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Abstract 10 

HyperSpectral Imaging (HSI) is gaining increasing interest in the field of analytical chemistry, since 11 

this fast and non-destructive technique allows one to easily acquire a large amount of spectral and 12 

spatial information on a wide number of samples in very short times. However, the large size of 13 

hyperspectral image data often limits the possible uses of this technique, due to the difficulty of 14 

evaluating many samples altogether, for example when one needs to consider a representative 15 

number of samples for the implementation of on-line applications. In order to solve this problem, 16 

we propose a novel chemometric strategy aimed to significantly reduce the dataset size, which 17 

allows to analyse in a completely automated way from tens up to hundreds of hyperspectral images 18 

altogether, without losing neither spectral nor spatial information. The approach essentially consists 19 

in compressing each hyperspectral image into a signal, named hyperspectrogram, which is created 20 

by combining several quantities obtained by applying PCA to each single hyperspectral image. 21 

Hyperspectrograms can then be used as a compact set of descriptors and subjected to blind analysis 22 

techniques. Moreover, a further improvement of both data compression and 23 

calibration/classification performances can be achieved by applying proper variable selection 24 

methods to the hyperspectrograms. A visual evaluation of the correctness of the choices made by 25 

the algorithm can be obtained by representing the selected features back into the original image 26 

domain. Likewise, the interpretation of the chemical information underlying the selected regions of 27 

the hyperspectrograms related to the loadings is enabled by projecting them in the original spectral 28 

domain. Examples of applications of the hyperspectrogram-based approach to hyperspectral images 29 

of food samples in the NIR range (1000-1700 nm) and in the Vis-NIR range (400-1000 nm), facing 30 

a calibration and a defect detection issue respectively, demonstrate the effectiveness of the proposed 31 

approach.  32 
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1. Introduction 35 

HyperSpectral Imaging (HSI), also known as hyperspectral chemical imaging (HCI), represents an 36 

emerging technique that provides both spatial information of imaging systems and spectral 37 

information of spectroscopy [1]. HSI techniques are based on the acquisition of spectral data not 38 

only from a single point but at each pixel of an image, to form a three-dimensional multivariate 39 

array of data (also called hypercube) with two spatial dimensions (x, y) and one wavelength 40 

dimension (λ). Therefore, compared with traditional spectroscopic methods, HSI allows not only to 41 

achieve identification and quantification of the chemical components within the analysed sample, 42 

but also to map their spatial distribution. Thanks to the possibility that this technique offers in 43 

describing heterogeneous samples by taking into account also spatial-related features, HSI has 44 

found a wide range of applications in several fields [2-6], in particular in pharmaceutical industry 45 

[7, 8] and in food industry [9, 10]. In these two fields, several studies have been carried out in order 46 

to address calibration [11-13], classification [14-16] as well as defects detection issues [17, 18]. 47 

Despite the many advantages provided by this technique, a wider diffusion of HSI is hampered by 48 

the high amount of data that can be collected in very short times, considering that hyperspectral 49 

images with file sizes of 50 MB and more can be easily acquired in few seconds. Indeed this 50 

represents a crucial point since, in the main fields of use, applications requiring the simultaneous 51 

evaluation of a large number of images would be highly valuable. This issue, also referred to as 52 

curse of dimensionality, has been recently addressed by Burger and Gowen in [19], where 53 

multivariate analysis methods available for reducing the computational load involved in acquiring 54 

and managing HSI data are reviewed. Several approaches for dimensionality reduction have been 55 

recently discussed also by Gowen et al. in [20] about time series HSI data, where several 56 

hyperspectral images acquired on the same or similar samples at different times must be evaluated 57 

in order to gain information about the phenomena underlying dynamic processes and/or for 58 

prediction of the future behaviour of systems. In both cases, among the reported approaches, 59 

particular attention was paid to latent variables projection-based methods and to wavelet 60 

decomposition. 61 

Among the latent variables projection-based methods, Principal Component Analysis (PCA) is the 62 

most frequently used technique in the frame of Multivariate Image Analysis (MIA) [21, 22]. In this 63 

case, data reduction is achieved by unfolding the hypercube, which means reorganising it into a 64 

two-dimensional data matrix with size {(x × y), λ}, and then in projecting the high dimensional 65 

data, i.e., the pixels data in the λ spectral dimensions, into a new subspace defined by a limited 66 

number of uncorrelated variables (Principal Components, PCs), describing the major variability 67 

sources of the analysed data. The same concept is applied in Multivariate Curve Resolution (MCR) 68 
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[23], where the unfolded hypercube is decomposed into two matrices, taking advantage of the 69 

Lambert-Beer law; the first matrix contains the spectra recovered for the pure chemical components 70 

and the second one the corresponding concentration profiles for each pixel. 71 

The Wavelet Transform (WT) [24, 25] allows to represent each analysed spectrum or image in an 72 

alternative domain, where the different frequencies are separated, but maintaining at the same time 73 

the localisation in the original domain. This is known as signal/image multiresolution. In this 74 

manner, in addition to the single intensity values, other useful aspects like, e.g., band widths and 75 

slopes of a spectrum, or discontinuities, noise and uniform areas of an image can be extracted from 76 

the data and compressed into a limited number of variables (called wavelet coefficients). Wavelet 77 

analysis can be applied to HSI both in the image space (two-dimensional WT) and in the spectral 78 

domain (one-dimensional WT). A number of WT-based approaches have been developed 79 

specifically for hyperspectral image analysis; as an example, the hyperspectral discrete wavelet 80 

transform proposed by Scholl and Dereniak [26], consists of a 2-D discrete wavelet transform 81 

(DWT) in the spatial dimension carried out independently of a 1-D DWT in the spectral dimension. 82 

