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ABSTRACT 

The effectiveness of Hyperspectral imaging (HSI) in the near infrared (NIR) range (1000-1700 

nm) was evaluated to discriminate PET (polyethylene terephthalate) from PLA (poly(lactic acid)), 

two polymers commonly utilized as packaging for foodstuff, in order to improve their further 

recycling process. An internal calibration based on five reference materials was initially used to 

eliminate the variability existing among images, then Partial Least Squares-Discriminant Analysis 

(PLS-DA) was used to distinguish and classify the three classes, i.e., background, PET and PLA. 

Considering the high amount of data conveyed by the training image, the PLS-DA models were also 

calculated using as training set a reduced version of the original matrix, with the twofold aim to 

reduce the computational time and to deal with an equal number of spectra for each class, 

independently from the initial selected areas. A variable selection procedure by means of iPLS-DA 

was also applied on both the whole and the reduced matrix. The results obtained on the reduced 

matrix using only six variables provided a prediction efficiency higher than 98%. Moreover, the 
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possibility to recognize PET and PLA polymers by HSI in the NIR range was further confirmed by 

using Multivariate Curve Resolution (MCR) as an alternative approach, which also allowed to 

evaluate the effect of thickness of the transparent plastic samples. 

 

KEYWORDS 

hyperspectral imaging; feature selection; multivariate curve resolution; plastic recycling; 

polyethylene terephtalate (PET); polylactic acid (PLA).  

 

1. INTRODUCTION 

HyperSpectral Imaging (HSI), also known as chemical or spectroscopic imaging, represents an 

emerging technique that provides both the spatial information characteristic of imaging methods 

and the spectral information typical of spectroscopy [1]. Compared to traditional spectroscopic 

techniques, the HSI allows to acquire spectral data in correspondence to every single pixel of an 

image; in this way, it enables the visualization of the chemical composition of the sample retaining, 

at the same time, the advantages of being fast, non-destructive and of not requiring chemicals. In 

the literature, a number of possible applications of HSI have been already presented, mostly in the 

fields of food [2-4], pharmaceutical industry [5] and medicine [6]. In addition, since multivariate 

analysis tools are mandatory to extract the significant physical-chemical information from 

hyperspectral images, various research works describing chemometric approaches developed to 

solve HSI-related issues recently appeared [7-9]. 

Thanks to the high spatial and spectral resolution values that can be reached, HSI allows to 

collect a wide amount of data in very short times, providing single hyperspectral images with file 

sizes of about 50 MB and more. If on the one hand, the large amount of hyperspectral data 

represents the main advantage of HSI technique, on the other hand, the corresponding high 
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computational load of high dimensional data, which is also known as the curse of dimensionality 

[10], is a key issue. A proper data size reduction able to speed up the processing, but preserving the 

useful information to perform a reliable analysis, thus represents a fundamental concern in the HSI 

context. Data dimensionality reduction is a key-point, firstly during the image analysis stage, 

through the elaboration of strategies able to facilitate the data handling, and secondly for the 

development of efficient industrial on-line applications – when it is necessary to follow real-time 

processes – through the application, for instance, of feature selection methods such as interval 

Partial Least Square (iPLS) [11] and/or Genetic Algorithms (GA) [12]. 

A further problem that has to be faced when dealing with hyperspectral imaging is related to the 

standardization of the instrumental response. In fact, the possible variations in the experimental 

setup including, for instance, camera inconsistencies, variations of the illumination conditions and 

changes in power or temperature which may cause a drift of the signal over time, can heavily affects 

the quality of the hyperspectral images [13] and, as consequence, the further processing and the 

related results. To address this issue, Burger and Geladi [14] developed a procedure to render the 

image quality independent from the acquisition setup. In particular, in addition to an optimization of 

the external calibration normally used to convert the raw images into reflectance images, they 

further processed the hyperspectral images by means of an internal calibration procedure, aimed to 

improve the reproducibility of the system over time. 

As far as the analysis of waste materials is concerned, some works have already shown the 

usefulness of HSI techniques in sorting solid materials such as paper [15], glass [16], car-fluff [17], 

bottom ash [18], compost [19] and polymers [20-23]. 

The increasing need to reduce the impact of plastic waste on the environment has led to the 

development of biodegradable polymers. Among them, poly(lactic acid) (PLA) is becoming widely 

used and nowadays represents an interesting environmentally-friendly alternative to polyethylene 

terephthalate (PET) since, being entirely made from corn or sugarcane, it is fully biodegradable and 

compostable. PLA is a thermoplastic aliphatic polyester that is obtained from renewable resources 
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(e.g. corn starch, tapioca roots, chips or starch, sugarcane, etc.). PET is a thermoplastic polymer 

resin, of the polyester family. It is utilized to produce synthetic fibers, beverage and other liquid 

containers, food packaging, etc.  

