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Abstract 

Colourgrams are signals that codify the colour-related information content of a Red-Green-Blue 

(RGB) image, and which can be elaborated by means of proper multivariate analysis/feature 

selection techniques to easily identify those image features that are more useful to solve a specific 

problem. The reconstruction of the selected features as segmented images allows to evaluate in a 

critical manner the choices made automatically by the algorithm. In the present paper colourgrams 

are used for the detection of the red skin defect of raw hams, in order to render more objective and 

transferable the evaluation usually made by expert assessors. To this aim, after a preselection of 95 

raw ham samples by a panel test, the corresponding RGB images were converted into colourgrams, 

which in turn were used to build classification models using Partial Least Squares-Discriminant 

Analysis (PLS-DA) and a Wavelet Packet Transform-based feature selection/classification 

algorithm (WPTER). Feature selection allowed to discriminate the defective samples using only 

three variables, with a Classification Efficiency in prediction of an external test set equal to 97.8%. 

The reconstruction of the samples images using only the selected features confirmed the reliability 

of the obtained classification model. 

Industrial Relevance: The evaluation of pig thighs is currently carried out by subjective methods, 

i.e. expert, long-trained personnel is needed to detect the presence or absence of defects. The 

method presented here would allow to uniform and drastically shorten the time needed for 

evaluation, and to avoid the main problems connected with human evaluation, i.e., subjectivity, 

possible unreliability, non-transferability and difficulty to collect historical data. Furthermore, it 

might represent a first step for setting up a comprehensive method of evaluation, aiming to take into 

account also other types of defects of raw hams destined to seasoning. More in general, thanks to its 

flexibility, this approach could be also successfully applied for the detection of other types of 

aspect-related features, even to monitor different kinds of products. 

 

Keywords: RGB Images; Multivariate Classification; Feature Selection; Wavelet Transform; 

Defect Detection; Raw Ham Red Skin Defect. 
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1. Introduction 

In the production of Protected Denomination of Origin (PDO) ham, the assessment of qualitative 

characteristics of fresh pig thighs is of utmost importance, in order to early define the final 

destination of the seasoned product. A preliminary classification of fresh thighs on the basis of the 

presence/absence and of the extent of defects, that are responsible – together with other factors – for 

the final quality and for the price of the seasoned product, is in fact highly relevant by the logistic 

and by the financial points of view. The red skin defect appears as a more or less extended and 

intense red colour of the ham rind, which turns into a dark-brown shading after seasoning (Lo Fiego 

et al., 2006). Even if this defect does not affect the sensory quality of the product, the dark-brown 

colour makes the seasoned ham unattractive to consumers, which in turn results in a lowering of its 

price. The origin of the red skin defect has not been clearly identified, but the incidence of this 

defect may be influenced by the slaughtering techniques, such as stunning voltage of animals and 

scalding methodologies of the carcass (Lo Fiego et al., 2009).  

At present, the evaluation of the defects of raw ham destined to processing is based on the 

estimation, made by expert assessors at the moment of trimming. Unfortunately, the human visual 

evaluation is subjected to a series of drawbacks: i) the evaluation is subjective, i.e. operator 

dependent, and therefore it is not easily transferable among different production lines and/or 

industries; ii) the human eye could sometimes be inconsistent, so that a certain assessor may 

provide contradictory evaluations for the same sample and iii) the evaluation is dependent on the 

availability of specialised manpower. In this context, automated systems capable of acquiring and 

elaborating aspect-related data are definitely valuable tools, since they can furnish objective, 

reproducible and transferable information about the appearance of the analysed products (Lo Fiego 

et al., 2007). The need to use automated methods, i.e. not based on human visual evaluation, for 

estimating ham quality is clearly described in the review by Valous et al. (2010). 

The use of spectrophotometers or light sensitive cells is commonly used for the quantification of 

food sample colour–related aspects. The instruments traditionally used for these kinds of 

measurements can be ascribed to two categories: spot-colorimeters and integrating spheres. Spot 

colorimeters analyse only restricted areas of the sample, therefore they are not appropriate for 

products showing an inhomogeneous aspect like raw hams. On the other hand, integrating spheres 

estimate the overall light reflectance from the whole sample surface, giving only a global colour 

evaluation and, consequently, losing information about its spatial variability. Fortunately, nowadays 

it is possible to analyse the sample colour both locally and globally, since the recent progress in 

image acquisition technology allows to use high-performance equipments, available at very low 

costs. Digital cameras are able to perform a detailed colour evaluation of food products with 
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inhomogeneous aspect, since the colour of every single portion of the analysed sample can be 

accounted for by one or more image pixels. These are the reasons why in the last 20 years the field 

of Red-Green-Blue (RGB) image analysis techniques has gained an increasing interest in industrial 

applications in general, and in the field of food analysis in particular (Geladi & Grahn, 1996; 

Panigrahi & Gunasekaran, 2001; Zheng et al., 2006; Prats-Montalbán, et al., 2011; Garrido-Novell 

et al., 2012).  

In this context, the objective evaluation of some characteristics of fresh pig thighs, such as the 

presence/absence of a specific defect, can be efficiently handled by digital image analysis. Some 

research works on meat samples reported the use of RGB image-based systems for the detection of 

defects associated to peculiar chromatic characteristics. In particular, the detection of defects on 

chicken meat before packing has been reported (Barni et al., 1997): in this work, possibly defective 

areas are first extracted in chicken images by means of morphological image reconstruction, and 

then classified according to a predefined list of defects. More recently, Marthy-Mahe et al. (2003) 

developed and tested different procedures to segment the images of raw hams, that are irregular 

three-dimensional objects with random shape and size, in order to detect the presence of different 

defects, Carnier et al. (2004) used computer image analysis for measuring lean and fatty areas in 

cross-sectioned dry-cured hams and Faucitano et al. (2005) to measure pork marbling 

characteristics. 