Burger and Gowen [19] report a comparison between the use of PCA and WT for the compression 83 

of an image containing 318×256 pixels and 131 wavelength channels, which led to compression 84 

ratio values equal to 7.6 % and 1.2 %, respectively. 85 

Notwithstanding the great potential of these techniques, they generally allow the simultaneous 86 

analysis of a relatively restricted number of hyperspectral images, since merging together more than 87 

few images of different samples is a computationally intensive task. However, when dealing with 88 

problems related to samples characterized by a large inter-sample variability such in the case of 89 

food industry, where several factors (e.g. harvest period or animal feeding) concur in defining the 90 

final quality of the product, it is necessary to consider an adequate number of samples in order to 91 

describe the real variability of the considered problem; to this aim, datasets composed by hundreds 92 

of hypercubes should be handled. Nowadays, this is usually achieved by analysing separately each 93 

image, in order to extract data, such as average spectra of a user-defined Region Of Interest (ROI), 94 

to be used for further analysis of the whole dataset. However, this procedure results to be quite 95 

laborious, time consuming and strictly depending on the problem at hand. Moreover, when 96 

averaging spectra, information about spatial (inter-pixel) variability is lost. Conversely, by 97 

investigating simultaneously hundreds of hypercubes, it could be possible to gain an overview of 98 

the acquired dataset, to identify specific patterns, as well as to properly verify the representativeness 99 

of training and test samples to be used for further classification, calibration or process monitoring 100 

purposes. 101 
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In this context, we propose a chemometric strategy that was developed to significantly reduce the 102 

dataset size, allowing to analyse at the same time from tens up to hundreds of hyperspectral images. 103 

This procedure is derived from the colourgrams approach, already developed by some of us for the 104 

elaboration of RGB images [27-29]. The proposed approach essentially consists in compressing 105 

each hyperspectral image into a signal, named hyperspectrogram, which is created by combining 106 

several quantities obtained by applying PCA to the unfolded hypercube data. Hyperspectrograms 107 

can then be used as a compact set of descriptors and subjected to further blind analysis techniques. 108 

Briefly, hyperspectrograms are obtained by merging in sequence the frequency distribution curves 109 

of the score vectors obtained from a PCA model calculated separately on each HSI, and by adding 110 

also the frequency distribution curves of the Q residuals and of the Hotelling T
2
 vectors, in order to 111 

preserve all the pixel-related variability of the hypercube. Moreover, in order to maintain the most 112 

relevant spectral features of the hypercube data, the PC loading vectors are also added at the end of 113 

the signal.  114 

Using proper variable selection methods, hyperspectrograms can be further compressed to few 115 

significant descriptors, allowing to extract only the specific features that are useful to solve the 116 

problem at hand. Additionally, these features can be projected back into the image space, allowing 117 

to perform a visual evaluation of the choices made by the feature selection method, or into the 118 

spectral domain, in order to detect the spectral regions containing the information of interest. 119 

The idea to use the whole images instead of the single pixels as objects in the context of 120 

hyperspectral imaging has been recently proposed by Kucheryavsky [30]. In this work, the 121 

frequency distribution curves of the score values of each principal component obtained from a PCA 122 

model calculated on the whole dataset of hyperspectral images were used to build a feature vector 123 

for each object. Conversely, in the hyperspectrogram approach PCA models are calculated 124 

separately for each hypercube, thus allowing to consider a much higher number of hyperspectral 125 

images at the same time. 126 

The proposed approach was tested on two benchmark datasets of hyperspectral images of food 127 

samples, acquired by means of two different instruments working in the NIR and in the Vis-NIR 128 

ranges, and addressing a calibration and a defect detection issue, respectively. 129 

 130 

2. Materials and methods 131 

2.1. Dataset 1: wheat and rice kernels 132 

In order to perform a preliminary test of the efficacy of the proposed approach, using an example 133 

where the sources of variation in the images are well known a priori, a first benchmark dataset 134 
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(which is available from the authors upon request) was created by acquiring hyperspectral images of 135 

binary mixtures of wheat and rice kernels. In particular, 15 samples containing percentages of rice 136 

ranging from 0 to 100% (Table 1) were imaged using a desktop NIR Spectral Scanner (DV Optic), 137 

embedding a reflectance imaging based spectrometer Specim N17E and operating in the 900 – 1700 138 

nm spectral range (spectral resolution 5 nm). In particular, two repeated and three replicate images 139 

were acquired for each one of the 14 samples where the wheat and rice kernels were uniformly 140 

mixed (samples A–I and M–Q). Moreover, two repeated images of a sample containing 50% wheat 141 

kernels and 50% rice kernels grouped separately by kernel type (sample L) were also acquired. All 142 

the 86 images were acquired using as sample background a black silicon carbide (SiC) sandpaper 143 

sheet. An instrument calibration based on a high-reflectance standard reference and on dark current 144 

[31] was applied to convert the raw data into the corresponding reflectance values. The reflectance 145 

images were then cropped to obtain equal spatial dimensions of 231 × 229 pixels and furthermore, 146 

due to the low S/N ratio of the spectra extremes, only the 150 central wavelengths between 955 and 147 

1700 nm were considered for further analysis. 148 

 149 

2.2. Dataset 2: buns with surface defects 150 

In order to evaluate the presence of a surface defect typical of industrial buns, namely pale spots, 151 

which is rather difficult to detect by means of classical RGB imaging techniques, hyperspectral 152 

images of 10 buns showing pale spots were compared with 4 control samples and 6 buns affected 153 

by another defect (dark spots), which is instead easily detectable by RGB imaging. In this context it 154 

has to be underlined that, although the assignment of the samples to the three classes was performed 155 

by expert assessors, this evaluation cannot be considered as free from a certain degree of 156 

uncertainty, due to the high variability of the extent and intensity of the two defects. This means 157 

that, for example, some samples assigned to the control class could actually be affected by pale 158 

spots, but with too limited extent and intensity to justify their assignation to the defective class. 159 

