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Thirty-nine samples of plant milks (rice, soy, oat, barley, spelt, quinoa, almond, and a
variety of wheat called kamut) were analyzed for their reducing sugars content by NIR
spectroscopy, using the Luff-Schoorl official method as reference to build the
calibration models. The amount of reducing sugars, expressed as grams of
glucose/100 mL of beverage, ranged from 0.5 g/100 mL (soy) to 7.6 g/100 mL (rice).
Both Partial Least Squares (PLS) and interval-Partial Least Squares regression (iPLS)
were used to build multivariate calibration models, testing different spectra
preprocessing methods. The performance in prediction of the best calibration model
was evaluated on an external test set of nine randomly selected samples (RMSEP =
0.98 g/100 mL, R2PRED = 0.84), and its statistical significance was assessed using a
randomization t-test based on Monte Carlo simulations. The results obtained suggest
that NIR spectroscopy can be a valid alternative to the laborious reference titrimetric
method for the determination of total glucose content in plant milks.
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Response to Reviewer Comments

We would like to thank the reviewer, because he allowed us to improve our manuscript. We hope
that the answers in the following, together with the changes made to the text and to Table 3 will
cope with his comments.

In the tuning of the reference method, the step of hydrolysis of the polysaccharides described in section
2.2.1is not sufficiently discussed with regard to the detection of the oligosaccharides that may come from
the plant matrix. As the investigated matrices are rich in starch and polysaccharides that can pass to the
finished product in different ways and amounts depending on the technology adopted, an investigation of
the effects of hydrolysis of these fractions would be desirable.

In the processes of production of plant milks, filtration and heating are used to purify the aqueous
solution from undesired oligosaccharides and carbohydrates that may have unpleasant effects for
the consumers (Jiang et al. Foods 2013,2:198-212). The finished product thus should be free
from indigestible oligosaccharides and carbohydrates. If residues of these compounds are present,
they should not be major components of the final product.

During the reworking of the Luff-Schoorl method for the purpose presented in this study we
actually investigated thoroughly the possibility that unpredictable reducing sugars, in addition to
glucose or fructose may be originated during the hydrolysis step. This observation is important
because if glucose and fructose were obtained during the hydrolysis step along with other
hypothetical reducing sugars (e.g. because residues of fibers or starch are demolished by heating
with 6M HCI) this could lead to a wrong estimation of the true total glucose content in the milk
samples. We also evaluated the possibility that the hydrolysis step could cause losses of
glucose/fructose, thus leading to an underestimation of the true total glucose content in the
samples. However, all our results evidenced that neither of these two potential error sources were
appreciable under the conditions that we applied. The accuracy study presented in Table 2
documents this conclusion. We chose finally not to expand this topic in the present manuscript,
and we did not present the data regarding fructose results because we recognized that these
potential sources of error were indeed very unlikely as reported also in the two new references
added in the revised manuscript (Li et al. 2016; Jiang et al. 201 3).

Nonetheless, we agree with the reviewer comment and thus we added in the manuscript one
paragraph discussing this issue at the beginning of Section 3.5 and two more references of recent
studies on the oligosaccharides in soy milk.

There is some confusion in the use of the terms "carbohydrate" and "sugars": in the text they are often
used interchangeably (in particular on pagg 4,7,13). This also happens in the discussion on the values
printed on the label of the analysed samples. Usually, in fact, the label of plant milks reports the amount of
carbohydrates and the specification of the share represented by sugars. Carbohydrates are usually
estimated for difference (dry matterproteinslipidsash). Moreover not always these two quantities coincide
and often show significant differences. It would be appropriate to put these two values (carbohydrates and
sugars) on Table 3 for the analyzed plant milk samples.



We revised thoroughly the text considering this criticism and found several inaccuracies which
have now been amended. In addition, we revised table 3 and added the data on the carbohydrate
content of the plant milk studied.

In the introduction, we added one sentence and one reference regarding the estimation of the total
carbohydrate content measurement, in order to provide the interesting information on the
methods used for assaying the vegetable milk during and after production.

