f':’i%:l | . 35— ' 0
0 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Number of realizations Number of realizations
(a) (b)
12
10
. /0/ P
.
26 !
Q — — "
n 41;_,4 —
- - »—*
[
2
¢
0000 2000 3000 4000 5000

Number of realizations

()

Figure 7: Scaling behavior on Tesla K40 GPU 7(a) and Xeon E3 CPU 7(b) for different
sizes of the mesh (from 1600 to 10000 rows), as a function of the number of realizations.
The corresponding speedup is illustrated in panel 7(c).

22

425

430

435

440

445

450

455

ory on the device, was not a goal of the present work. From the time profiling
above, we do not believe it worth the effort: highly-optimized solutions able
to cut the execution time of the computational kernels by a factor of 2 or 3
would only bring a very modest benefit around 1 minute or less. To obtain a
further significant speedup it is instead mandatory to implement new kernels
for linear algebra, other than those provided by the cuBLAS library.

5. Conclusions

The availability of a simulation tool for evolving many-particle CTQWs
in a noisy environment represents a crucial prerequisite for the investiga-
tion of quantum many-body systems and for the implementation of effective
quantum algorithms in realistic situations. In essence, the dynamics of a
many-particle state over a noisy lattice can be associated with the solution
of a set of stochastic differential equations. However, the need to post-process
a large number of data in order to achieve information for any measurable
quantity makes the problem much more resource-demanding. In fact, as long
as the number of particles and/or the dimensionality of the domain increase,
limiting factors such as the memory occupancy and the time required to
run the simulations quickly become very challenging issues and determine
whether a simulation scheme can or cannot provide results within the avail-
able computational power.

Though numerically accurate, the standard Hamiltonian diagonalization
method is not feasible even for small systems and alternative numerical so-
lutions must be sought. Among them, we have shown that the 4-th order
Runge-Kutta integration method and the Taylor-series expansion of the evo-
lution operator have a low computational cost and provide reliable data.
Moreover, they are highly parallelizable within the SIMT paradigm, and this
allows the straightforward, direct implementation on GPUs.

After developing the codes, we have benchmarked four NVIDIA GPUs
and three quad-core Intel CPUs for a 2-particle system over a lattice of
increasing dimensions. GPU execution enables significant cuts of the run-
ning time of batches of thousands of simulations down to the minute-to-few-
hour range. The speedup with respect to OPENMP parallelization stays in
the range from 8x to more than 20x, depending on the frequency of post-
processing. Our results show that GPU-accelerated codes allow one to over-
come concerns about the execution time and make it possible to design simu-
lations involving many particles or large lattices, whose only limit is dictated

23

40 T

35
B |nitialization a®
A—A ¥ evolution /. 3
— *—% H update — ,..ﬁ"
2 30 4+ p calculation ! N @ a0 R M
€ @@ Total time E 25 &mw
© °
£ /' £ 2 M
=20 ﬂf \e = r““
k] S 15
Y i
¢ n/ e 1
rg‘d A AAA AAA 05
oo okiaa “;.‘AL A . o POV 2 2 SN
0= =5566 4000 8000 5000 " T0000" 12000 14000 16000 "~ 2000 4000 6000 8000 10000 12000 14000 16000
Matrix size (rows) Matrix size (rows)
(a) (b)
100 100 g4 A
4 A4
t\\ /’ﬁwr‘“ TA T E
80 _\ N"JN 80 T
2N
2 60 g 60
< c
g >< | 2
> 40 3 40
i i
20 \“‘\‘ | 20
(\(‘\ N Bl
o Y S g Sy e
0 5000 4000 " 600D - BO0G - T0800 T2 14000 16000 05500 4000 - 6000 - 8000 - 10000 12800 14000 16000
Matrix size (rows) Matrix size (rows)
(c) (d)
A - 5041 rows B - 15376 rows

e
6.20%
(e)

Figure 8: Code profiling and relative weight of the four execution stages for a frequent
(8(a) and 8(c)) and for the tiniest (8(b) and 8(d)) output generation rate. The pie-charts
8(e) show the time required by the sub-components of the wave-function evolution stage
for matrix sizes identified by letters A and B. No substantial difference is found between
the two cases.

24

460

465

470

475

480

by the memory available on the device.

Acknowledgements

This work has been supported by EU through the Collaborative Project

QuProCS (Grant Agreement 641277), by UniMI through the H2020 Transi-
tion Grant 15-6-3008000-625, and by UniMoRe through FAR2014.

References

1]

2]

Y. Aharonov, L. Davidovich, N. Zagury, Quantum random walks, Phys.
Rev. A 48 (1993) 1687-1690.

E. Farhi, S. Gutmann, Quantum computation and decision trees, Phys.
Rev. A 58 (1998) 915-928.

Y. Omar, N. Paunkovi¢, L. Sheridan, S. Bose, Quantum walk on a line
with two entangled particles, Phys. Rev. A 74 (2006) 042304.