Three repeated images were acquired for each sample and furthermore replicate images were 160 

acquired on 3 samples in different days. The 78 resulting hyperspectral images were acquired using 161 

a Specim ImSpector V10E Imaging VisNIR System operating in the 400-1000 nm range (spectral 162 

resolution 2.9 nm). Due to the low S/N ratio of the spectra extremes, only the 189 central 163 

wavelengths between 450 and 999 nm were considered for further analysis. Also in this case, a 164 

black sandpaper sheet was used as sample background and the instrument calibration previously 165 

described was applied to convert the raw intensity data into the corresponding reflectance values. 166 

 167 
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2.3. Preprocessing of hyperspectral images 168 

Before converting images into hyperspectrograms, both the datasets were subjected to an image 169 

segmentation step [32] aimed at removing the pixels corresponding to the sandpaper sheet used as 170 

background, which was present in all the images of both datasets. To this purpose, according to a 171 

generally recognized procedure in the frame of hyperspectral image analysis, and thanks to the neat 172 

difference in the reflectance values between sample and background pixels, a fast thresholding 173 

procedure was employed. In particular, based on the preliminary evaluation of some sample images, 174 

the most discriminant wavelength was identified for each dataset by maximising the Fisher ratio, 175 

which led to the use of  = 1090 nm for Dataset 1 (threshold value: 0.2) and  = 889 nm for 176 

Dataset 2 (threshold value: 0.6).  177 

 178 

2.4. Creation of the hyperspectrograms 179 

As mentioned above, the proposed approach is based on the idea of codifying the potentially useful 180 

information contained in each hyperspectral image into a signal, named hyperspectrogram, which is 181 

obtained by merging together quantities derived by a PCA model calculated on the unfolded 182 

hypercube data. A schematic representation of the procedure followed to generate the 183 

hyperspectrogram is reported in Figure 1.  184 

More in detail, starting from a dataset formed by a large number of hyperspectral images, the 185 

calculation the hyperspectrogram corresponding to each single image involves the following steps: 186 

- the three-dimensional hypercube H with size {x, y, λ}, where x and y are the number of pixel 187 

rows and columns, respectively, and λ is the number of wavelengths, is unfolded to a two-188 

dimensional matrix X with size {(x × y), λ}, containing as many rows as the number of 189 

pixels, and as many columns as the number of wavelengths, λ; 190 

- a PCA model is calculated on meancentered spectra with a user-defined number of PCs , A, 191 

which is the same for all the analysed images, and considering only the r pixels retained 192 

after image segmentation, i.e. r ≤ (x × y); the corresponding score vectors ta and loading 193 

vectors pa (with 1 ≤ a ≤ A), Q-residuals vector, q, and Hotelling T
2 

vector, h, are stored; 194 

- in order to avoid problems due to the sign indeterminacy of PCA decomposition, starting 195 

from the second analyzed image, for each principal component a the sign of each loading 196 

vector pa is defined in a way that the sum of the squared differences with respect to the 197 

corresponding loading vector calculated for the first image is minimum, and the sign of the 198 

corresponding score vector ta is defined accordingly; 199 
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- the frequency distribution curves of each score vector and of the Q residuals and Hotelling 200 

T
2
 vectors are calculated, considering a number of bins equal to the number of spectral 201 

variables, λ; each frequency distribution curve is then normalized by the number of pixels 202 

retained after segmentation of the corresponding image (r). The range considered for the 203 

calculation of the frequency distribution curves of the score vectors, (stored in the 204 

corresponding data vectors Fta,) is defined separately for each principal component on the 205 

basis of the minimum and of the maximum score values calculated over all the images. 206 

Similarly, for the frequency distribution curve of Q residuals, Fq, and of Hotelling T
2
 , Fh, 207 

the corresponding range is defined between 0 and the maximum value calculated over all the 208 

images. No outlier elimination is done at this step, since the pixels lying outside the 95% or 209 

99.7% confidence limits could correspond to useful features, e.g. to sample defects when a 210 

defect detection issue is faced; 211 

- the hyperspectrogram of each image is then created by joining in sequence the frequency 212 

distribution curves of the scores vectors, of the Q residual vector and of the Hotelling T
2
 213 

vector, and finally adding the loading vectors. For example, if the number of user-defined 214 

PCs, A, is set to 2, the hyperspectrogram is obtained by joining in sequence the vectors Ft1, 215 

Ft2, Fq, Fh, p1 and p2, and the resulting length will be equal to (2 × A + 2) × λ, i.e., for 2 216 

PCs, to 6 λ. 217 

 218 

It must be noticed that any possible source of non-informative variability existing among the 219 

different images, due to factors such as e.g., instrumental instability, can be eliminated or 220 

minimized previous to hyperspectrograms calculation by means of a proper internal calibration step 221 

[8, 16]. As for the datasets considered in the present study, a preliminary explorative data analysis 222 

by PCA revealed that no internal calibration procedure was necessary. 223 

A further remark concerns the choice of the most appropriate pretreatment to use for the calculation 224 

of the PCA models on the individual images. Indeed, although in the present work the original 225 

images of both datasets have been pretreated only by meancentering, it must be underlined that 226 

other pretreatments can be used, if a preliminary evaluation made on single images indicates that 227 

these allow to better point out the features of interest. As for the appropriate number of PCs to be 228 

retained in the PCA models used for the hyperspectrograms calculation, it has to be underlined that 229 

this does not really represent a crucial point. Indeed, hyperspectrograms can be further subjected to 230 

a variable selection step where the PCs accounting for variability sources which are not useful for 231 

solving the problem at hand will be discharged. However, also in this case, a preliminary evaluation 232 
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by PCA on a restricted number of representative images can be very useful in order to have an 233 

estimate of the number of PCs potentially bringing useful information. 234 

Anyway, including in the hyperspectrograms also the Q residuals ensures that all the information 235 

which is potentially useful for the problem at hand is considered, independently of the number of 236 

retained PCs. Furthermore, the inclusion of the frequency distribution curve of Hotelling T
2
, though 237 

being partially redundant, could be useful when a particular feature of interest is characterized by 238 

the simultaneous contribution of more PCs [22]. 239 

Concerning the time required to segment and to convert a set of hyperspectral images into the 240 

corresponding hyperspectrograms, as an example the calculation of the 86 hyperspectrograms of 241 