In the light of these considerations section 3.4 should be removed or completely rewritten.

The section was renumbered (now it is section 3.5) and revised in light of the considerations made
above.

In section 2.4 on page 9 lines 815 the Authors should be more specific about which routines were used.

A more detailed description of the used routines is now given at the end of section 2.4.

The independent validation set contain three samples made of different batches of the same products used
in the training Set. It would be better to have in this set only samples of different origin or at least to
discuss in more detail the nature of the different batches.

We would like to thank the reviewer for this comment, that helped us to amend an inaccurate definition in
the legend to Table 3. Actually, all the samples included in the independent validation set are made of
products that are different from those used in the training set. In fact, the three test set samples
mentioned by the reviewer (CO2, SC1, OA2) come from the same producer of three samples included in the
training set (CO1, SC2, OA1). However, they are not “subsequent batches” as it was erroneously reported in
the original manuscript, but they are different products, since they differ for the additives claimed in the
product label and, in two cases out of three, also for the amounts of carbohydrates and of sugars reported
on the label. For this reason, we considered reasonable to consider CO2, SC1 and OA2 as independent
samples, and to include them in the external validation set. This aspect has been clarified in the revised
version of the manuscript (Sections 2.2. and 2.4, legend to Table 3).

The figures 1,2,3, and 4 appear disturbed, probably because exported by matlab as .jpg, would be more
appropriate to export them as .tif

Actually, the figures have been submitted as .tif: the low quality of the figures within the pdf manuscript
submitted for revision is due to the (likely .jpg) compression made while building the pdf itself. The
reviewer can download the original, high quality images by clicking on the heading in the top right of the
page (“Click here to download Figure XXX").
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Abstract

Thirty-nine samples of plant milks (rice, soy, oat, barley, spelt, quinoa, almond, and a variety of
wheat called kamut) were analyzed for their reducing sugars content by NIR spectroscopy, using the
Luff-Schoorl official method as reference to build the calibration models. The amount of reducing
sugars, expressed as grams of glucose/100 mL of beverage, ranged from 0.5 g/100 mL (soy) to 7.6
g/100 mL (rice). Both Partial Least Squares (PLS) and interval-Partial Least Squares regression
(iPLS) were used to build multivariate calibration models, testing different spectra preprocessing
methods. The performance in prediction of the best calibration model was evaluated on an external
test set of nine randomly selected samples (RMSEP = 0.98 g/100 mL, R%rgep = 0.84), and its
statistical significance was assessed using a randomization t-test based on Monte Carlo simulations.
The results obtained suggest that NIR spectroscopy can be a valid alternative to the laborious

reference titrimetric method for the determination of total glucose content in plant milks.
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Plant milk; Glucose determination; Luff-Schoorl method; NIR spectroscopy; Variable selection;

Randomization test
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1. Introduction

In recent years, the food market in industrialized countries offered a number of products presented
as healthier than the traditional ones consumed for many decades (Kearney 2010). This has become
especially evident for milk which is often compared for its nutritional properties to non-dairy
products derived from vegetables, often referred to as plant milks. Many products, such as cheese-
like foods of vegetable origin (e.g. tofu) are also proposed as healthier, balanced, low-fat, and low-
calories substitutes of dairy products. Plant milks and dairy-like products are free of lactose and
animal proteins and are thus proposed as suitable foods for lactose-intolerant and allergic patients
and for vegetarians (Bernat et al. 2014). On the Italian market, the more represented plant milks are
those produced using almond, millet, rice, soy, oat, barley, and a variety of wheat called kamut.