Y. Lahini, M. Verbin, S. D. Huber, Y. Bromberg, R. Pugatch, Y. Sil-
berberg, Quantum walk of two interacting bosons, Phys. Rev. A (2012)
011603.

C. Benedetti, F. Buscemi, P. Bordone, Quantum correlations in

continuous-time quantum walks of two indistinguishable particles, Phys.
Rev. A 85 (2012) 042314.

L. Wang, L. Wang, Y. Zhang, Quantum walks of two interacting anyons
in one-dimensional optical lattices, Phys. Rev. A 90 (2014) 063618.

X. Qin, Y. Ke, X. Guan, Z. Li, N. Andrei, C. Lee, Statistics-dependent
quantum co-walking of two particles in one-dimensional lattices with
nearest-neighbor interactions, Phys. Rev. A 90 (2014) 062301.

M. Faccin, T. Johnson, J. Biamonte, S. Kais, P. Migdal, Degree distri-
bution in quantum walks on complex networks, Phys. Rev. X 3 (2013)
041007.

F. Caruso, A. Crespi, A. G. Ciriolo, F. Sciarrino, R. Osellame, Fast
escape of a quantum walker from an integrated photonic maze, Nat.
Comm. 7 (2016) 11682.

25

490

495

500

505

510

515

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. Schreiber, A. Gébris, P. P. Rohde, K. Laiho, M. Stefandk, V. Potoécek,
C. Hamilton, I. Jex, C. Silberhorn, A 2D quantum walk simulation of
two-particle dynamics, Science 336 (2012) 55-58.

A. Makmal, M. Tiersch, C. Ganahl, H. J. Briegel, Quantum walks on
embedded hypercubes: Nonsymmetric and nonlocal cases, Phys. Rev. A
93 (2016) 022322.

O. Miilken, A. Blumen, Continuous-time quantum walks: Models for
coherent transport on complex networks, Phys. Rep. 502 (2011) 37 — 87.

A. M. Childs, J. Goldstone, Spatial search by quantum walk, Phys. Rev.
A 70 (2004) 022314.

S. Chakraborty, L. Novo, A. Ambainis, Y. Omar, Spatial search by
quantum walk is optimal for almost all graphs, Phys. Rev. Lett. 116
(2016) 100501.

B. L. Douglas, J. B. Wang, A classical approach to the graph isomor-
phism problem using quantum walks, J. Phys. A 41 (2008) 075303.

J. K. Gamble, M. Friesen, D. Zhou, R. Joynt, S. N. Coppersmith,
Two-particle quantum walks applied to the graph isomorphism prob-
lem, Phys. Rev. A 81 (2010) 052313.

S. D. Berry, J. B. Wang, Two-particle quantum walks: entanglement
and graph isomorphism testing, Phys. Rev. A 83 (2011) 042317.

A. M. Childs, Universal computation by quantum walk, Phys. Rev. Lett.
102 (2009) 180501.

A. M. Childs, D. Gosset, Z. Webb, Universal computation by multipar-
ticle quantum walk, Science 339 (2013) 791-794.

Y. Lahini, Y. Bromberg, D. N. Christodoulides, Y. Silberberg, Quantum
correlations in two-particle anderson localization, Phys. Rev. Lett. 105
(2010) 163905.

A. Schreiber, K. Cassemiro, V. Potocek, A. Gabris, I. Jex, C. Silberhorn,
Decoherence and disorder in quantum walks: from ballistic spread to
localization, Phys. Rev. Lett. 106 (2011) 180403.

26

520

525

530

535

540

545

[22]

[23]

[24]

A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L.. San-
soni, F. De Nicola, S. F., P. Mataloni, Anderson localization of entangled
photons in an integrated quantum walk, Nat. Phot. 7 (2013) 322-328.

J. Ghosh, Simulating anderson localization via a quantum walk on a one-
dimensional lattice of superconducting qubits, Phys. Rev. A 89 (2014)
022309.

F. De Nicola, L. Sansoni, A. Crespi, R. Ramponi, R. Osellame, V. Gio-
vannetti, R. Fazio, P. Mataloni, F. Sciarrino, Quantum simulation of
bosonic-fermionic noninteracting particles in disordered systems via a
quantum walk, Phys. Rev. A 89 (2014) 032322.

C. Benedetti, F. Buscemi, P. Bordone, M. G. A. Paris, Non-Markovian
continuous-time quantum walks on lattices with dynamical noise, Phys.
Rev. A 93 (2016) 042313.

I. Siloi, C. Benedetti, E. Piccinini, J. Piilo, S. Maniscalco, M. G. A. Paris,
P. Bordone, Noisy quantum walks of two indistinguishable interacting
particles, Phys. Rev. A 95 (2017) 022106.

A. Beggi, F. Buscemi, P. Bordone, Quantum correlations of identical

particles subject to classical environmental noise, Quantum Inf. Proc.
15 (2016) 3711-3743.

C. Lee, A. Rai, C. Noh, D. G. Angelakis, Probing the effect of interaction
in anderson localization using linear photonic lattices, Phys. Rev. A 89
(2014) 023823.