Dataset 1 (overall size equal to 3.5 GB) using a personal computer running with Microsoft 242 

Windows 7–64 bit ® and equipped with an Intel Core ® i7-2600 CPU @ 3.40 GHz processor and 243 

4.00 GB RAM required 227.84 seconds (2.65 s for image), including the time needed to load each 244 

image file from the hard disk, to segment the image and to save the resulting matrix of 245 

hyperspectrograms. 246 

 247 

2.5.  Explorative analysis of hyperspectrograms 248 

As a first step, before calculating calibration/classification models, the matrices of 249 

hyperspectrograms of both the datasets have been subjected to explorative analysis by means of 250 

PCA, in order to obtain an overview of the whole structure of each dataset and to identify possible 251 

outlier samples. Moreover, PCA also helped us in understanding the effects of the different 252 

hyperspectrogram pretreatments on the resulting score plots. Indeed, considering that the pixel-253 

related quantities are reported as frequency distribution curves, it should be taken into account that 254 

preprocessing by autoscaling leads to an enhancement of the contribution of those bins accounting 255 

for a small percentage of pixels. The effect of autoscaling could be therefore not very useful when 256 

dealing with classification or calibration issues based on general features of the samples, while on 257 

the other hand it could be helpful when a defect detection issue has to be faced. In this latter case, in 258 

fact, the classification is mainly based on few pixels that differ from the remainder ones, and which 259 

correspond to low peaks lying at extreme values of the frequency distribution curves of the 260 

hyperspectrograms. 261 

In the light of these considerations, while in the case of Dataset 1 the effects of all the main column 262 

pretreatments (none, meancentering and autoscaling) were investigated in order to examine their 263 

effects on the resulting models, the hyperspectrograms of Dataset 2 were pretreated by autoscaling, 264 

since in this case the classification issue consisted in the detection of surface defects. 265 
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 266 

2.6. PLS on Dataset 1 267 

In order to obtain a first estimate of the capability of hyperspectrograms to codify the useful 268 

information contained in the hyperspectral images, Partial Least Squares (PLS) regression models 269 

were developed to predict the mass fraction (% w/w) of rice kernels contained in each hyperspectral 270 

image of Dataset 1 using hyperspectrograms. To this aim, samples were divided into a training of 271 

48 signals and a test set of 38 signals corresponding to the samples composition reported in Table 1, 272 

and replicate measurements were included in the same set, in order to avoid overoptimistic results. 273 

Moreover, a customized cross-validation vector with 8 deletion groups was created in order to force 274 

the algorithm to keep the replicate measurements of each training set sample in the same deletion 275 

group. The effect of the different pretreatments described in the previous section was evaluated by 276 

comparing the respective calibration performances, and the best pretreatment was selected 277 

according to the lowest value of the Root Mean Square Error of Cross-Validation (RMSECV). 278 

 279 

2.7. PLS-DA on Dataset 2 280 

The pale spots defect of industrial bun samples of Dataset 2 was detected by applying Partial Least 281 

Squares-Discriminant Analysis (PLS-DA) [33-35] to the autoscaled hyperspectrograms.  282 

To this purpose, 2/3 of images were randomly assigned to the training set and the remaining 1/3 of 283 

images were kept in the test set, always including the replicate images of each sample in the same 284 

set. A customised cross-validation vector with 13 deletion groups was used, forcing the algorithm to 285 

keep the replicate measurements of each bun sample in the same group. The optimal number of 286 

Latent Variables (LVs) was chosen on the basis of the minimum value of the Root Mean Square 287 

Error in Cross-Validation (RMSECV). The classification results are reported, both in cross-288 

validation and in prediction on the external test set, in terms of Efficiency %, which is the geometric 289 

mean of Sensitivity %, (the percentage of objects of the modelled class correctly accepted by the 290 

class model) and Specificity % ( the percentage of objects of other classes correctly rejected by the 291 

class model). 292 

 293 

2.8. Variable selection by means of interval PLS (iPLS) and interval PLS-DA (iPLS-DA) 294 

As mentioned above, a further advantage of the proposed approach is represented by the possibility 295 

to apply variable selection methods to the hyperspectrograms, which may often allow to enhance 296 
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the performance and the robustness of the calibration/classification models by discharging non-297 

informative or non-significant parts of the signals; moreover, variable selection also offers the 298 

possibility to obtain a better understanding of the problem at hand, by evaluating the selected signal 299 

regions. In the specific case of hyperspectrograms, it is possible to project back the selected 300 

portions of the loadings in the original spectral range, as well as to fold back the selected regions of 301 

the pixel-related parts of the hyperspectrogram (i.e., the frequency distribution curves) to visually 302 

evaluate the spatial features considered in the model. 303 

Among the several existing methods for variable selection [4], in the present work the simple but 304 

effective iPLS and iPLS-DA algorithms were applied to Dataset 1 and Dataset 2, respectively. As 305 

described in [36], iPLS works by dividing the whole signal in a user-defined number of intervals of 306 

equal width, and then by selecting the intervals most useful for calibration by an iterative procedure, 307 

which can follow either a forward or a reverse search strategy. More in detail, forward iPLS is 308 

conceived to calculate local PLS models on each subinterval, then to choose the best one on the 309 

basis of the lowest RMSECV value. In the second cycle, the first selected interval is used in all 310 

models but is combined with each of the remaining intervals one at a time, and the best combination 311 

of the two intervals is chosen again on the basis of the lowest RMSECV value. This iterative 312 

procedure is repeated until no further decrease of RMSECV is achieved. The reverse iPLS, on the 313 

contrary, works by initially including all the intervals in the model, then by discarding a single 314 

interval at a time. When discarding a certain interval produces the lowest RMSECV value, that 315 

interval is definitively excluded from the model. The same procedure is repeated by discarding the 316 

second “worst” interval and so on until no further decrease of the RMSECV values is obtained. 317 