Plant milks are obtained by extraction with hot water and filtration from the starting raw material
which is processed depending on the nature of the crop (e.g. nut or cereal). Common pretreatments
include one or more steps like washing, grinding, blanching, and also peeling for nuts. After
removal of insoluble and non-extractable solids through filtration, the milky liquid is collected. The
pH and taste are then adjusted by adding appropriate additives (including emulsifiers, stabilizers,
sweeteners), and finally the product is packed under conditions that prevent microbial and mould
proliferation (Bernat et al. 2014). The final product is tested and analyzed before marketing. The
quality in terms of total macro- and micronutrients content is ensured by controls made both during
the production process and on the final product. Whereas carbohydrates in these products are
usually estimated by subtracting water, proteins, lipids and ash from the total mass of vegetable
(Jiang et al. 2013), the sugars are mostly determined by titration and colorimetry.. These methods
are quite labor-intensive, but are cheap and provide results considered reliable and satisfactory for
the purpose of routine controls (Guo et al. 2014). Thus, the use of Near-Infrared (NIR) spectroscopy
appears appealing, because it is inexpensive, fast, and with minimal requirements of personnel

supervision.
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NIR spectroscopy is a non-destructive analytical technique that gained popularity in recent years
due to its suitability for assaying a number of chemical products, in particular in food production
(Ferrari et al. 2011; van Maarschalkerweerd and Husted 2015; Varzakas 2015; Verardo et al. 2015).
NIR is mainly used as a secondary method of measurement, validated by comparison with a
primary reference method. Actually, NIR bench-top and portable instruments can analyze either
clear or non-transparent liquid samples and even solid samples (Blanco and Villaroya 2002). The
measurement technique is based on the absorption of electromagnetic radiation at wavelengths in
the 780-2500nm range. NIR spectra of foods comprise broad bands arising from overlapping
absorptions corresponding mainly to overtones and combinations of fundamental vibrational modes
involving X-H chemical bonds (X =C, N, O, S, ...) and many other molecular moieties. The levels
of the major constituents of foods, such as proteins, fats, carbohydrates, and sugars can be measured
using light absorption, if the sample is transparent. For opaque samples, solids, and suspensions,
NIR is used in modes based on diffuse transmittance and reflectance, at the cost of generating
spectra more complex than absorption spectra (Foca et al. 2011). NIR spectroscopy is currently
used for routine controls of food ingredients, both in base research and in industrial settings where it
is applied for on-line and in-line monitoring of process intermediates and final products (Blanco et
al. 2000; Pan et al. 2015; Ulrici et al. 2008; Wu et al. 2012). The major advantage of NIR is that
usually no sample preparation is necessary. In most applications NIR allows the direct analysis of
the sample, hence the mere measurement step is fast, usually taking less than 2 minutes per sample.
The analyses can be carried out also by non-trained personnel, and several constituents can be
assayed simultaneously in the same sample.

The aim of the present research was to study the feasibility of NIR quantitative analyses of total
sugars content in plant milks expressed as total glucose, using Partial Least Squares (PLS)
regression for signal processing (Wold et al. 2001). Since NIR spectra are made of highly correlated

variables containing redundant information spread out over different spectral regions, variable
4
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selection can be used to increase the performance of the NIR-based calibration models, allowing to
identify and to select the spectral regions in which the information of interest is located (Ferrari et
al. 2011; Foca et al. 2009; Foca et al. 2013; Ulrici et al. 2008). For this reason, a variable selection
method based on interval-PLS (iPLS) (Ngrgaard et al. 2000) was also considered, which led to
significant improvements in the prediction results. The statistical significance of the best calibration
model was assessed by randomization t-test based on Monte Carlo simulations (van der VVoet 1994).
The prediction error of the best calibration model based on NIR spectroscopy was compared with
the experimental error of the Luff-Schoorl (LS) titrimetric method (AOAC 1995, method 942.15),
which was selected as reference method for measuring the total glucose content in the plant milk

samples.