P. Hanggi, H. Thomas, Stochastic processes: Time evolution, symme-
tries and linear response, Phys. Rep. 88 (1982) 207 — 319.

J. A. Izaac, J. B. Wang, pyCTQW: A continuous-time quantum walk
simulator on distributed memory computers, Comput. Phys. Commun.
186 (2015) 81 — 92.

A. G. Anderson, W. A. G. III, P. Schroder, Quantum Monte Carlo on
graphical processing units, Comput. Phys. Commun. 177 (2007) 298 —
306.

27

550

555

560

565

570

575

[32]

[33]

[34]

[35]

[36]

[37]

[41]

[42]

J. A. Anderson, C. D. Lorenz, A. Travesset, General purpose molecular
dynamics simulations fully implemented on graphics processing units, J.
Comp. Phys. 227 (2008) 5342 — 5359.

J. Tolke, M. Krafczyk, TeraFLOP computing on a desktop PC with
GPUs for 3D CFD, Intl. J. Comput. Fluid D. 22 (2008) 443-456.

T. Preis, P. Virnau, W. Paul, J. J. Schneider, GPU accelerated Monte
Carlo simulation of the 2D and 3D Ising model, J. Comp. Phys. 228
(2009) 4468 — 4477.

M. Januszewski, M. Kostur, Accelerating numerical solution of stochas-
tic differential equations with CUDA, Comput. Phys. Commun. 181
(2010) 183 — 188.

J. Spiechowicz, M. Kostur, L. Machura, GPU accelerated Monte Carlo
simulation of Brownian motors dynamics with CUDA, Comput. Phys.
Commun. 191 (2015) 140 — 149.

D. Tamascelli, F. S. Dambrosio, C. R., C. M., Graphics processing units
accelerated semiclassical initial value representation molecular dynam-
ics, The Journal of Chemical Physics 140 (2014) 174109.

J. Glaser, T. D. Nguyen, J. A. Anderson, P. Lui, F. Spiga, J. A. Millan,
D. C. Morse, S. C. Glotzer, Strong scaling of general-purpose molecular
dynamics simulations on GPUs, Comput. Phys. Commun. 192 (2015)
97 - 107.

L. S. Smith, Q. Liang, Towards a generalised GPU/CPU shallow-flow
modelling tool, Computers & Fluids 88 (2013) 334 — 343.

M. Januszewski, M. Kostur, Sailfish: A flexible multi-GPU implemen-
tation of the lattice Boltzmann method, Comput. Phys. Commun. 185
(2014) 2350 — 2368.

J. A. Anderson, M. E. Irrgang, S. C. Glotzer, Scalable Metropolis Monte
Carlo for simulation of hard shapes, Comput. Phys. Commun. 204 (2016)
21 - 30.

Y. Lutsyshyn, Fast quantum Monte Carlo on a GPU, Comput. Phys.
Commun. 187 (2015) 162 — 174.

28

580

585

590

595

600

605

[43]

[44]

[45]

[46]

[47]

M. Januszewski, A. Ptok, D. Crivelli, B. Gardas, GPU-based acceler-
ation of free energy calculations in solid state physics, Comput. Phys.
Commun. 192 (2015) 220 — 227.

M. Feit, J. F. Jr.; A. Steiger, Solution of the Schrédinger equation by
a spectral method, Journal of Computational Physics 47 (1982) 412 —
433.

H. D. Raedt, Product formula algorithms for solving the time dependent
Schrodinger equation, Computer Physics Reports 7 (1987) 1 — 72.

J. L. Richardson, Visualizing quantum scattering on the CM-2 super-
computer, Computer Physics Communications 63 (1991) 84 — 94.

C. Leforestier, R. Bisseling, C. Cerjan, M. Feit, R. Friesner, A. Guld-
berg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin,
O. Roncero, R. Kosloff, A comparison of different propagation schemes

for the time dependent Schrodinger equation, Journal of Computational
Physics 94 (1991) 59 — 80.

K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. H. Denschlag,
A. Daley, A. Kantian, H. Buchler, P. Zoller, Repulsively bound atom
pairs in an optical lattice, Nature 441 (2006) 853.

M. Valiente, D. Petrosyan, Two-particle states in the Hubbard model,
J. Phys. B 41 (2008) 161002.

F. Hofmann, M. Potthoff, Doublon dynamics in the extended Fermi-
Hubbard model, Phys. Rev. B 85 (2012) 205127.

D. Jaksch, P. Zoller, The cold atom Hubbard toolbox, Ann. Phys. 315
(2005) 52 — 79.

J. Butcher, Numerical Methods for Ordinary Differential Equations, 2nd
ed., Wiley, Chichester, 2008.

J. R. Humphrey, D. K. Price, K. E. Spagnoli, A. L. Paolini, E. J.
Kelmelis, CULA: hybrid GPU accelerated linear algebra routines, Proc.
SPIE 7705 (2010) 770502.

29