As PLA has a similar appearance as well as similar density to PET, the use of PLA for 

packaging materials such as food containers and bottles, and in films also for packaging is 

continuously increasing. However, the fact that its aspect is very similar to that of PET is posing 

serious problems to the recycling stream of this latter polymer, since consumers tend to erroneously 

put PLA packages into the recycling bins for plastic materials. Since the potential contamination of 

PLA in the PET recycling stream can have a negative impact on the physical properties (e.g., on 

molecular weight) of extruded rPET [24, 25], the sorting of these two polymers is an outstanding 

concern in recycling industry. PLA and PET can be utilized as food packaging in transparent and/or 

expanded forms, the latter one resulting from specific processing where air is added and embedded 

in the polymeric structure to originate a cellular structure. Both transparent and expanded PET and 

PLA, even if different from a polymeric point of view, are quite similar in terms of commonly 

detectable physical attributes and appearance, strongly conditioning the possibility to perform a 

simple “human” and/or “automatic” recognition. 

The present study was thus addressed to define a new method that can be implemented for the 

sorting of the two polymers so that they can follow different recycling routes, being PLA 

biodegradable, whereas PET can be mechanically recycled. The use of HSI in the near infrared 

(NIR) range could be of great help to discriminate these two polymers and to the best of our 

knowledge this is the first study on using HSI to solve this problem. 

Firstly, in order to minimize the uninformative variability existing among the different 

reflectance images, a transfer calibration based on five reference materials was applied, where the 

optimal polynomial order of the transfer function was also determined. Afterwards, several 

chemometric methods have been used for the analysis of PLA and PET sample images, including 

Principal Component Analysis (PCA), Partial Least Squares-Discriminant Analysis (PLS-DA) [26], 
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interval PLS-DA (iPLS-DA) [11] and Multivariate Curve Resolution (MCR) [27]. Particular 

attention has been paid to the development of strategies aimed to minimize the dimension of the 

analyzed data: a compression strategy, operating both pixel-wise and wavelength-wise, was 

developed to reduce the size of the original training image (118400 pixels × 98 wavelengths) to a 

reduced matrix (600 pixels × 6 wavelengths). Analogous classification results were obtained with 

the original dataset and with the reduced matrix.  

 

 

2. MATERIALS AND METHODS 

2.1. Samples and data collection  

2.1.1. Samples 

The analysed PET and PLA samples, in both transparent and expanded forms, have been 

provided by Coopbox (Bibbiano, Reggio Emilia, Italy), a leading food packaging producer in Italy 

and Europe. They are constituted by trays (or tray portions, e.g.: bottom and/or cover of the trays), 

commonly used as fresh food packaging as well as by the corresponding flakes, obtained after tray 

milling. The measured thickness of the samples were 0.2 mm for transparent PLA (t-PLA), 0.3 mm 

for transparent PET (t-PET), 0.9 mm for expanded PLA (e-PLA) and 1.0 mm for expanded PET (e-

PET). 

 

2.1.2. Hyperspectral imaging system 

NIR hyperspectral images were acquired using a NIR Spectral Camera
TM

 (Specim, Finland), 

embedding an ImSpector N17E
TM

 imaging spectrograph working in the spectral range from 1000 to 

1700 nm, coupled with a Te-cooled InGaAs photodiode array sensor (320 × 240 pixels) with pixel 

resolution of 12 bits. The spectrometer was coupled to a 15 mm lens. The spectral resolution of the 
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hyperspectral imaging system was 7 nm. The pixel size was around 0.6x0.6 mm. The illumination 

system is constituted by a diffused light cylinder source, aluminum internal coated, embedding five 

halogen lamps producing a continuous spectrum signal optimized for spectra acquisition in the NIR 

wavelength range.  

The utilized hyperspectral imaging based platform (DV Srl, Italy) was equipped with a 

conveyor belt (width = 26 cm and length = 160 cm) allowing to carry out experiments on particle 

flow streams in order to perform, at a laboratory scale, on-line detection of particles in a sorting 

and/or quality control perspective. The pushbroom configuration of the imaging system, consisting 

in the line by line image acquisition, represents the optimal solution for possible on-line industrial 

applications. 