2. Materials and methods

2.1. Standards and reagents

Copper (I1) sulphate pentahydrate (purity >97%), citric acid monohydrate (purity > 99.5%),
anhydrous sodium carbonate (purity > 99.5%), potassium hexacyanoferrate (I1) trinydrate (99.5%
purity), starch (purity >97%), potassium iodide (purity >99%), sulfuric acid (96%), acetic acid
(96%), sodium hydroxide (purity > 97%) were purchased from Carlo Erba Reagenti (Milano, Italy).
D(+)-glucose (purity > 99.8%), zinc sulphate (purity > 99.5%), and disodium hydrogenphosphate
(purity > 99%) were purchased from Merck (Darmstadt, Germany). Hydrochloric acid (37%) was
from Panreac Quimica (Barcelona, Spain), and ready-to-use sodium thiosulphate 0.1N in water was
from Titolchimica s.p.a. (Rovigo, Italia). Deionized water HPLC-grade was produced in house
using a Simpack® apparatus from Millipore (Billerica, MA, USA).

The Luff-Schoorl (LS) reactant was prepared once a week mixing 50 mL of 5M citric acid
monohydrate aqueous solution with 350 mL of 4M anhydrous sodium carbonate aqueous solution.

After elimination of the CO2 produced, 500 mL of 0.2M copper (I1) sulphate solution was added to
5
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the obtained mixture and the solution was brought to the final volume of 1 L with deionized water.
Subsequently, the LS reactant was left standing for one night and centrifuged before use.

The Carrez | clarification reactant was prepared dissolving 15 g of Ka[Fe(CN)g]-3H20 in 100 mL of
water, while the Carrez Il reactant was made dissolving 30 g ZnSO4 in 100 mL water.

The starch solution was prepared adding dropwise a dispersion of 1 g of starch in 10 mL of water to

9 mL boiling water.

2.1.1. Standard solutions of glucose and reference samples for Luff-Schoorl (LS) titration

Standard reference solutions of glucose in water were prepared at concentrations ranging from 0.5
to 10 g/L (corresponding to 0.05 to 1 g of glucose /100mL, Table 1).

For each concentration level, 5 mL of Carrez | clarification reactant were added to 20 mL of
glucose solution. After vigorous shaking, the solution was left standing for 5 min and then 5 mL of
Carrez Il reactant were added. After further shaking, the solution was left standing for 1 h, and then
5 mL of a 10% aqueous disodium hydrogen phosphate solution (w/v) were added. Finally, the
mixture was brought to 100 mL final volume and centrifuged at 800 rpm for 10 min. The
supernatant was titrated.

Three trial samples were selected based on their glucose content to have a low, an intermediate and
a high level of glucose reference samples. Samples #7, 20, and 22 were obtained from different
producers and were assayed as such and after spiking them with glucose at two different levels of
concentration corresponding to +50% and +75% of the nominal glucose level expected in the
sample. Sample #7 was spiked with 0.30 and 0.45 g glucose/100ml. Sample #22 was spiked with
2.30 and 3.45 g glucose/100ml. Sample # 20 was spiked with 4.00 and 6.00 g glucose/100ml.
Agqueous solutions, unspiked and spiked milk samples were assayed three times each by the LS

method as reported in Table 2.
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2.2. Samples

Thirty-nine different samples of plant milk obtained from rice, soy, oat, barley, and kamut were
purchased in local specialized shops and supermarkets. Samples of the same product, i.e., made by
the same manufacturer and labelled as containing the same plant milk and additives, were selected
from different production batches, in order to ensure that all samples were independent. Before
analysis, all samples were stored for less than one month under the conditions recommended by the
manufacturers in the dark at room temperature, and were examined long before the expiry date. On
the day of the analysis, each sample was divided in two aliquots and the total content of reducing
sugars was assayed by the LS titrimetric method (AOAC 1995, method 942.15; Egan et al. 1981)

and by NIR.

2.2.1 Plant milk sample preparation for the Luff-Schoorl titration

The volume of each plant milk was selected preliminarily on the basis of the amount of sugars
declared on the product package. Each sample was assayed in triplicate and the results were initially
evaluated in comparison with the labelled content of glucose.