Other research works were published, where the performances of image analysis for meat quality 

evaluation where correlated with the results of human assessment. When referring to scores or 

classes defined by human assessors, the correctness of the reference values coming from human 

evaluation is fundamental to obtain reliable automated systems. In a recent paper (Foca et al., 

2007), some of us have already highlighted the intrinsic subjectivity of human evaluation, even by 

expert assessors, of food-related properties. Iqbal et al. (2010) classified the quality of pork and 

turkey hams based on image colour and textural features and their relationships with consumer 

responses, using Mahalanobis distance and feature inter-correlation analyses to select the optimal 

descriptors, among a set of global parameters like means, standard deviations and entropies 

calculated using different colour spaces like RGB, HSV and L*a*b*. Sanchez et al.
 
(2008) 

quantified the lean, fatty and connective tissue areas on the ham surface and determined the 

relationship of those areas to salt gain during the salting process, comparing the performance of the 

automated method with the results of a human classification. Their work was based on image 

segmentation using two parameters, corresponding to the differences between red and blue channels 

and between green and blue channels, calculated for each RGB image pixel. Tan et al. (2000) 

compared the ability of colour machine vision and untrained panellists to evaluate the colour of 
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fresh pork meat, using a neural network image classifier trained with single pixel data coming from 

preselected areas of interest of reference images. 

In this paper, we propose the application of the colourgrams-based approach for the detection of 

the red skin defect of raw hams using RGB imaging. Colourgrams (Antonelli et al., 2004; Foca et 

al., 2011) are one dimensional signals (vectors) that codify the whole colour-related information 

content of a RGB image, and can be therefore considered as “fingerprints” of the corresponding 

images for their subsequent elaboration by means of proper multivariate analysis techniques, like 

data exploration, calibration or classification. When coupled with proper feature selection 

techniques, their use makes possible the identification of the colour-related aspects of interest that 

are more useful to solve a specific problem like, in the present case, the detection of the red skin 

defect. Moreover, the reconstruction of the selected features under the form of segmented images 

allows to evaluate in a critical manner the choices made automatically by the algorithm. 

With respect to previous research works dealing with RGB image analysis for the automated 

detection of meat defects, the proposed blind analysis approach presents the advantage to render 

more flexible the classification model creation phase. In this case, in fact, the search of the optimal 

descriptors is not limited to few colour parameters based on a priori assumptions on the colour 

characteristics of interest, since this may pose limits to the classification performance. On the 

contrary, few useful descriptors can be automatically selected starting from a wide number of 

potentially useful features. Moreover, it is not necessary to perform manually a preselection of the 

image areas useful for classification, since the feature selection of colourgrams does it automatically 

and in an independent manner from probably unreliable human intervention. Once the useful 

features have been automatically selected, the time needed to apply the classification model to a 

new set of images and to visualize the areas of interest (i.e., where the defect is present) is very 

short, making an on-line implementation feasible. 

In particular, in the present research work colourgrams were used for the detection of the red 

skin defect of raw hams, in order to render more objective and transferable the evaluation that is 

usually made by expert assessors. To this aim, digital RGB images were acquired from a set of raw 

ham samples and then, by means of a graphical user interface implemented ad hoc, they were 

classified into three quality categories related to the red skin defect by a panel of six expert 

assessors. The panel test results were then used to select the images of those samples whose class 

assignation was sufficiently consistent. 

The RGB images were converted into colourgrams, which in turn were used to build classification 

models using Partial Least Squares-Discriminat Analysis (PLS-DA) and a Wavelet Transform-

based feature selection / classification algorithm, WPTER (Cocchi et al., 2003). Finally, the 
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colourgram features selected by WPTER were used to reconstruct the RGB images, making it 

possible to highlight in the original image domain the areas of ham surface where the red skin 

defect is located. 

 

 

2. Material and methods 

2.1 Samples and images acquisition 

The left thighs of 198 heavy pigs, slaughtered in one plant during 5 different days and destined 

to the PDO “Prosciutto di Parma” production, were considered for this study. After carcass slicing, 

the thighs were stored at 0-4°C for 24 hours and subsequently trimmed, then RGB images of the 

external surface of each thigh were acquired using a Nikon Coolpix 5400 digital camera with a 5.8-

24 mm focal length (Nikon corp., Tokyo, Japan).  

Digital images were acquired in JPEG format with a spatial resolution of 2592×1944 pixels, 

using white balance, with a 1/125 s shutter speed and an f/5.6 lens aperture. The choice to use a 

compressed image file format (i.e., JPEG file format, with average file size equal to 1.9 MB) 

instead of RAW images (i.e., uncompressed images with file size equal to 14.4 MB) was made on 

the basis of preliminary trials. In particular, images were acquired on a subset of samples both in 

RAW and in JPEG modes. For each file format, the corresponding dataset of colourgrams was 

created, then each dataset was analysed using Principal Component Analysis (PCA). The 

comparison of the data structure of the two datasets (i.e., colourgrams obtained by RAW images vs. 

colourgrams obtained by JPEG images), which was made using the score plots of the first four 

Principal Components, revealed similar patterns, suggesting that the loss of useful information in 

the colourgrams deriving from JPEG compressed images is small. This result was somehow 

expected, since JPEG compression affects more texture than colour, which is the main characteristic 

used for colourgrams-based detection of the red skin defect. In case of different classification 

problems, mainly related to texture and in particular concerning the detection of small details, then 

the effect of JPEG compression could be more marked. Based on these considerations, and focusing 

on the usability of the method (in terms of data storage and of computational power requirements), 

JPEG images were used. 

In order to have constant and homogeneous lighting conditions, the camera was mounted on a 

white painted wooden box, containing the thigh to be photographed, equipped with 8 tungsten 

lamps (Philips 25 W 240 V SES Argenta Lustre), that were turned on 1 hour before starting 

measurements to allow the stabilisation of their emission spectra. Furthermore, the effect of 
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possible variations of the illumination conditions was evaluated by preliminary tests using colour 

standard references to correct the RGB values. However, no improvements were obtained when 

using the corrected images, and for this reason all the subsequent image elaborations were 

performed directly on the RGB images without any pretreatment. 