 

2.1.3. Image acquisition and calculation of reflectance values 

Hyperspectral images of PET and PLA samples were acquired, generating data hypercubes 

having 320 pixels per row and a number of rows varying from 300 to 370 depending on the 

acquired image sample field. Due to the low S/N ratio characterizing the measurements at the 

extremities of the covered spectral range, only the 98 wavelengths between 1006 and 1685 nm were 

considered for further data analysis. 

Image acquisition was carried out according to a sample acquisition scheme defined after 

preliminary tests. The setup used for the acquisition of all the images was composed by different 

parts: a silicon carbide (SiC) sandpaper sheet used as background and covering the whole image 

field, a high-reflectance white ceramic tile as the standard reference, three square pieces of painted 

surfaces with different grey-scale tones as additional reference materials, and an additional square 

white tile having a sample-support function. The use of an inorganic high-reflectance material as 

sample-support allowed to improve the light absorption of transparent polymer samples – that is 

very low considering the polymer thickness – by taking advantage both from the direct incident 
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beam and from the light reflected back by the white tile. It should be underlined that all the 

materials described above showed in the acquired spectral range very “flat” spectra, i.e. almost 

constant reflectance values, diverging only in the reflectance levels. 

Firstly, an image of the acquisition sample-support setup without the plastic samples (Img0) was 

acquired to be used as reference image in the further image correction step. Afterwards, 10 images 

of PET and PLA samples were acquired as follows: 

- Img1-Img3: 3 images representative of PET and PLA tray samples, both transparent and 

expanded. The different tray samples were disposed in different positions in the images in 

order to verify that no effects due to possible spatial variations in the system response 

were present; 

- Img4: tray samples of the two transparent polymers were imaged in single layer as well as 

considering two, three and four overlapped layers, with the specific aim to evaluate the 

possible effect of polymer thickness; 

- Img5-Img6: flakes samples of both transparent and expanded PET and PLA arranged in 

rows were imaged. The spatial disposition of the different rows was changed in the two 

images; 

- Img7-Img10: both tray and flakes samples of both polymers were acquired in different 

“overlapping” combinations, in a way to simulate sample distributions more similar to real 

cases occurring in a recycling plant. 

All the images were composed by 370 pixel rows and 320 pixel columns, except for Img2, Img3, 

Img6 and Img7, which were composed by 300 pixel rows and 320 pixel columns. The acquisition 

scheme, the corresponding RGB image and results of elaborations of the HSI images of at least one 

member of each group listed above are reported in the following figures: Figure 3 (Img1), Figure 6 

(Img7 and Img9) and Figure 8 (Img4 and Img5). 
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The raw images were converted to reflectance values applying a simple external calibration 

based on the high-reflectance standard reference and on the dark current measured by covering the 

camera lens with its cap, according to the following equation: 







,i,i

,i,i

),i(
DW

DC
R




  (eq. 1) 

where Ri, are the calculated reflectance values, Ci, are the measured intensity values of the raw 

image, Di, are the dark current intensity values and Wi, are the high-reflectance standard reference 

intensity values, measured for each one of the i row pixels and of the λ wavelengths.  

 

2.2. Data pre-processing and analysis 

2.2.1. Image correction by internal calibration 

The reduction of the variability among images over time, which is mainly due to instrumental 

instability, is essential for the quality and reliability of the further analysis, since it allows working 

with merged images and/or to apply models calculated on a single image to the others. The 

calibration step used to transform the raw data into reflectance values, described in paragraph 2.1.3, 

was not sufficient to completely eliminate the variability among images, as verified by applying 

PCA to merged images (mean centered spectra). As an example, the results of the analysis 

performed on Img0 and Img1 merged together are shown in Figure 1 (a, b), where it can be seen 

that the two clusters corresponding to the two images are clearly distinguishable both on the PC1-

PC2 scores plot (Figure 1a) and on the PC2 score image (Figure 1b). As proposed by Burger & 

Geladi [14], a possible solution to this issue can be achieved by including a grayscale series of 

internal standards in the field of view of each image and then using the median spectra calculated 

for each of them to individually correct the different hypercubes, called “slave”, to match a 

previously defined “master” hypercube. In the cited paper, the effect of correction models based on 
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single-point stretch, multi-point linear as well as second order quadratic regression was evaluated, 

concluding that the latter one was the most effective correction method. 

In the present work, for each image a random sampling procedure was used to divide into three 

groups the pixels included in each region of interest (ROI) selected accordingly with each one of the 

five reference materials (i.e., the high-reflectance standard, the three square pieces of painted 

surfaces, and the white sample-support tile). For each pixel group, the median spectrum was 

calculated and then included in a matrix of reference spectra that was finally composed by (3 

median spectra) × (5 reference materials) = 15 spectra. The decision to use more than a single 

median spectrum for each ROI was taken in order to consider the effect of possible spatial 

variability of the reference materials, also considering that four out of five of them were not 

calibrated standards. The internal calibration step was carried out by computing a regression model 

between the reference spectra of Img0, taken as the master image (Y), and the reference spectra of 

each one of the “slave” images (X), wavelength by wavelength. 