In the present work, the forward selection mode was used since it is the less conservative one, i.e., a 318 

smaller number of wavelengths are usually preserved in the final model when using forward 319 

selection with respect to the reverse mode. Concerning the interval size to be considered for 320 

variable selection, two approaches were applied to both datasets. In the first case, an interval size 321 

equal to the number of spectral variables, λ, was used in order to sequentially add a whole 322 

hyperspectrogram block. In the second case, a more refined selection was performed by considering 323 

narrower intervals so as to enable the selection of only the most informative portions within a block. 324 

In particular, iPLS with interval sizes of 150 and 10 variables and iPLS-DA with interval sizes of 325 

189 and 18 variables were applied to Dataset 1 and Dataset 2, respectively. 326 

 327 

2.9. Image reconstruction using the selected spatial features 328 
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Despite the several advantages mentioned above, a main concern about the application of the 329 

proposed approach might be related to the loss of spatial (scene-related) information, due to the 330 

reduction of a hyperspectral image into a signal. To address this issue, a dedicated routine was 331 

developed to allow the representation in the original image domain of the hyperspectrogram 332 

features that have been selected (e.g. by iPLS), thus enabling a visual evaluation of the correctness 333 

of the choices made by the algorithm, in a similar way as it is done with colourgrams for RGB 334 

images [28, 29]. A schematic representation of the procedure followed to perform image 335 

reconstruction using the selected spatial features is reported in Figure 2. 336 

More in detail, the image reconstruction procedure can be summarised in the following steps:  337 

1. for each frequency distribution vector included in the hyperspectrogram, i.e., for each score 338 

frequency distribution vector Fta (with 1 ≤ a ≤ A, were A is the number of PCs retained in 339 

the PCA models used for the hyperspectrograms calculation, see Section 2.4 ), for the Q 340 

residuals frequency distribution vector Fq, and for the Hotelling T
2
 frequency distribution 341 

vector Fh, store the values related to the hyperspectrogram portions selected by iPLS or by 342 

iPLS-DA into the corresponding matrices of selected intervals Int_Fta, Int_Fq and Int_Fh. 343 

Each matrix of selected intervals has as many columns as the number selected intervals, j, 344 

and each column contains the first and the last value of the selected interval in the first and 345 

in the second row, respectively. For example, if iPLS led to the selection of three intervals 346 

of the frequency distribution vector of PC2 scores, Ft2 , in correspondence with the t2 values 347 

ranging from 10 to 20, from 25 to 35 and from 70 to 80, the resultant Int_Ft2 matrix will be: 348 

 Int_Ft2 = 








803520

702510
 (1) 349 

 350 

2. from each matrix containing a number j > 0 of selected intervals, create the corresponding 351 

vector of selected pixel values Sel_ta, Sel_q, Sel_h. For example, from the Int_Ft2 matrix 352 

reported in equation (1), the corresponding vector of selected pixel values Sel_t2 is given by: 353 

 Sel_t2 = t2  Int_Ft2 (2) 354 

i.e., it contains only those elements of t2, whose values are included within the intervals 355 

specified in Int_Ft2; 356 

3. normalize each vector of selected pixel values between 0 and 1, considering the minimum 357 

and maximum values of the corresponding matrix of selected intervals. In the example 358 

reported above, the Sel_t2 values are scaled considering the maximum and minimum values 359 

of Int_Ft2, i.e., 10 and 80; 360 
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4. represent each vector of selected pixel values as a greyscale or pseudo-colour image with 361 

size {x, y}, i.e., with the same number of pixel rows x and pixel columns y as the original 362 

hyperspectral image H (as it has been defined in Section 2.4); all the pixels that have not 363 

been selected are set to NaN (Not a Number). Alternatively, up to three different vectors of 364 

selected pixel values can be represented altogether under the form of false-colour images, as 365 

reported in Figure 2. 366 

 367 

The above described procedure is used when the feature selection has led to retain the pixel-related 368 

part of the hyperspectrogram (i.e. portions of the frequency distribution curves). Conversely, when 369 

the wavelength-related part of the hyperspectrograms (i.e., portions of the loading vectors) is 370 

selected, the easiest way to represent in the image domain the most relevant features of the problem 371 

at hand consists in calculating a PCA model of the hypercube data, where only the variables 372 

corresponding to the selected regions of the loading vectors are kept, and in representing the 373 

resultant score images. 374 

 375 

3.  Results and discussion 376 

3.1. Dataset 1: wheat and rice kernels 377 

Based on the preliminary indications obtained by PCA on some sample images, 3 PCs were used 378 

for the calculation of the hyperspectrograms. Each original hypercube consisting of more than 3 × 379 

10
6
 data points was therefore compressed into a 1200-points long hyperspectrogram (= 150 × 3 380 

points for the frequency distribution curves of the 3 score vectors + 150 points for the frequency 381 

distribution curve of the Q residuals vector + 150 points for the frequency distribution curve of the 382 

Hotelling T
2
 vector + 150 × 3 points for the 3 loading vectors). The average hyperspectrogram is 383 

reported in Figure 3, and the description of all the corresponding peaks is given in Table 2. On the 384 

whole, the initial dataset of 86 images with a size of 3.5 GB (average image size equal to about 40 385 