 

2.2 Human visual assessment 

Six assessors, indicated with letters from A to F, were asked to independently classify the images 

in three categories related to the extent of the red skin defect. The expert assessors involved in the 

panel are specialised technicians and researchers with a long experience in the evaluation of raw 

ham defects, therefore no specific training was required for the visual evaluation of the samples 

considered in this work. The assessors were invited to compare each sample with three reference 

images, each one representative of a specific class, where 1 = defect absent, 2 = slight defect, 3 = 

severe defect.  

For each one of the 198 digital images two evaluations were performed by each assessor. Firstly, 

all the 198 images were evaluated following their original sequence, then a second evaluation was 

performed by sorting the same images in random order. The overall sequence of 396 images was 

the same for all the assessors, and the assessors were simply asked to evaluate 396 different 

samples. 

A graphical user interface was implemented ad hoc for the panel, allowing the assessors to 

evaluate each image by comparing it with one reference image for each class, as reported in Figure 

1. The software was conceived to show in sequence each one of the 396 images to be evaluated 

(whose progressive number was reported in the upper left corner of the image) and required that the 

proper class was assigned by the assessor before passing to the following one. The program did not 

allow a user to return to previously evaluated samples, so that the assessor was forced to consider 

each sample independently. Moreover, in order to avoid inconsistent evaluations due to weariness 

of the assessors, the software allowed to exit at any time during the evaluation and to restart it from 

the point where it was interrupted. The assessors performed the evaluation independently each 

other. 

 

2.3 Elaboration of the panel test data 

In order to analyse the results of the panel, as a starting point the “correct” class of each sample 

had to be defined. In fact, since the evaluation of the extent of red skin defect was based on human 

assessment, the definition of the correct class was subjective and questionable. Nevertheless, the 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 8 

definition of “correct assignation” is fundamental for the subsequent data analysis. As a 

consequence, we decided to categorically assign each sample to the most frequently selected class 

(i.e. to the mode of the 12 class assignation values for each sample), that we called “correct”.  

The estimates of the assessors performance were expressed in terms of Validity and Reliability. 

Validity (V) was defined as the percentage of assignations to the correct class for each assessor, 

which is an estimate of the agreement of the assessor with the whole panel. Reliability (R) was 

defined as the percentage of assignations to the same class over the two repeated evaluations of 

each sample, and it reflects the ability of each assessor to reproduce his own results, independently 

from the assignation to the correct class. The sum of Validity and Reliability scores for each 

assessor was defined as the assessor Global Performance, which was used to evaluate the 

uniformity of the panel by means of a chi-squared test. 

To estimate the agreement in the attribution of each sample, the percentage level of Overall 

Agreement on Samples Attributions (%OASA) for every single sample was defined as follows: 

100
N

N
%

TOT

CORROASA   (eq. 1) 

where NCORR is the number of attributions of the considered sample to the correct class, while NTOT 

is the total number of attributions (6 assessors × 2 replicated estimates = 12). 

The %OASA results were then exploited to select those samples whose class assignation was 

sufficiently univocal, to be used for the development of the automated classification models. In 

particular, the 95 images of samples presenting %OASA values greater than 70% (i.e., at least 9 

evaluations in agreement out of 12) were selected to build and validate the classification models. 

 

2.4 Conversion of RGB images into colourgrams 

The Matlab function that was developed to convert each RGB image into the corresponding 

colourgram goes through the following steps: 

 

- read from the hard disk each RGB image file, which is a 3D array of size {r, c, 3}, where r 

is the number of pixel rows, c is the number of pixel columns, and 3 is the number of 

channels, i.e., the R, G and B values of each pixel. For the images analysed in the present 

work, the size of the 3D array is therefore equal to {1944, 2592, 3}; 

- unfold the 3D array to a 2D matrix with size {(r × c), 3}, which contains all the pixels in 

rows and the R, G and B channels in columns. For the images analysed in the present work, 

the size of the 2D array is therefore equal to {5038848, 3}; 
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- expand this 2D matrix by adding a series of columns, corresponding to parameters 

calculated for each pixel starting from the R, G and B values. In particular: i) column 4 

contains the values of Lightness (L), i.e., the R + G + B sum; ii) columns 5-7 contain the 

ratios between each channel (R, G, B) and L, which are defined as “relative colours”: 

relative Red (rR), relative Green (rG) and relative Blue (rB); iii) columns 8-10 contain the 

Hue (H), Saturation (S) and Intensity (I) values, obtained by converting the RGB data into 

the HSI colour space. In this way, the 2D matrix has now size equal to {(r × c), 10}; 

- further expand the number of columns of the 2D matrix by calculating PCA models on the 

unfolded RGB data (X), i.e. on the first 3 columns of the 2D matrix. In particular, three 

PCA models are calculated: the first model (PCA_RAW) is calculated on the raw (i.e., not 

pretreated) data, the second one (PCA_MNCN) is calculated on the mean centered data, 

and the third one (PCA_AUTO) is calculated on the autoscaled data. Since the number of 

variables of X is equal to 3, each PCA model will have 3 Principal Components (PCs). The 

expansion of the number of columns of the 2D matrix is then accomplished in as follows: i) 

columns 11-13 contain the three score vectors of PCA_RAW; ii) columns 14-16 contain the 

three score vectors of PCA_MNCN; ii) columns 17-19 contain the three score vectors of 

PCA_AUTO. In this way, the 2D matrix has now size equal to {(r × c), 19}; 

- for each one of the 19 columns of the 2D matrix, calculate the corresponding frequency 

distribution vector with a length of 256 points; 

- create the first part of the colourgram by joining in sequence the 19 frequency distribution 

vectors: a vector with length equal to (19 × 256) = 4864 points is obtained; 

- create the second part of the colourgram by joining in sequence the values of the loading 

vectors (3 values for each loading vector × 3 PCs = 9 points) and of the eigenvalues of the 3 

PCs (3 points), for each one of the 3 PCA models (PCA_RAW, PCA_MNCN and 

PCA_AUTO). This leads to a vector with length equal to [(9 + 3) × 3] = 36 points; 

- create the whole colourgram by joining in sequence its first and second part, thus obtaining 

a vector with length equal to (4864 + 36) = 4900 points, which describes the colour 

properties of the image. 