In order to select the most appropriate order of the regression model, the values of the first-, 

second- and third-order regression coefficients were estimated, together with the corresponding 

statistical significances. By repeating the whole procedure 15 times for each order of the regression 

model, we observed that only the linear regression models always led to statistically significant 

regression coefficients. For this reason, the correction of all the images was carried out by applying 

a set of linear regression models, according to the equation:  

),(),(),(),( 10  IRIIIC   (eq. 2) 

where C(I, is the corrected reflectance value, R(I, is the original reflectance value, and 0(I, 

and 1(I, are the regression coefficients, calculated using the reference spectra for each image I at 

each wavelength . 
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The comparison of the PC1-PC2 scores plots obtained before (Figure 1a) and after (Figure 1c) 

applying the correction by internal calibration with the regression model of equation 2, as well as 

the comparison of the corresponding PC2 score images (Figures 1b and 1d, respectively) 

demonstrate the effectiveness of the proposed procedure. 

 

2.2.2. Explorative analysis and definition of the classes 

The corrected hyperspectral images were individually subjected to an explorative analysis by 

means of PCA. Several preprocessing methods including detrend, standard normal variate, first and 

second derivatives, normalization and mean centering were evaluated both separately and in 

different combinations; among them, 2
nd

 derivative (15 points window) combined with mean 

centering was chosen as the one leading to the best results. In order to shown how the pretreatment 

works, the raw median spectra of the three classes and the corresponding preprocessed ones are 

reported in Figure 2. 

By looking at the PCA score images of Img1, three classes were defined for the subsequent 

classification purposes: background, PET and PLA. Background was defined as a separate class, 

considering the whole scene area in the classification step, without performing any 

masking/segmentation of the images. This choice was made in order to clearly separate the 

contribution of the reflectance from the white sample-support tile from that of transparent samples. 

In addition, in the PET and PLA classes both the transparent and the expanded forms of each 

polymer were grouped together, since we focused on the identification of PET and PLA samples 

based on their chemical composition, independently of their physical form. By the way, the 

separation of transparent and expanded samples can be easily achieved by means of simpler 

systems, e.g., RGB imaging devices. 

 

2.2.3. PLS-DA classification 
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Partial Least Squares-Discriminant Analysis (PLS-DA) [26] was used to discriminate the three 

classes, using the preprocessing method defined in the explorative analysis phase. The optimal 

dimensionality of the PLS-DA classification models was defined by considering the minimum Root 

Mean Square Error estimated in the Cross-Validation (RMSECV). Contiguous-blocks cross-

validation with 10 deletion groups was chosen in order to consider neighboring pixels in the same 

deletion group. Img1 was used as training set, while Img2-Img6 were used as external test sets to 

quantitatively evaluate the predictive ability of the calculated classification models. The 

classification results for these images are reported in terms of Efficiency %, i.e. the geometric mean 

of the Sensitivity and Specificity values [28]. Due to the fact that in the remainder images (Img7-

Img10) the PLA and PET polymer samples were overlapped each other, for these ones it was not 

possible to evaluate quantitatively the predictive performance of the classification models. 

Therefore, in this case the effectiveness of the discriminant models was evaluated only qualitatively 

by looking at the pseudo-color images of the predicted class probability values and by comparing 

these with the corresponding acquisition scheme. 

 

2.2.4. Calculation of reduced matrices 

Considering the high amount of data contained in the training set image (size of Img1: 118400 

single pixel spectra × 98 wavelengths), the PLS-DA models were also calculated using as training 

set a reduced version of the original data matrix, in order to test whether it was possible to obtain 

the same classification performances, but drastically lowering the time needed for model 

computation. The reduced matrix was calculated for Img1 by using the following procedure: 

- for the ROI corresponding to each class, subdivide the n pixels in n/25 groups; 

- for each group, calculate the mean spectrum; 

- randomly select 200 mean spectra 
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- create the reduced matrix with 200 mean spectra for each class (total size: 600 mean spectra 

× 98 wavelengths) 

In this case, a “customized” cross-validation with 10 deletion groups was used, where each 

group contained 20 spectra for each class. 