MB) was compressed into a matrix of hyperspectrograms whose size was equal to 602 KB, which 386 

corresponds to a compression ratio of 1.66 × 10
-2

 %. This extremely low value of the compression 387 

ratio is essentially due to the fact that hyperspectrograms codify the useful information contained in 388 

the HSI data, but the localization of each single pixel in the image domain is lost. In fact, the main 389 

focus of the hyperspectrogram approach is to allow the evaluation of big datasets of hyperspectral 390 

images altogether, and not the reconstruction of the single images directly from the compressed 391 

data, as it can be done using other compression methods like, e.g., those based on Wavelet 392 

Transform. However, notwithstanding the transformation of HSI data into hyperspectrograms 393 



 13 

implies the loss of spatial information, it is still possible to represent the selected features back into 394 

the original image domain. 395 

The PCA model calculated on the meancentered dataset of hyperspectrograms was found to have an 396 

optimal dimensionality equal to 2 PCs, accounting for about 80% of the total variance; no outliers 397 

were identified considering the confidence limit of 99.7%. The PC1-PC2 score plot (Figure 4) 398 

showed the existence of a clear correlation between each image and the mass fraction of rice 399 

actually contained in the corresponding sample. Similar patterns were also observed when 400 

considering the PCA models calculated on raw and on autoscaled hyperspectrograms (data not 401 

shown). 402 

The results of the calibration models calculated on raw, meancentered and autoscaled data are 403 

summarized in Table 3. Although similar calibration performances were obtained using the three 404 

pretreatments, the best performance in cross-validation was obtained using meancentering. The 405 

variable selection by means of iPLS considering 8 and 120 intervals was therefore applied to the 406 

meancentered signals. In both cases, the variable selection converged to the PC2 loadings region, 407 

and calibration performances equivalent to those obtained using the whole signal were obtained 408 

(Table 3). In particular, iPLS with window size 10 led to the selection of a unique interval 409 

corresponding to the PC2 loadings between 1405 and 1450 nm (highlighted in Figure 3), ascribable 410 

to the first overtone of the O-H stretching vibration and related to the starch content [37]. The 3 411 

LVs calibration model calculated using the selected variables resulted in a R
2
 in cross-validation 412 

equal to 0.9896 and in a R
2
 in prediction of the external test set equal to 0.9718 (Figure 5). In order 413 

to visualize how the selected features retain the information related to the mass fraction of rice, a 414 

unique hyperspectral image was created by merging together a 100% wheat kernels image, a 100% 415 

rice kernels image and an image showing 50% wheat kernels and 50% rice kernels spatially 416 

separated. Two false-colour images were obtained by superimposing the PC1 and the PC2 score 417 

images resulting by the PCA models (meancentered spectra), calculated using both the whole 418 

spectral range (Figure 6a) and the ten selected variables only (Figure 6b). The comparison of the 419 

false-colour images points out an equivalent distinction of wheat and rice kernels, confirming that 420 

the information related to the selected variables was actually sufficient to discriminate wheat and 421 

rice kernels. 422 

 423 

3.2. Dataset 2: buns with surface defects 424 

The results of preliminary PCA models calculated on a restricted number of images of industrial 425 

buns showed that the number of significant PCs was always equal to 2, accounting for more than 426 
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99% of the total variance for all the analysed images. The hyperspectrograms were therefore created 427 

considering 2 PCs, to give a 1134 points-long signal for each image (= 189 × 2 points for the 428 

frequency distribution curves of the 2 score vectors + 189 points for the frequency distribution 429 

curve of the Q residuals vector + 189 points for the frequency distribution curve of the Hotelling T
2
 430 

vector + 189 × 2 points for the 2 loading vectors) as shown in Figure 7a. On the whole, the initial 431 

dataset having size of 7.32 GB was reduced to a matrix of hyperspectrograms whose size was equal 432 

to 477 KB, which corresponds to a compression ratio of 6.52×10
-3

 %. As it was mentioned above, 433 

during this step it was not performed any elimination of outlier pixels, since this could lead to the 434 

elimination of useful information related to sample defects. For example, Figure 8 reports the 435 

results of a PCA model calculated on a hyperspectral image of a sample showing pale spots, where 436 

the pixels lying outside the 95% confidence limits of the Hotelling T
2
 values have been highlighted 437 

in magenta in the Q vs. T
2
 plot (Figure 8a). The position of these outlying pixels corresponds to the 438 

defective portions of the sample surface, as one can see by comparing the Hotelling T
2
 image 439 

(Figure 8b) with the RGB image of the same sample (Figure 8c). 440 

The hyperspectrograms dataset was firstly analysed by PCA (model calculated on autoscaled 441 

variables), and no outliers were identified considering the 99.7% confidence limits for Q and 442 

Hotelling T
2
. Then, in order to properly validate the PLS-DA classification models, the dataset of 443 

hyperspectrograms was split into a training set of 57 signals (corresponding to 13 bun samples) and 444 

a test set of 21 signals (corresponding to 7 bun samples). The PLS-DA model calculated on the 445 

autoscaled signals (3 LVs) led to classification efficiency values equal to 82.40% in cross-validation 446 

and to 100% in prediction of the test set. In order to check whether a simpler approach could lead to 447 

similar results, the performance of this PLS-DA model was compared with the performance of an 448 

analogous PLS-DA model calculated on mean spectra. To this aim, the mean spectrum of each 449 

segmented hypercube was computed obtaining a matrix with size {78, 189}. Then, this matrix was 450 

divided in a training and in a test set in the same way as for the hyperspectrogram matrix, and PLS-451 

DA models were calculated considering mean centering as well as autoscaling as spectra 452 

pretreatments. In both cases, however, the classification models led to unsatisfactory results in 453 

terms of classification performances; in fact, the classification efficiency values in cross-validation 454 

and in prediction of the test set were equal to 66.69% and 52.67% using mean-centering and to 455 