 

For a more detailed description of the algorithm used to build colourgrams, the reader is referred 

to Antonelli et al. (2004). 

This data compression is particular advantageous, since from the millions of data of the original 

images, the colour-related information is compressed in a 4900 points long signal, which can be 

further significantly shortened up to few units, by proper feature selection methods. The colourgram 
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can be used as fingerprint of the colour content of the image, in the same way as a NIR spectrum is 

the fingerprint of the chemical composition of a sample. Colourgrams can then be analysed by 

means of suitable signal processing / multivariate analysis techniques, which enable to: i) rapidly 

explore the whole dataset of images, e.g. to highlight the presence of outliers and/or of clusters of 

similar images; ii) create calibration models, allowing to predict the value of specific properties for 

each sample, such as the content of a particular type of pigment; iii) create classification models, 

allowing to assign a sample to a specific class, based on specific colour-related characteristics. The 

colourgrams approach has already been applied to build calibration and classification models in 

several studies, concerning different food matrices and different issues related to food industry, 

leading to satisfactory results, also in comparison with the performance of panel tests or more 

traditional colorimetric measurements and chemical analyses (Antonelli et al., 2004; Lo Fiego et al., 

2007; Foca et al., 2011). 

In this work, all the 198 digital images were converted into the corresponding colourgrams. The 

95 colourgrams deriving by the samples selected on the basis of the panel test results were used to 

build and validate the classification models, and the remainder 103 colourgrams were subsequently 

employed as a second test set to compare the performance of the results of the best classification 

model with the performance of the assessors. 

 

2.5 Multivariate classification methods  

The 95 colourgrams corresponding to the samples selected on the basis of the panel test results 

were organised in a matrix with size {95, 4900}, that was randomly split in a training set (TRN) 

with size {60, 4900} and in a test set (TST) with size {35, 4900}. After the elaboration of the panel 

test data only one sample was selected for class 3 (severe defects), therefore the classification 

models were built considering only 2 classes, i.e., in control samples (25 objects in TRN and 12 

objects in TST) and defective samples (35 objects in TRN and 23 objects in TST), including the 

sample with severe defects in class 2 of TST. Classification models were then calculated both on 

the whole colourgram using PLS-DA and on the features selected by WPTER (Cocchi et al., 2003). 

The performance of the classification models are reported in terms of Sensitivity (SENS), i.e., 

the percentage of objects of each class accepted by the class model, Specificity (SPEC), i.e., the 

percentage of objects of the other class rejected by the class model, and Classification Efficiency 

(EFF), i.e., the geometric mean of SENS and SPEC (Forina et al., 2009). 
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2.5.1 PLS-DA classification 

PLS-DA is the application of PLS2 to classification issues (Wise et al., 2007). While in PLS 

regression the response block consists in the response variables, in PLS-DA the Y block is a matrix 

composed by as many columns as the number of the existing classes, where each column is a binary 

class vector, with ones for the objects belonging to the class and zeros otherwise. In addition, PLS-

DA calculates a threshold value based on Bayesian statistics (Pérez et al., 2009), so that a sample is 

assigned to a class if the corresponding Y predicted value is higher than the threshold value.  

PLS-DA classification models were calculated using raw (i.e., not pretreated) data, as well as on 

meancentered and autoscaled data. The number of Latent Variables (LVs) was chosen by 

minimizing the classification error estimated in cross-validation (random subsets, 6 groups, 20 

iterations). 

 

2.5.2 WPTER classification 

The WPTER algorithm decomposes the signals (i.e., colourgrams) dataset into the Wavelet 

Packet Transform (WPT) domain, in order to find a limited number of variables (wavelet 

coefficients) leading to an effective separation among the samples corresponding to different 

classes. In fact, generally the information contained in the whole colourgram is partially redundant; 

a certain degree of correlation among variables could be present and other uninformative sources of 

variation could overwhelm the information brought by the features of the signal useful for 

classification. Hence, the use of a feature selection algorithm able to take also into account the 

signal shape could be helpful. The Wavelet Transform (WT) (Walczak, 2000; Cocchi et al., 2003). 

allows to represent each analysed signal in an alternative domain, where the different frequencies 

are separated, but maintaining at the same time the localisation in the original domain. In this 

manner, in addition to the single intensity values, other useful aspects like peak widths, slopes of 

selected portions of the signal or discontinuities are also taken into account.  

In particular, WPT consists in decomposing a signal by applying iteratively a couple of wavelet 

filters, i.e. a low-pass filter and a high-pass filter: the first one preserves the low-frequency content 

of the signal into the approximation vector (A), while the second one preserves the high-frequency 

content into the detail vector (D). This decomposition scheme can be then applied again both to the 

approximation and to the detail vectors and repeated for j decomposition levels, outlining a binary 

tree structure. For example, at the second decomposition level (j = 2), A is further decomposed in 

an approximation (AA) and in a detail vector (AD), and similarly D is decomposed in DA and DD. 

In this manner, at each decomposition level j the signal is split into 2
j
 vectors (often called blocks). 
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The perfect reconstruction of the original signal can be achieved by properly joining each one of the 

many possible combinations of blocks in a way to cover horizontally the whole binary tree, without 

vertical overlaps. Each one of these combinations of orthonormal blocks is a complete basis. 

Alternatively, one can decide to select only some blocks of the complete basis, in a way to discard 

frequency components related to noise or to other uninformative variation (e.g., background 

effects). Moreover, the selection of single variables (wavelet coefficients) can be performed also 

within each single blocks, in a way to select single portions of the signal, and at different 

frequencies. 