 

2.2.5. Variable selection by means of iPLS-DA 

Since in the NIR hyperspectral images the variables (i.e., the reflectance values at the different 

spectral wavelengths) are highly collinear, variable selection represents an important step to 

decrease the computational load as well as to increase the robustness of the prediction models [10]. 

Among the several existing methods for variable selection [29], in the present work the simple but 

effective iPLS-DA algorithm was applied. As described in [11], iPLS-DA, that is a modification of 

the interval-PLS algorithm applied to classification tasks, works by dividing the full-spectrum in 

intervals of equal width and calculating classification models for each one of these spectral regions. 

In the forward-selection mode, the best interval is then chosen as the one leading to the minimum 

value of RMSECV. Then, two-intervals models are built by adding each one of the remainder 

intervals to the previously selected one. Once again, the model showing the lowest RMSECV value 

is selected and this iterative procedure is repeated until no significant improvement of RMSECV is 

achieved. Conversely, in the reverse-selection mode, the intervals are iteratively removed according 

to a decrease in the RMSECV value. Since this latter procedure is more conservative than the 

former one, i.e., a larger number of wavelengths are usually preserved in the final model, the 

forward-selection mode was used in the present work. 

In particular, forward iPLS-DA was applied to Img1 as well as to the corresponding reduced 

matrix considering different numbers of intervals, i.e. 7, 14 and 49 intervals, corresponding to 

window sizes equal to 14, 7 and 2 variables, respectively. The same preprocessing and cross-

validation procedures used for the calculation of the PLS-DA models on the whole signals were 
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applied. Also in this case, Img1 was used as training set, and the remainder images were used to 

evaluate the predictive capability of the selected models, as it was previously describes in section 

2.2.3. 

 

2.2.6. Multivariate Curve Resolution  

Considering the spectroscopic nature of the NIR hyperspectral images, an alternative approach 

for mapping the sample constituents is represented by the so-called resolution methods. Among 

them, Multivariate Curve Resolution (MCR) is the most popular one in the frame of  multivariate 

image analysis [30]. Based on the Lambert-Beer law, MCR aims to decompose the original 

unfolded hypercube matrix into two matrices, the first one containing the spectra recovered for the 

pure chemical components, and the second one with the corresponding concentration profiles for 

each pixel of the image. In particular, by means of an optimisation procedure based on Alternating 

Least Squares (ALS), MCR works decomposing a matrix of spectra according to the matrix 

equation: 

ESCX  T  (eq. 3) 

where X represents the unfolded data matrix, S
 
the pure component spectra, C their corresponding 

concentrations and E the matrix of the residuals. In the same way as PCA is used to have a 

visualization of the score images, MCR is allows represent the distribution maps of each 

component, which are obtained by refolding the corresponding concentration vector. Furthermore, 

this method allows the reduction of the remarkable hypercube dimensions to just few chemically 

meaningful pure components [10]. 

Despite the advantages offered this approach, mainly concerning the ease of interpretation of the 

results in chemical terms, MCR is affected by a drawback: several solutions may contemporarily 

exist for the matrix decomposition, i.e., several pairs of C and S
T
 matrices [30]. In order to reduce 

this ambiguity, various constraints may be applied in a manner to induce the ALS optimization to 
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converge towards the correct solution. Among them, the most common one is the non-negativity 

constraint, that can be set both for the pure components spectra and for the concentration values.  

Concerning the analysis of the polymer images, a MCR model was calculated on the reduced 

matrix of Img1, using the median spectra of the classes as initial guesses and non-negativity 

constraints for both C and S. Additionally, spectra normalization to unit area was used. The 

obtained MCR model was validated using Img2-Img10 as test set, with the aim to get the 

distribution maps of the different imaged components. The results were qualitatively evaluated by 

comparing the distribution maps with the corresponding acquisition schemes. 

 

 

3. RESULTS AND DISCUSSION 

3.1. Explorative analysis and class definition 

Before calculating the classification models, all the hyperspectral images were subjected to 

exploratory analysis by means of PCA. No cleaning step was usually required; only in the case of 

Img3 the removal few outlier pixels has been necessary (19 out of 118400). 

Considering only the images where the polymers were not overlapped, i.e., Img1-Img6, the 

number of significant PCs always resulted equal to 2 (accounting for about 90% of the total 

variance), therefore the pixel clusters identified in the corresponding PC1-PC2 scores plot were 

used to define the three classes: background, PLA and PET. Figure 3 reports the RGB image 

corresponding to Img1 (Figure 3a), the PC1-PC2 scores plot of Img1 used for class definition, 

where the clusters corresponding to the three classes are highlighted with different colours (Figure 

3b), and the corresponding image representation of the three selected classes (Figure 3c). In order to 

better interpret the results of PCA, the relationships between the pretreated median spectra of PET 

and PLA and the PCA loadings were evaluated. Linear correlations between PC1 loadings and the 

pretreated median spectrum of PET (Figure 4a) as well as between PC2 loadings and the pretreated 
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median sprectrum of PLA (Figure 4b) were found, confirming that PC1 fundamentally reflects the 

variability due to the PET-related spectral features, while PC2 is mainly related to the PLA ones. 