The preparation of the samples was carried out as follows. The sample was clarified adding the
Carrez | reactant before the sugars titration. A 50 mL aliquot of the clear supernatant was
transferred into an Erlenmeyer flask, treated with 5 mL HCI 6M, and heated at 65°C for 15 min
under reflux to promote the complete hydrolysis of the oligosaccharides into the corresponding
monosaccharides. At the end of the reaction, the mixture was cooled under tap water and
neutralized to a pH value around 7 adding 6 mL 5M sodium hydroxide. Three to five drops of
glacial acetic acid were then added to the mixture under agitation until a clear solution was

obtained.

2.2.2 Luff-Schoorl titration
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The determination of the total reducing sugars content, expressed as glucose equivalents, has been
carried out following the procedure reported in AOAC method 942.15, slightly modified in order to
adapt it to the measurement of sugars in plant milks and hence to obtain optimal accuracy and
precision. Briefly, 25 mL of LS reactant were added to 25 mL of sample (or water for blank-
control) in a 250 mL Erlenmeyer flask and brought to boiling temperature under reflux for 10 min.
After cooling under tap water for 5 min, 10 mL 1.8M Kl and 25 mL 2M H>SO4 were added. The
excess of copper (I1) in the solution was determined by iodometric titration with 0.1N Na>S>03 to
the end point with starch. During the titration, when a pale yellow coloration of the solution
appeared, one mL of starch solution was added in order to obtain a blue solution. Additional
Na>S203 was added drop-wise to complete the titration and reach the final change of color from
blue to milky-white (X mL). The concentration of glucose-equivalents in the sample was corrected
by difference between the volume of Na>S.03 used for the titration of the blank-control (Y mL) and
the volume of Na»S:03 used for the titration of the sample solution. The (Y-X mL) volume

represents the quantity of Copper(ll) reduced by the sugars in the plant milk aliquot.

2.3. Near-infrared spectroscopic apparatus and operating conditions

NIR spectra were recorded using a Bruker Multi-Purpose Analyzer (MPA) near-infrared
spectrophotometer (Bruker, Billerica, MA) equipped with Liquid Sampling Module (LSM) that
allows measurement in transmission using a 1 mm path length quartz flow through cell. Each
spectrum was obtained as the average of 24 scans in the region between 4000 and 12500 cm™, with
a resolution of 7.7 cm™. The instrument was controlled by a notebook equipped with OPUS

software version 7.2.

2.4 Spectral measurements and model development
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NIR spectra were imported into Matlab ver. 7.11 (The MathWorks Inc., Natick, MA, USA), and the
whole data were merged into a unique dataset with size {39 x 1102}, composed by the absorbance
values of the NIR spectra corresponding to the 1102 wavenumber values, for each one of the 39
plant milk samples.

Then, for the subsequent calculation of the calibration models, the dataset was randomly split into a
training set with size {30 x 1102} and a test set with size {9 x 1102}, paying attention to include in
the test set products different from those included in the training set, i.e., products from different
manufacturers and/or with different composition (Table 3). PLS and iPLS calibration models were
elaborated and cross-validated by means of PLS-Toolbox ver. 7.8.2 (Eigenvector Research Inc.,
Manson,WA, USA), using the pls.m, ipls.m and crossval.m functions available in the PLS-Toolbox.
Furthermore, some Matlab functions written ad hoc by some of us were used in order to fully
automate both the selection of the optimal spectral regions based on the results of iPLS, as
described in Section 2.4.2, and the randomization test described in Section 2.4.3. In particular, the
function massiveiPLS.m allowed us to automatically calculate all the iPLS models corresponding to
different preprocessing methods and values of the interval size; then, the function
massivePLS_selvar.m was used to further elaborate the results of massiveiPLS.m as described in the
second step of the variable selection described in Section 2.4.2. In order to fully automate the

randomization test described in Section 2.4.3, we developed the function massiveiPLSrandtest.m.