Schematically, the WPTER algorithm works as follows (for a more detailed description refer to 

Cocchi et al., 2001, and Ulrici et al., 2008): 

 

- the training set of signals is decomposed in the WPT domain using a couple of wavelet 

filters up to a given maximum decomposition level, chosen by the user. The obtained 

matrix can be considered as a redundant representation of the original signal matrix, since 

different bases can be used to represent it; 

- the best basis is selected as the one leading to the best discrimination among the signals 

belonging to different classes. In a preselection phase, only a fixed percentage of the 

wavelet coefficients (defined by the user) is retained for each block. In particular, those 

coefficients showing the higher discriminant capability – as evaluated by the between-

class/within-class variance ratio – are retained. Then, the best basis selection is performed 

by using the classification ability (CA) criterion, an Euclidean distance based method 

which reaches optimal values when the best separation among the signals belonging to 

different classes and, simultaneously, the best clustering of the signals belonging to the 

same class is obtained. The best discriminant basis is identified as the one containing the 

blocks giving the optimal CA values; 

- the selected wavelet coefficients of the best discriminant basis are reconstructed back into 

the original domain; these reconstructed signals can be viewed as the projection of the 

selected wavelet coefficients in the original (colourgram) domain. For comparison 

purposes, the mean original signal of each class is also plotted highlighting the regions 

corresponding to the selected features; 

- the selected wavelet coefficients can be used as input variables for the calculation of 

discriminant models. In particular, in the present work the same method adopted to classify 

the whole colourgrams was used, i.e., PLS-DA with random subsets cross-validation (6 
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groups, 20 iterations) to define the number of LVs, calculated using raw, meancentered and 

autoscaled data; 

- the classification model is applied to the set of test signals for validation. The test set 

signals are decomposed into the WPT domain, and the wavelet coefficients previously 

selected during the training phase are used to validate the PLS-DA classification models.  

 

Different parameters can be varied in order to optimize the classification model, such as the 

wavelet filters and the percentage of wavelet coefficients to be retained in the preselection phase. In 

the present work, 9 different wavelet filters (db1, db2, coif1, coif5, sym4-sym8) and 5 percentages 

of preselected wavelet coefficients (0.1%, 0.5%, 1%, 5%, 10%) were used, setting the maximum 

decomposition level equal to 5. The combination of all these parameters led to a total of 45 cycles 

of calculation. 

For the identification of the best cycle, we considered the cross-validated classification 

efficiency values (CV EFF) of the PLS-DA models, selecting the cycle that led to the maximum 

value. The possible presence of multiple optimal solutions, i.e. of models calculated on WPTER 

cycles showing statistically equivalent CV EFF values, was also evaluated by means of one-way 

ANOVA and Tukey’s multiple comparison test. 

 

2.6 Comparison between assessors and best classification model 

The performance of the optimal WPTER model was also compared with the performance of the 

assessors, expressing the results in terms of Validity and considering all the 198 samples. To this 

aim, since the 60 images of the training set were used for the selection of the useful features and to 

build the classification model, for a fair comparison of the results we performed three separate 

comparisons, i.e. one for TRN (considering the results obtained in cross-validation), one for TST, 

which was considered separately since it contains the 35 samples whose class assignation is 

sufficiently univocal, and one for TST2, which includes the remainder (198-60-35 =) 103 samples. 

As for the evaluations performed by the assessors, in view of the fact that the classification 

models were built considering only 2 classes, i.e., in control samples and defective samples, the 

samples assigned by the assessors to class 3, i.e. to the class of samples with severe defects, were 

included in class 2, therefore considering only the discrimination between presence and absence of 

defects also for the assessors. 

Then, the evaluations of the assessors were compared with the classes predicted by the optimal 

WPTER model, calculating the Validity scores in the same manner as described in Section 2.3, and 

considering the three datasets TRN, TST and TST2 separately each other. 
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2.7 Image reconstruction using selected features 

Notwithstanding the transformation of an image into a colourgram implies the loss of spatial 

information, it is still possible to represent the selected features back into the original image 

domain, in a way to visually evaluate the correctness of the choices made by the algorithm (Foca et 

al., 2011). To this aim, one randomly selected image for each class was reconstructed using only the 

features selected by WPTER. The procedure adopted for image reconstruction with the only 

selected features consisted in the following steps: 

 

- for each colourgram portion selected by WPTER, the corresponding range of pixel values is 

considered. For example, if one of the selected portions corresponds to a part of the 

frequency distribution curve of the blue values, the corresponding range (e.g., blue values 

from 100 to 200) is kept; 

- the sample image to be represented is then segmented according to the range of the selected 

values. For example, only those pixels whose values in the blue channel range from 100 to 

200 are kept, while the remaining ones are set equal to 0 for all the R, G and B channels; 

- for each colourgram selected region the corresponding segmented image is then displayed, 

allowing to localize the image areas that contain the colourgram selected features; 

- alternatively, when the number of colourgram selected regions is ≤ 3, a more compact 

representation can be obtained by segmenting separately each one of the RGB channels 

accordingly with the values of each colourgram selected region. For instance, in the present 

work the optimal WPTER model selected three regions, corresponding to the Blue, Relative 

Red and Saturation parameter values; to represent in a unique image all the three regions, 

the red channel was segmented according to the colourgram range selected for Relative Red, 

the green channel according to the range selected for Saturation, and the blue channel 

according to the range selected for Blue. 

 

 

3. Results and Discussion 

3.1 Panel test 

The Validity (V) and Reliability (R) values calculated for each assessor are reported in Table 1, 

together with the corresponding Global Performance values. The mean values of V and R (about 

70%) highlight the partial subjectivity and a certain degree of unreliability of the human evaluation 
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of this kind of defect, even when this is performed by expert assessors, confirming that the 

classification of raw hams based on the presence/absence of the red skin defect is not a trivial task. 

It can be observed that V and R values are comparable, which means that the difference between 

replicated estimates made by a single assessor is similar to the difference between the evaluations 

made by different assessors. This observation was confirmed by a two-tailed t-test on paired data (P 

= 0.59), performed in order to compare the V values of each assessor with the corresponding R 

values.  