Moreover it can be noticed that in the scores plot (Figure 3b), the cluster corresponding to the 

transparent PLA sample is located between PLA and background clusters. Plausibly, the very low 

thickness of the transparent PLA sample led to a significant contribution of the underlying white tile 

to the spectra of transparent PLA. 

 

3.2. PLS-DA results 

The optimal dimensionality of the PLS-DA classification model, corresponding to the minimum 

error in cross-validation, was equal to 2 Latent Variables. The classification results are reported in 

Table 1, where the cross-validation results obtained on the training image (Img1) perfectly agree 

with those obtained for the external prediction of the test images. In general, values in prediction 

higher than 98% were obtained for all the classes in all the five test images.  

The same approach was applied using as training set the Img1 reduced matrix of 600 spectra. 

Also in this case a model with 2 Latent Variables was selected by cross-validation. As reported in 

Table 1 the results obtained on the reduced matrix are absolutely comparable to those obtained on 

the original dataset, but the time needed for model calculation has been shortened from about 150 

seconds to just about 10 seconds. Furthermore, it should be noticed that using this approach, an 

equal number of spectra is used for each class, independently of the size of the selected areas. 

 

3.3. Classification results after variable selection  

The forward iPLS-DA algorithm for variable selection, that was applied using 7, 14 and 49 

intervals, led to the selection of the wavelength regions shown in Figures 5b and 5c, for the whole 

and the reduced matrices of Img1, respectively. For comparison purposes, Figure 5a reports the 

Variable Importance in Projection (VIP) scores of the PLS-DA model calculated on the whole 
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matrix and considering the entire spectral range. VIP scores estimate the importance of each 

variable used in a PLS model, so that they are often used as a criterion for effective variable 

selection [31]. Generally, the criterion adopted to determine whether a certain variable is actually 

significant is the ‘greater than one rule’, which derives from the fact that the average of squared VIP 

scores equals 1. For this reason, in Figure 5a the horizontal dashed line reports the threshold value 

equal to 1. 

As stated by Andersen & Bro [32], the use of variable selection methods is generally addressed 

to reach three principal goals: i) the decrease of the computational time for model application; ii) 

the deletion of irrelevant, noisy or unreliable variables that may reduce the model predictions; iii) 

the possibility to find a chemical meaning for the interpretation of the model results. In the present 

work, variable selection has gained the goal to decrease the computational time of about 90% (Tab. 

2). On the other hand, the results obtained after variable selection are definitely comparable to those 

obtained before, which were already close to 100% in Efficiency. Moreover, it must be stressed out 

that the introduction of the reduced matrix has proven to be a good solution for the classification of 

polymers using HSI, also in conjunction with feature selection. In fact, feature selection performed 

on the reduced matrix always allowed to obtain models with a number of variables lower than the 

number selected with the corresponding whole matrix, and with prediction performances analogous 

to those obtained on the whole matrix. Indeed, for all the three classes and for all the test images, 

Classification Efficiency values higher than 98% were always obtained. In particular, two models 

calculated on the reduced matrix seem particularly promising by a practical point of view:  

- the classification model obtained with iPLS-DA using an interval size equal to 2, which led 

to the selection of only 6 wavelengths (1034, 1041, 1440, 1447, 1636 and 1643 nm) giving 

an average Efficiency value in prediction equal to 99.81 % (overall best performing model); 

- the classification model obtained with iPLS-DA using an interval size equal to 7, which led 

to the selection of 7 contiguous wavelengths (1594, 1601, 1608, 1615, 1622, 1629 and 1636 

nm) giving an average Efficiency value in prediction equal to 99.69 %; 
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In general, a very good correspondence was observed among the spectral regions selected using 

the different iPLS-DA interval sizes on the same matrix, as well as comparing the selection 

performed on the two matrices. In particular, the spectral region between 1600 and 1650 nm 

resulted to be the most significant one, since it was always selected on both the matrices and 

indipendently of the interval size, in agreement with the VIP scores obtained by PLS-DA before 

variable selection. In this spectral region the main absorption band is due to the first overtone of the 

C-H stretching [15, 33]. What is more, one of the two best performing models allowed to obtain 

optimal classification results using only wavelengths falling in this range. This result is interesting 

by a practical point of view and also reasonable, since between PET and PLA polymer structures 

there are many differences concerning the nature and number of the C-H bonds.  