2.4.1. PLS calibration models

PLS regression (Naes et al. 2002) was used to build multivariate calibration models aimed at
evaluating the possibility to predict the sugar content of the plant milk samples using the whole NIR
spectral range. To this aim, ten different spectra pre-processing methods (Zeaiter et al. 2005) were
tested, namely mean centering (MNCN), standard normal variate followed by mean centering

(SNV+MNCN), linear detrend followed by mean centering (DETREND+MNCN), multiplicative
9
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scatter correction followed by mean centering (MSC+MNCN), Savitzky-Golay first-order
derivative followed by mean centering (D1+MNCN), autoscaling (AUTO), standard normal variate
followed by autoscaling (SNV+ AUTO), linear detrend followed by autoscaling (DETREND+
AUTO), multiplicative scatter correction followed by autoscaling (MSC+ AUTO), and Savitzky-
Golay first-order derivative followed by autoscaling (D1+ AUTO).

For each preprocessing method, the corresponding PLS model was calculated. The number of latent
variables (LVs) was chosen on the basis of the minimum value of the Root Mean Square Error of
Cross-Validation (RMSECV), keeping the maximum possible number of LVs equal to 5. In
particular, venetian blinds cross-validation method was used, considering 6 deletion groups. The
performance of the PLS calibration models was expressed both in terms of Root Mean Square Error
in calibration, cross-validation and prediction of the external test set (RMSEC, RMSECV and
RMSEP, respectively), and using the squared value of the correlation coefficient in calibration,
cross-validation and prediction of the external test set (R%aL, R%cv and R%wrep, respectively)

(Pigani et al. 2011).

2.4.2. Variable selection

In order to improve performance and robustness of the PLS calibration models (Xiaobo et al. 2010;
Zeaiter et al. 2005) by keeping only those NIR spectral regions that are actually relevant for the
prediction of the sugar content, a two-steps variable selection procedure was used (Foca et al.
2016).

In the first step, the interval-PLS (iPLS) algorithm was used, which essentially consists in dividing
the whole spectral range in a user-defined number of intervals of equal width, and in selecting the
intervals most useful for calibration by an iterative procedure (Ngrgaard et al. 2000). In particular,
iIPLS was applied in the forward mode, where the intervals are added iteratively until the lowest

value of RMSECYV is reached (Xiaobo et al. 2010). Also in this case, venetian blinds cross-
10
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validation with 6 deletion groups was used. In the present work, iPLS was run considering five
different values of the interval size, i.e., 6, 11, 20, 50 and 110. For each interval size value, each one
of the ten pre-processing methods described above was tested.

When using iPLS to perform variable selection, it must be recalled that the spectral regions selected
by this algorithm may vary, depending both on the signal preprocessing method and on the specific
value of the interval size. In fact, on the one hand, applying different preprocessing methods to the
same spectral dataset can cause modifications of the position and of the relative importance of the
different spectral features. On the other hand, for a given preprocessing method, the most important
spectral features can be more or less efficiently selected on the basis of the interval size: for
example, a useful feature corresponding to narrow absorption band can be better accounted for by a
narrow interval size than by a large one (which could include also non pertinent information of the
neighboring spectral regions), while another useful feature corresponding to a broader absorption
band could be better accounted for by a large interval size. Therefore, since the position and width
of the useful spectral features are not known in advance, it is advisable to consider different interval
size values, and then to look at those regions that are the most frequently selected ones.

For these reasons, in the second step, for each preprocessing method the spectral variables were
grouped on the basis of their frequency of selection in the models, obtained considering the
different interval sizes, and PLS models were then calculated by adding iteratively the selected
variables, in descending order according to their frequency of selection. For example, considering
the five iPLS models calculated on the mean centered NIR spectra using the five different interval
size values, at the beginning only the spectral regions (if any) that were selected in all the five iPLS
models were considered for the calculation of a PLS regression model; then, all the spectral regions
selected at least four times were included in the calculation, and so on, up to including all the
spectral regions that were selected at least once. Among all these PLS models, the one leading to

the minimum RMSECV value was chosen. This procedure was repeated for each spectra
11
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preprocessing method, and the best calibration model was finally defined as the one leading to the

overall minimum RMSECYV value.