In order to verify the possible presence of assessors whose performance is significantly different, 

in particular to evaluate whether the performance of assessor E is significantly better than the 

others, the uniformity of the panel was also tested. To this aim, the distribution of the Global 

Performance of each assessor was compared by a chi-squared test to the corresponding uniform 

distribution, and the results confirmed the uniformity of the performance of the six assessors (P = 

0.30). 

As for the percentage of assignations of each sample to the correct class, Figure 2 shows the 

distribution histograms of the %OASA values separately for the three classes. On the whole, 70 

samples were assigned to class 1 (in control), 124 samples to class 2 (moderate defects), while only 

4 samples were assigned to class 3 (severe defects). Only for 6 out of the 198 samples a perfect 

agreement among the 12 evaluations was reached. 

The 95 images of samples presenting %OASA values greater than 70% were selected, 

subdivided into training (TRN) and test (TST) sets, and converted into colourgrams for the 

subsequent classification. The remainder 103 samples with %OASA values lower than or equal to 

70% were collected into a second test set (TST2) and used to compare of the results of the best 

classification model with the performance of the assessors. 

 

3.2 PLS-DA classification models 

The results of the PLS-DA classification models calculated on the whole colourgrams 

considering the raw (not pretreated), the mean centered and the autoscaled colourgrams are reported 

in Table 2. The SENS and SPEC values are referred to class 1; since this is a discriminant model 

with only two classes, SENS(class 2) = SPEC(class 1) and SPEC(class 2) = SENS(class 1). All the 

three models show good classification efficiency values, both in cross-validation of the training set 

(TRN) and in prediction of the external test set (TST). The cross-validated classification efficiency 

values (CV EFF) show a slight increase in the raw-meancentered-autoscaled sequence of 
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pretreatments, while at the same time the model dimensionality progressively decreases following 

the sequence 3-2-1. 

Figure 3 reports the values calculated (TRN) / predicted (TST) by the best PLS-DA model for 

class 1 (in control), where the class 1 objects (triangles) lying above the threshold value (horizontal 

dashed line) are correctly assigned to class 1, while the class 2 (defective) objects (asterisks) lying 

below the threshold line are correctly assigned to class 2, and where the vertical dotted line 

separates the TRN objects (1-60) from the TST ones (61-95). Only three objects of TRN (objects n. 

11 and 22 of class 1 and object n. 41 of class 2) and one object of TST (object n. 92 of class 2) are 

misclassified. Three of the misclassified objects (n. 11, 22 and 92) have the lowest possible 

%OASA value (75 %, i.e. 9 out of 12 attributions to the correct class), which could partly justify 

this result; on the other hand, this does not hold for object n. 41, whose %OASA value is equal to 

92% (11 correct attributions out of 12). Concerning the only selected image of a sample with severe 

defects included in the test set (object n. 95, with a %OASA equal to 100 % for class 3), this is 

correctly attributed to class 2, but with a value (-150.3) which is completely out of the range of class 

2 objects. On the one hand, this could reflect the presence of strong red skin defects for this sample, 

but on the other hand its outlying values both of the predicted Y and of the PLS residuals suggest 

that the correct estimate of samples with severe defects using PLS-DA models on colourgrams 

needs to be confirmed by further studies, using a representative number of samples with severe 

defects. 

 

3.3 WPTER classification models 

The best classification model was obtained by PLS-DA on the raw (not pretreated) wavelet 

coefficients obtained  using a sym7 wavelet filter and a percentage of wavelet coefficients retained 

in the preselection phase equal to 0.5 % (cycle number 27), which led to the selection of only three 

variables. 

The performance of the best PLS-DA classification model calculated using the three selected 

variables is reported in Table 3, together with the performance of the other PLS-DA classification 

models that showed similar results as for the CV EFF value. In particular, Table 3 also reports the 

classification performance of: 

 

-  the two models showing the second best CV EFF value, calculated on raw coefficients of 

cycle number 28 (obtained with a sym7 wavelet and a preselection percentage equal to 1%) 

and of cycle number 43 (coif5, 1%); 
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- the model showing the third overall best CV EFF value, calculated on mean centered 

coefficients of cycle number 5 (db1, 10%); 

- the model showing the best CV EFF value using autoscaling as pretreatment, calculated on 

coefficients of cycle number 26 (sym7, 0.1%). 

 

In order to check the possible presence of multiple optimal solutions, i.e. of models with 

statistically equivalent CV EFF values, we compared the performances of all the models reported in 

Table 3. In particular, for each one of them, the random CV procedure was additionally repeated 10 

times. Then, the 11 CV EFF results obtained for each model were transformed into the 

corresponding arcsin(sqrt(CV EFF)) values (Zar, 1996), which in turn were compared using one-

way ANOVA followed by Tukey’s multiple comparison test (P < 0.05). The results of ANOVA 

demonstrated that on the whole the analyzed models show absolutely different  performances (P = 2 

× 10
-36

), and the Tukey test (see superscript letters in the first column of Table 3) highlighted that 

the best WPTER model (27) leads to results that are statistically equivalent to the results of model 

43, which in turn are statistically equivalent to the results of model 28. Conversely, models 5 and 26 

differ significantly from each other and from the best WPTER model. 