Finally, Figure 6 reports the prediction results for the test images Img7 and Img9, obtained with 

the overall best performing model, calculated using the reduced matrix and the smallest number of 

selected variables (last column of Table 2). As shown by the predicted probability images (Figure 

6c), the model based on 6 wavelengths only was able to clearly distinguish the three classes 

although the very low sample thicknesses. In particular, it can be noticed that both e-PLA and e-

PET flakes were distinctly assigned to the respective classes, while the overlapped t-PLA and t-PET 

flakes were correctly indicated as belonging to both the polymer classes (cyan colour is 

intermediate between green for PET and blue for PLA) since the corresponding pixel spectra 

reflected the composition of both polymers. 

 

3.4. Multivariate Curve Resolution results 

The median spectra of the classes background, PLA and PET used as initial guesses for the 

calculation of the MCR-ALS model were calculated on the reduced matrix and resulted to be almost 

identical to the corresponding median spectra calculated on the whole Img1 (Figure 2a).  The 

spectra profiles of the three components recovered by means of MCR-ALS are reported in Figure 7. 
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As shown by the pseudo-color distribution images of Img4 and Img5 (Figure 8c)  as well as of  

Img7 and Img9 (Figure 6d), that were built by superimposing the distribution maps of the three 

components , the MCR model is clearly able to distinguish the two polymers in all the images used 

as test sets. 

With respect to Img4 (Figure 8c), that was set up to evaluate the effect of the sample thickness 

on discrimination, the pseudo-color image obtained shows that no variations can be noticed among 

different thicknesses for PET samples. On the other hand, in the case of PLA, the single layer 

sample is perceived as a combination of PLA and of the white tile underneath, while starting from 

the double layer sample, only the PLA contribute can be observed. Out of seven test images, only a 

partial misclassification of the e-PET tray sample in Img8 was observed, were only few pixels were 

identified as belonging to the backgroundclass. Similar results can be observed for Img9 (Figure 

6d), where the t-PLA was imaged together with the PET flakes.  

Although, when compared with PLS-DA, MCR-ALS represents a more explorative and non 

discriminant-oriented method, the results obtained using these two independent approaches were 

perfectly in agreement. 

 

 

4. CONCLUSIONS 

A NIR-HSI system operating in the spectral range between 1000 and 1700 nm was used to 

effectively classify and spatially distinguish samples of PET and PLA, two polymers that need to be 

sorted and separated in recycling plants. With the aim to improve the reproducibility of the images 

over time, particular attention has been paid to the image correction step. The use of an internal 

calibration step based on five reference materials was proved to be very useful, in addition to the 

normal reflectance calibration based only on the dark current and on a high reflectance standard. 

Furthermore, the use of a reduced matrix having dimension {600x98} as training set for the 
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calculation of the PLS-DA model allowed to obtain Classification Efficiency values in prediction 

higher than 98% and absolutely comparable to those obtained using the original {118400x98} 

training image. This strategy is thus effective to facilitate the data handling and, at the same time, to 

significantly reduce the computational load and time needed for the image analysis. This was also 

confirmed in the iPLS-DA variable selection step, where the use of the reduced matrix allowed a 

decrease of the computational time of about 90% and a selection of a lower number of variables 

compared to the whole matrix. The Classification Efficiency values estimated in prediction using 

the PLS-DA model calculated on the reduced matrix using only 6 variables were higher than 98%. 

The effectiveness of the hyperspectral imaging system for distinguishing the two polymers, both in 

transparent and expanded physical forms, was also confirmed by using a different approach, i.e., 

applying MCR-ALS to the reduced matrix. The results obtained with MCR-ALS were in perfect 

agreement with those obtained with PLS-DA. 
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 TABLES AND FIGURES CAPTIONS 

Table 1. PLS-DA Classification Efficiency results obtained with the whole Img1 hypercube and 

with the corresponding reduced matrix. 

 

Table 2. PLS-DA Classification Efficiency results obtained after variable selection with the whole 

Img1 hypercube and with the corresponding reduced matrix. 

 

Figure 1. PC1-PC2 scores plot and PC2 score image obtained from PCA performed on merged 

and meancentered Img0 and Img1 before (a, b) and after (c, d) the internal calibration. 

 

Figure 2. (a) Raw median spectra and (b) corresponding preprocessed (2
nd

 derivative + mean 

centering) spectra of the three classes calculated on the whole Img1.  