73.05% and 55.26% using autoscaling.  456 

Concerning the use of variable selection on hyperspectrograms, when considering 150 variables-457 

wide intervals the iPLS-DA algorithm led to discard the frequency distribution curve of PC1 scores 458 

as well as PC1 loadings, resulting in classification efficiency values of 90.28% and 94.29% in 459 

cross-validation and in prediction on the external test set, respectively (2 LVs). The use of 18 460 
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variable wide intervals led to the selection of the 180 variables highlighted in gray in Figure 7b, and 461 

the corresponding classification model (3 LVs) resulted in classification efficiency values equal to 462 

100% both in cross-validation and in prediction of the external test set, as shown in Figure 9. 463 

Among the hyperspectrogram portions selected by this latter iPLS-DA model, 18 variables were 464 

selected in the PC2 loading region corresponding to the spectral range between 529 and 579 nm, 465 

i.e., in the green colour region of the visible spectrum. As for the regions selected in the pixel-466 

related part of the hyperspectrogram, their visual evaluation was made possible by building false-467 

colour images showing the regions related to PC1 in the red channel, those related to PC2 in the 468 

green channel and those related to the Q residuals in the blue channel. As an example, the false-469 

colour images obtained for a “dark spots”, a “control” and a “pale spots” samples are shown in 470 

Figure 10b, 10d and 10f, respectively. The comparison of these reconstructed images with the 471 

corresponding RBG ones, which are reported in Figure 10a, 10c and 10e, respectively, allows to 472 

interpret the choices made by the automated selection procedure. In fact, it can be noticed that the 473 

regions selected within the frequency distribution curve of PC1 account for the shape and the 474 

average colour of the samples, by selecting a ring of pixels (represented in red in the false-colour 475 

image) likely at equal sample height. The fact that an interval is selected on the frequency 476 

distribution curve of PC1 scores while no intervals are selected on the PC1 loadings is likely due to 477 

the fact that the useful features of PC1 are not related to particular chemical aspects, therefore 478 

localized in specific spectral regions, but to the average intensity of the whole spectrum. The 479 

hyperspectrogram regions selected within the frequency distribution curve of the Q-residuals 480 

correspond to the pixels characterized by the lowest Q values. By evaluating the spatial distribution 481 

of these (blue) pixels it can be noticed that they are mainly located in correspondence of the darkest 482 

regions of the sample surface, which are mostly due to shadow effects related to the shape of the 483 

sample itself. The most interesting features, namely the defective areas of the “pale spots” samples, 484 

are instead highlighted by the regions selected on the frequency distribution curve of PC2, showed 485 

as green pixels in Figure 10f, although large portions of the surfaces of samples not belonging to 486 

this class are also selected (Figures 10b and 10d). This can be explained by comparing the average 487 

frequency distribution curves of PC2 of the hyperspectrograms obtained for the “dark spots”, “pale 488 

spots” and the “control” samples reported in Figure 11a. In fact, a more in depth evaluation of the 489 

selected region which is most closely related to the “pale spots” detection issue (i.e., the portion of 490 

curve in Figure 11a within the red and green rectangles), reveals that it shows the largest difference 491 

of the “pale spots” curve with respect to the others, and at the same time the smallest difference 492 

between the “dark spots” and the “control” curves. Moreover, it can be observed that in the left part 493 

of this region (i.e. within the red rectangle) the number of pixels (corresponding to the area under 494 
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the curve) of the “control” and “dark spots” samples is much greater than the number of pixels for 495 

the “pale spots” samples. This can be explained comparing the lower colour homogeneity of the 496 

“pale spots” samples with respect to the control samples, but also with respect to the dark spots 497 

samples, whose defect is more localised and therefore affects a lower number of pixels. The lower 498 

colour homogeneity of the pale spots samples is reflected in turn into a broader shape of the PC2 499 

frequency distribution curve, with lower values in the central part of the peak. In other words, the 500 

pixels falling within this region (i.e. the red pixels in Figures 11b, 11c and 11d) are those 501 

corresponding to a more homogeneous colour of the bun crust.  502 

Conversely, when folding back in the original spatial domain the right part of the selected region 503 

(i.e. the region within the green rectangle in Figure 11a), it can be noticed that this one identifies the 504 

defective areas of the “pale spots” samples (green pixels in Figure 11d), characterized by higher 505 

values of PC2 scores. It can be noticed that a more limited amount of pixels corresponding to this 506 

part of the signal is also present within the reconstructed images of the “dark spots” and “control” 507 

samples reported in Figure 11b and 11c. Actually, also these samples present on their surface some 508 

regions characterized by a slightly pale aspect, which is emphasized in the green channel of the 509 

reconstructed images; however, in this case the intensity and extent of the defect is much more 510 

limited. Therefore this type of representation, by enhancing the presence of the sought defect, could 511 

be helpful for the quality control personnel, in addition to the output of the automated classification 512 

model. 513 

 514 

4. Conclusions 515 

In this paper, we have presented a novel chemometric strategy for efficient data compression of 516 

hyperspectral images. By compressing each hypercube into a signal of few hundreds of points, the 517 

proposed method enables the simultaneous evaluation of up to hundreds of hyperspectral images. 518 

The hyperspectrogram approach allows therefore the calculation of robust classification models, 519 

since it is possible to consider large datasets of samples. Moreover, a further improvement both in 520 

terms of data compression and of performance of the derived calibration/classification models can 521 

be achieved by applying a proper variable selection method to the dataset of hyperspectrograms. 522 