A comparison of the best PLS-DA model of Table 2 (on autoscaled colourgrams) with the best 

PLS-DA model of Table 3 (on raw selected variables) shows that the selection of only three 

variables allows to obtain optimal classification performances in cross-validation of TRN 

(Classification Efficiency = 100%), maintaining the same predictive performances on TST. Only 

one object of TST is misclassified, which is the same one of the best PLS-DA model calculated on 

the whole colourgram (object n. 92 of class 2, %OASA = 75). Object n. 95, corresponding to the 

raw ham sample with severe defects, is correctly attributed to the defective samples, and in this case 

its Y prediction and PLS residual values do not show an outlying behaviour. This is reasonably due 

to the fact that WPTER tends to select variables leading at the same time to a good clustering 

between objects belonging to the same class and to an efficient separation between the clusters of 

objects corresponding to different classes. Figure 4, which represents the samples of both TRN and 

TST in the space of the three selected variables, confirms that WPTER reached this goal. The 

groups of objects corresponding to the two classes are in fact separated each other and each group is 

well clustered; in particular, as one could expect, the class of defective samples is more sparse than 

the class of in control samples. 
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3.4 Best WPTER classification model vs. Assessors 

Table 4 reports the Validity scores calculated on the basis of the evaluations of each assessor 

(from A to F) and of the predictions obtained using the best PLS-DA classification model reported 

in Table 3 (best WPTER). The Validity scores were calculated separately for TRN (using the results 

in cross-validation), TST and TST2, for the reasons described in Section 2.6. For each dataset, the 

best Validity value is highlighted in gray colour. The obtained results indicate that the predictions 

made by the classification model are similar to those of the assessors showing the best 

performances.  

In order to evaluate whether the performances of the classification model and of the assessors 

differ significantly from each other, the distributions of the Validity scores obtained for each dataset 

were compared by a chi-squared test to the corresponding uniform distributions. The probability 

values calculated for each dataset, reported in the last row of Table 4, confirm the uniformity of the 

performance of the classification model with the performance of the six assessors. The low P(χ
2
) 

value obtained for TST2 is due to the low performance of assessors C and D. In fact, the results 

obtained by repeating the chi-squared test after the elimination of the values of assessors C and D 

changed drastically (P = 0.98). 

 

3.5 Analysis and reconstruction of the selected features 

Figure 5 reports in the upper part the mean colourgrams of the two classes (class 1 in red, class 2 

in blue), where the regions selected by the best WPTER model are highlighted with vertical dotted 

lines, and in the lower part the zoom of the frequency distribution curves where three selected 

regions are located, each one corresponding to one of the three selected wavelet coefficients. The 

three narrow regions belong to the frequency distribution curves of the Blue (B), relative Red (rR) 

and Saturation (S). A comparison of the mean frequency distribution curves of the two classes for 

the three selected features highlights that the images of defective samples have a higher number of 

pixels with lower B intensity values and a higher number of pixels with higher rR and S intensity 

values. Since the human evaluation of the red skin defect is somehow related to the visual 

perception of an excessive and patchy red hue of the swine rind, it is not surprising that the 

algorithm selected two regions of the colourgram, i.e. the rR and S ones, bringing information 

related to the Red channel and to Saturation, while the selection of the lower intensity values of the 

Blue channel is less straightforward. 

Interestingly, the same three regions were also selected by the second best WPTER models 

(cycles 43 and 28, Table 3), which in turn differ for the additional selection of regions 
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corresponding to the frequency distribution curves of green and of hue (cycle 43), and of green and 

of PCA loadings (cycle 28). This is a further confirmation of the reliability of the feature selection 

obtained with the best WPTER cycle, which is also more parsimonious than cycles 43 and 28. 

In order to obtain more direct information about the choices made by the algorithm, one sample 

was randomly selected for each class, and the corresponding images were used for the 

reconstruction and visualisation of the features selected by the best WPTER cycle. The positions in 

the selected features space of the objects corresponding to the two randomly selected images are 

highlighted in Figure 4, using a red filled circle and a blue filled square for the object of class 1 and 

the object of class 2, respectively. 

In Figure 6 the two original RGB images are reported together with the corresponding images 

segmented according with each selected feature taken separately. First of all, it is clear that the 

selected pixels correspond almost exclusively to the sample (raw ham) and no parts of the 

background are taken, with the only exception of few pixels of the B channel. This observation 

suggests that the classification model selected by WPER was not based on chance, since only the 

informative part of the image was considered. As a further confirmation of the fact that the selected 

variables correspond to actually informative features for the detection of the red skin defect, from 

the comparison of the segmented images with the corresponding original ones it can be noticed that 

the selected areas are in effect those where the red skin defect is more evident. Also the areas 

selected for the sample of class 1 (in control) correspond to image portions where the skin is more 

reddish, but in this case the size of the red skin area is much smaller than for the defective sample, 

as it can be also noticed when comparing the two samples by looking at each channel separately. 

Comparing the size of the areas selected for the three channels, for both the original images it grows 

following the rR<B<S order, where the rR selected features highlight the parts of the image with 

more evident red skin defects, while B and in particular S account for much wider areas, probably 

also in order to take into account the overall sample colour. Finally, a high degree of 

superimposition of the areas selected for the three cannels can be noticed for both the samples. This 

fact can be better appreciated by looking at the more compact representation given in Figure 7, 

where a unique image of the features selected for each sample is given in the right part (images a2 

and b2). In these images, the red channel corresponds to the features selected for rR, the green 

channel to the features selected for S, and the blue channel to the features selected for B, as it has 

been described in Section 2.7. From the same Figure 7, a comparison between images b1 and b2 

highlights that the central portion of the dark red area in the left-down part of image b1, 

corresponding to a region where the red skin defect has a very high intensity, is ignored in the 

reconstructed image b2. Probably, in consideration of the overall nature of the defect in the training 
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set images of class 2, the presence of a widely diffused red skin defect was considered more 

significant than the presence of narrow areas where the defect is more intense. 

In the future perspective of an on-line application of an automated red skin defect detection 

system like the present one, image outputs like those given in Figure 7 could be very useful to help 

operators in deciding whether rejecting or not a suspect sample. On the one hand, by comparing the 

reconstructed image with the original one, an operator could evaluate the correctness of the 

automated classification system (e.g., a sample could be misclassified due to the presence of an 

extraneous object, like a bloodstain, within the image scene); on the other hand, the features 

highlighted in the reconstructed image could help the operator itself in making a decision based on 

objective and reproducible elements, minimizing the risk of subjectivity and / or unreliability. 