 

Figure 3. Results of PCA applied to Img1. (a): RGB image; (b): PC1-PC2 scores plot showing the 

cluster-based selection of the 3 selected classes: background (red), PET (green) and PLA 

(blue); (c): image representation of the three selected classes; 

 

Figure 4. (a) PC1 loading vectors vs. preprocessed median spectrum of PET; (b) PC2 loading 

vectors plot vs. preprocessed median spetrum of PLA. 

 

Figure 5. (a) VIP scores of the PLS-DA model calculated on the whole Img1 ; (b) variables 

selected on the whole matrix and (c) on the reduced matrix of Img1 by means of iPLS-

DA dividing the spectral range in 7 (A, D), 14 (B, E) and 49 (C, F) intervals.  

 

Figure 6. Img7 andImg 9: (a) acquisition schemes; (b) corresponding RGB images; (c) PLS-DA 

predicted class probabilities (red for background, green for PET, blue for PLA); (d) 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 25 

MCR-ALS estimated concentrations (red for component 1, green for component 2, blue 

for component 3). 

 

Figure 7. Spectra profiles of the three components recovered by means of the MCR-ALS 

algorithm calculated on the reduced matrix of Img1. 

 

Figure 8. Img4 andImg5: (a) acquisition schemes; (b) RGB images; (c) MCR-ALS estimated 

concentrations (red for component 1, green for component 2, blue for component 3). 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 32 

 

 

Figure 7 
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Figure 8 
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Tables 

 

Table 1 

 

 

Efficiency (%) of the PLSDA models 

Whole matrix Reduced matrix 

 Background PET 
PLA 

Background PET PLA 

Img1 (CV) 99.85 100.00 99.90 100.00 100.00 100.00 

Img2 (Pred) 99.85 100.00 99.95 99.60 100.00 99.95 

Img3 (Pred) 99.90 100.00 99.85 99.65 100.00 99.90 

Img4 (Pred) 99.50 100.00 99.35 98.94 100.00 99.50 

Img5 (Pred) 99.55 100.00 99.10 98.94 100.00 99.25 

Img6 (Pred) 98.79 100.00 98.54 98.13 100.00 98.69 
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Table 2 

 

 

Interval size 14 Interval size 7 Interval size 2 

Whole 

matrix 

Reduced 

matrix 

Whole 

matrix 

Reduced 

matrix 

Whole 

matrix 

Reduced 

matrix 

#° of LVs 2 2 2 2 2 2 

#° of selected wavelengths 56 42 21 7 24 6 

Calculation time (s) 188 20 242 24 3325 168 

Efficiency 

(%) 

Img1 

(CV) 

Background 99.90 100.00 99.85 100.00 99.90 100.00 

PET 100.00 100.00 100.00 100.00 100.00 100.00 

PLA 99.95 100.00 99.80 100.00 99.85 100.00 

Img2 

(Pred) 

Background 99.85 99.65 99.85 99.80 99.80 99.90 

PET 100.00 100.00 100.00 100.00 99.95 100.00 

PLA 99.95 100.00 99.95 99.95 100.00 99.90 

Img3 

(Pred) 

Background 99.90 99.70 99.85 99.80 99.85 99.90 

PET 100.00 100.00 100.00 100.00 100.00 100.00 

PLA 99.95 100.00 99.95 100.00 99.95 99.95 

Img4 

(Pred) 

Background 99.70 99.25 99.50 99.40 99.40 99.60 

PET 100.00 100.00 100.00 100.00 99.90 100.00 

PLA 99.70 99.90 99.85 99.90 99.80 99.70 

Img5 

(Pred) 

Background 99.90 99.50 99.10 98.99 98.89 99.65 

PET 99.95 100.00 99.95 100.00 99.45 100.00 

PLA 99.60 99.90 99.85 99.85 99.75 99.95 

Img6 

(Pred) 

Background 99.20 98.69 98.39 98.23 98.18 98.99 

PET  99.95 100.00 99.80 100.00 99.30 100.00 

PLA 98.99 99.35 99.35 99.40 99.25 99.55 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 36 

 

Highlights 

 

 Classification of PET and PLA by NIR-HSI was carried out for recycling purposes 

 A new internal calibration procedure allowed to optimize image reproducibility 

 An efficient data compression strategy was developed (max compr. ratio = 3×10^-4) 

 PLS-DA, iPLS-DA and MCR-ALS were applied to distinguish PET from PLA 

 PET and PLA were correctly identified, also using the compressed datasets 

 

 

 