2.4.3. Randomization test

Since both the limited number of available samples and the feature selection procedure could lead
to the risk of chance correlations, a randomization (permutation) t-test based on Monte Carlo
simulations (van der Voet 1994; http://wiki.eigenvector.com/index.php?title=Tools:_Permutation_Test.
Accessed 14 October 2016) was used to assess the statistical significance of the best calibration
model. Randomization tests consist in repeatedly and randomly reordering the values of the y
variable (i.e., of the sugar content of the plant milk samples), and in recalculating from the
beginning the calibration model with the randomly shuffled y values after each reordering. In other
words, for each run (i.e., for each reordering of the y variable), each NIR spectrum was assigned to
a "wrong" y value (i.e., to a 'y value of another sample), and then the whole variable selection step
was repeated from the beginning, in the same manner as it was done for the correct model (i.e., for
the model calculated on the correctly ordered y vales). The same procedure was then repeated for a
given number of runs, each time randomly reordering the y variable, and for each run the values of
RMSEC, RMSECV and RMSEP were stored. In particular, in the present work 100 subsequent runs
were calculated, considering the same spectra preprocessing method that led to the best calibration
model. Then, a t-test was used to compare the RMSEC, RMSECV and RMSEP values of the best

calibration model with the corresponding 100 values calculated with the randomization test.

3. Results and discussion
3.1 Validation of the Luff-Schoorl method and comparison of titration data with product label data
The titration method was initially validated using two reducing sugars, namely glucose and

fructose. The slope + standard error for the calibration curves of glucose and fructose were
12
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identical, and therefore all data have been reported as glucose content in g/100 mL of vegetable
milk. Linearity, specificity, and accuracy were satisfactory for the purposes of the determinations
and are reported in Table 1.

The following equation was used for measuring the accuracy and overall bias of the determinations

carried out on the unspiked and spiked samples at known levels of glucose (Table 2):

A=100- {100 - W} 1)

e

Ve is the expected value of glucose in the sample, and Vs is the value found as laboratory

measurement, namely in this work the LS total glucose titration value.

Since to the authors best knowledge no reference materials are available for the accuracy evaluation
of the glucose determination in plant milks, accuracy was assessed by spiking three independent
samples of different vegetable milks selected from three different producers. The samples were
selected according with the information provided on the label of the product assuming that sample
#7 would represent a reference for “low glucose level”, sample #22 for “intermediate glucose
level”, and sample #20 for a “high glucose level”.

Precision within-session (repeatability) and inter-session (intermediate precision) data were
evaluated by one-way ANOVA at the levels of 0.050, 0.100, 0.200, and 1.0 g/100mL on aqueous
samples, and on plant milk samples at low, intermediate and high level of glucose concentration.
The titration method resulted precise at the level of probability of 95% (o = 0.05).

The obtained amount of reducing sugars, expressed as grams of glucose per 100 mL of plant milk,
ranged from 0.5 (in soy) to 7.6 g/100 mL (in rice milk) with mean value of 3.9 g/100 mL and
median value of 3.6 g/100mL. The values of the standard deviations calculated on the replicate

measurements of each sample (n=3) ranged from 0.007 g/100 mL to 0.8 g/100 mL.

13
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The results of the glucose determinations in plant milks by the LS method presented in Table 3
show that in several cases the sugars content reported on the product label is different from the
amount of reducing sugars (expressed as grams of total glucose/100mL product) measured in the
sample. The anomalous error % values reported in Table 3 do not correspond to extreme (high or
low) values of concentration of sugars in the plant milk. No dependence of the error % on the matrix
was observed and no significant correlation was found between the error % values and either the
sugars or the carbohydrates concentration values reported on the labels, and between the error %
and the total glucose values registered for the products. As a matter of fact, the LS method is
complicated and its accuracy can suffer from a number of causes, but the data collected in Tables 1-
3 were thoroughly tested and the method was demonstrated to be precise and accurate on both
aqueous calibration curves and trial samples. In addition, regarding the concentration values
reported in the product label, the determination of carbohydrate and sugars content is not carried out
systematically by the producers, but rather assayed on samples taken from randomly selected
batches. Based on these reasons, it is likely that the observed differences originate from
inconsistencies in the data reported on the products labels, rather than from poor accuracy of the LS

method.