A critical evaluation of the choices made by the feature selection algorithm is made possible by 523 

projecting back into the original image domain the pixel-related features of the hyperspectrograms 524 

retained during the variable selection step. Likewise, the interpretation of the chemical information 525 

underlying the wavelength-related part of the hyperspectrograms is enabled by projecting the 526 

corresponding selected features in the original spectral domain. 527 
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The use of hyperspectrograms to face two different issues concerning food samples of different 528 

nature confirmed the effectiveness of the proposed approach. 529 

 530 
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Tables 589 

 590 

Sample 
name 

Wheat 
amount 

(g) 

Rice 
amount 

(g) 

Rice mass 
fraction 
(% w/w) 

Training / 
Test 

A 10.04 0.00 0 Training 

B 9.90 0.10 1 Training 

C 9.82 0.23 2 Test 

D 9.49 0.52 5 Training 

E 9.03 1.00 10 Test 

F 8.09 2.03 20 Training 

G 7.02 3.03 30 Test 

H 6.04 4.01 40 Training 

I 5.00 5.00 50 Test 

L 4.99 5.00 50 Test 

M 4.04 6.00 60 Training 

N 3.05 7.03 70 Test 

O 2.01 8.00 80 Training 

P 1.00 9.01 90 Test 

Q 0.00 10.02 100 Training 

 591 

Table 1: List of the samples included in Dataset 1, and their subdivision into training and test sets. 592 

  593 
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Peak 

number 

Hyperspectrogram 

region 
Definition 

1 1-150 Frequency distribution curve of the 1
st
 score vector 

2 151-300 Frequency distribution curve of the 2
nd

 score vector 

3 301-450 Frequency distribution curve of the 3
rd

 score vector 

4 451-600 Frequency distribution curve of the Q-residual score vector 

5 601-750 Frequency distribution curve of the Hotelling T
2
 score vector 

6 751-900 Normalised loading vector of the 1
st
 PC 

7 901-1050 Normalised loading vector of the 2
nd

 PC 

8 1051-1200 Normalised loading vector of the 3
rd

 PC 

Table 2: Description of the peaks present in the hyperspectrograms of Dataset 1, together with 594 

their relative positions (hyperspectrograms derived by a 3-PCs model calculated on an 595 

image with 150 spectral variables). 596 

 597 

  598 
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 599 

Pretreatment 
# of 

variables LVs 

Calibration Cross-validation Prediction 

R
2
 RMSE R

2
 RMSE R

2
 RMSE 

None 1200 4 0.9971 0.0192 0.9851 0.0508 0.9782 0.0480 

Meancenter 1200 3 0.9971 0.0193 0.9855 0.0504 0.9774 0.0486 

Autoscale 1200 3 0.9980 0.0161 0.9794 0.0563 0.9816 0.0445 

Meancenter 150 3 0.9943 0.0271 0.9825 0.0495 0.9676 0.0587 

Meancenter 10 3 0.9933 0.0294 0.9896 0.0368 0.9718 0.0524 

 600 

 601 

Table 3: Results of the PLS models calculated on raw, meancentered and autoscaled data and of 602 

the iPLS models calculated on meancentered data. 603 

 604 
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Captions of figures 605 

Figure 1. Procedure followed to generate the hyperspectrogram. 606 

Figure 2. Image reconstruction using the hyperspectrogram selected spatial features. 607 

Figure 3. Dataset 1 average hyperspectrogram with the region selected by iPLS highlighted in 608 

gray. The numbers on the top of the figure indicate the hyperspectrogram regions 609 

described in Table 2. 610 

Figure 4. PC1 vs. PC2 score plot obtanied from the PCA model on the mean centered 611 

hyperspectrograms of Dataset 1. 612 

Figure 5. Actual mass fraction of rice (Y measured) vs. predicted mass fraction (Y predicted) 613 

resulting from the iPLS model calculated on Dataset 1. 614 

Figure 6. False-colour image formed by the PC1 and PC2 score images resulted from the PCA 615 

model calculated using the whole range (a) and the selected variables only (b) on an 616 

image formed by merging together a 100% wheat image (left), a 100% rice image 617 

(middle) and a 50% wheat/50% rice image (right).  618 

Figure 7. Hyperspectrograms obtained on Dataset 2 (a) and variables selected by iPLS-DA 619 

highlighted in gray on the average signal (b). 620 

Figure 8. Results of a 2 PCs model calculated on a hyperspectral image of a sample with pale 621 

spots: Q vs. T
2
 plot (a) and Hotelling T

2
 image (b). The pixels lying outside the 95% 622 

confidence limits of T
2
 are highlighted in magenta. For comparison purposes, the RGB 623 

image of the same sample is also reported in (c).  624 

Figure 9. Predicted values for the iPLS-DA model calculated on hyperspectrograms of Dataset 625 

2. The vertical dashed line separates the cross-validation results for the training set 626 

samples (on the left) from the values predicted for the test set ones (on the right). The 627 

threshold value is indicated with the horizontal dash-dotted line. 628 

Figure 10. Comparison between RGB images (left) and the corresponding false-colour 629 

reconstructions (right) of the hyperspectrograms selected features, where the red, 630 

green and blue channels account for the features selected for PC1, PC2 and Q, 631 

respectively; (a) and (b): “dark spots” sample; (c) and (d): “control” sample; (e) and 632 

(f): “pale spots” sample. 633 

Figure 11. Average frequency distribution curves of the PC2 scores of the “dark spots”, “pale 634 

spots” and “control” samples (a), and false-colour images of a “dark spots” sample (b), 635 
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of a “pale spots” sample (c) and of a “control” sample (d). Images (b), (c) and (d) 636 

report in the red and green channels the pixels falling within the PC2 intervals of 637 

image (a) included in the red and in the green rectangles, respectively.  638 

 639 

  640 
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 641 

Figure 1 642 
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Figure 2 646 
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Figure 3 650 
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Figure 4 654 
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Figure 5 657 
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Figure 6 661 
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Figure 7 665 
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Figure 8 668 
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Figure 9 673 
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Figure 10 678 
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Figure 11 682 
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