3.2 PLS calibration models

The LS titration is a cheap method but it has several major disadvantages. It requires burettes,
glassware, and reactants prepared on purpose. The entire procedure of measurement is laborious
and time-consuming requiring hours of work per sample. Indeed, a certain degree of handiness and
experience is necessary to obtain consistent results. On the contrary, NIR requires a relevant
investment of money for the acquisition of the instrumentation and obliges to build robust and
reliable calibration curves. However, NIR provides accurate and precise determinations in very

short times allowing the quantification of glucose in all the plant milk products. For this reason, in
14
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order to test the feasibility of NIR quantitative analysis, the glucose concentration values measured
using the LS titration method were used as dependent variable to construct PLS calibration models
based on the corresponding NIR spectra.

Table 4 reports the results obtained by applying the different preprocessing methods described in
Section 2.4.1. to the whole NIR spectrum. The reported results show that, in general, the
performance of the calibration models calculated considering the whole spectral range is not very
satisfactory, even though some pre-processing methods lead to acceptable results both in cross-
validation and in prediction of the external test set samples. In particular, the Savitzky-Golay first-
order derivative method followed by autoscaling (D1+AUTO) is the signal pre-processing
technique that leads to the best performances in cross-validation (RMSECV = 0.63 g/100 mL, R%cv
= 0.86), but the prediction of the glucose values of the test set is less satisfactory (RMSEP = 1.36
9/100 mL, R%gep = 0.69). The reasons for the low performances of these calibration models are
likely due to the fact that — as often happens — a large part of the NIR spectral range does not
contain information related to the glucose content, but rather to other variability sources due to the
composition of the plant milk samples considered in this study, which have been obtained from
completely different vegetable matrices (Nergaard et al. 2000). Therefore the inclusion in the
calibration model of spectral information that is non pertinent to our specific aim (such as, e.g.,
spectral variability due to scattering and to the contribution of other components such as fats or
proteins) leads to a general decrease of the prediction performances. Hence, this implies the need to
separate the information useful to predict the glucose values present within the NIR spectrum from

noise and from other variability sources, by means of proper variable selection methods.

3.3 Variable selection
The subsequent step consisted in the use of an automated variable selection method, aimed to

identify only those spectral regions containing information specifically related to sugar content of
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the plant milk samples. For each preprocessing method, iIPLS was run five times, one for each
considered interval size value (see Section 2.4.2.), and the convergence of the intervals selected in
the five iPLS runs was evaluated through the construction of a histogram reporting the frequency of
selection. As an example, Figure 1 reports the results obtained using the Savitzky-Golay first-order
derivative method followed by mean centering (D1+MNCN) as spectra preprocessing method. In
particular, Figure 1a reports the different spectral regions that were selected from each iPLS run.
Figure 1b summarizes these selection results, highlighting that three out of the five IPLS runs
converge toward the selection of a narrow spectral region located between 4406 and 4367 cm™,

In order to evaluate the convergence in the variable selection results obtained considering the
different spectra preprocessing methods, the values of the frequencies obtained using the different
preprocessing methods were plotted under the form of a stacked bar graph, that is reported in Figure
2 together with the average NIR spectrum for comparison purposes. This figure confirms that, in
general, independently of the specific preprocessing method, iPLS tends to converge to the same
spectral regions: the selected regions. The selected regions are those between 9200 and 5700 cm
and between 4800 and 4300 cm™. The general convergence in the selected regions confirms the fact
that only some parts of the NIR spectrum contain useful information relevant to the evaluation of
sugar content of the samples.

The next step consisted in performing, for ea