Finally, the time required for the classification of a new image and for the visualization of the 

corresponding reconstructed image was also estimated, using a personal computer running with 

Microsoft Windows 7 - 64 bit ® and equipped with an Intel Core ® i7-2600 CPU @ 3.40 GHz 

processor and 4.00 GB RAM. In particular, a Matlab function was implemented which: 

 

- reads from the hard disk the image file of the sample to evaluate; 

- converts the image into the corresponding colourgram; 

- decomposes the colourgram into the wavelet domain and extracts the selected wavelet 

coefficients; 

- uses the selected wavelet coefficients to calculate the predicted probabilities for each class 

with the best PLS-DA model of Table 3.b; 

- segments the RGB image according to the selected intervals for B, rR and S; 

- plots the original image and the reconstructed one, showing an output similar to the one 

reported in Figure 7, where the predicted probabilities for both classes are also reported. 

 

This Matlab function was then tested on all the images of the dataset, and the average time 

needed to perform all the operations for each single image (with size 2592 × 1944) resulted equal to 

about 4.07 seconds, which is lower than the time spent by an expert assessor to perform an 

evaluation (not less than 5-10 seconds for the most skilled assessors). Of course, in view of possible 

future applications, the time needed to process each image could be drastically shortened by 

compiling this Matlab function into an executable file. Moreover, it must be stressed out that we 

have not focused our attention on the optimization of the data dimensions of the image files, since 

this was beyond the aims of the present work. However, a reduction of the image size made 

consistently with the possibility to maintain good classification performances, could lead to a 
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further significant reduction of the computational times. As an example, a test performed applying 

the same function to the images after reducing their spatial dimensions to the 29 % of the original 

size (752 × 564 pixels) led to an average time equal to 0.37 seconds per image. These results 

suggest that this approach is already suitable for on-line applications and that, after a proper 

optimization of the image dimensions and compilation of the Matlab functions into a standalone 

application, a totally-automated classification could lead to a drastic decrease in the time needed for 

the evaluation.  

 

 

4. Conclusions 

In the present paper, a flexible approach for the development of automated classification models 

for the detection of product defects is presented. This blind analysis approach is based on the 

automated extraction from RGB images of the colour-related properties, which are the most 

effective descriptors for the identification of the defect, and allows a fast visualization of the sample 

areas where the defect is present.  

In particular we reported the application of this method to the detection of the red skin defect of 

raw hams, which led to the construction of efficient classification models, and to the possibility of 

visualizing the presence of the defect by means of images reconstructed using only the pixels 

corresponding to the selected features. 

The ability of the proposed method in detecting the red skin defect was compared with the skill 

of a panel of trained assessors. The obtained results indicate that the predictions made by the 

classification model are equivalent to those made by the panel, and that the proposed method 

behaves as the best assessors. 

One-dimensional signals, named colourgrams, were used in place of the 3D data of the original 

RGB images to build the classification models. Colourgrams can be considered as an inexpensive 

way to obtain useful information about colour-related properties of inhomogeneous samples. The 

main advantages of the colourgrams approach can be summarised as follows: i) the approach can be 

applied to any kind of sample for any kind of analysis that involves some colour changes, since it is 

not based on a priori assumptions on the nature of the analysed sample; ii) the time needed for the 

acquisition of an RGB image of an unknown sample and for its subsequent processing is short; iii) 

the method is cheap, since the instrumentation needed for the image acquisition and elaboration can 

be easily purchased at quite low cost. 

Moreover, the present work demonstrated that the use of a proper feature selection algorithm can 

be of great help to find those features that are more effective to solve a specific task. The selection 
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of a restricted number of features, in fact, allows both to shorten considerably the time needed for 

computation, and to critically evaluate the choices made by the algorithm, through the easy use of 

the images reconstructed with the only selected features. 
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CAPTION OF FIGURES 

 

Figure 1.  Graphical user interface used by the assessors for the visual evaluation of each image 

(left side), together with the reference images of the three quality classes (right side, 

with the respective class numbers specified in the upper right corner). 

 

Figure 2.  Frequency distribution histograms of % Overall Agreement on Samples Attributions 

(%OASA). The dashed square delimits the 95 samples retained to build the 

classification models. 

 

Figure 3.  Results of the best PLS-DA model for class 1, calculated on the whole colourgram. 

Class 1 samples are represented with triangles, class 2 samples with asterisks. The 

vertical dotted line separates the training set samples (on the left) from the test set ones 

(on the right). The threshold value is indicated with the horizontal dashed line. 

 

Figure 4.  3D plot of the three wavelet coefficients selected in the best WPTER model. The red 

filled circle and a blue filled square correspond to the object of class 1 and of class 2, 

respectively, that were randomly selected for the image reconstruction of the selected 

features. 

 

Figure 5.  Regions selected by the best WPTER model highlighted on the mean colourgrams of 

class 1 (red) and class 2 (blue).  

 

Figure 6.  Original RGB images and areas segmented according with the B, rR and S channels, 

for the two randomly selected samples. 

 

Figure 7.  Original RGB images of in control (a1) and of defective (b1) samples, compared with 

the corresponding reconstructed images (a2 and b2, respectively). 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Assessor Validity Reliability 
Global 

Performance 

A 71.7 64.6 136.3 
B 75.3 62.1 137.4 
C 65.9 72.2 138.1 
D 64.4 75.3 139.7 
E 85.9 81.8 167.7 
F 68.2 62.6 130.8 

mean 71.9 69.8 141.7 
s.d. 7.9 8.0 13.1 

 

Table 1.  Performances of assessors involved in the visual evaluation of raw hams images. 
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Pretreatment LVs 
TRN (calculated) TRN (CV) TST 

SENS SPEC EFF SENS SPEC EFF SENS SPEC EFF 

None 3 0.920 1.000 0.959 0.914 0.926 0.920 1.000 0.913 0.956 

Mean center 2 0.920 0.971 0.945 0.916 0.930 0.923 1.000 0.913 0.956 

Autoscale 1 0.920 0.971 0.945 0.910 0.964 0.937 1.000 0.957 0.978 

 

 

Table 2. Results of the PLS-DA classification models calculated on the whole colourgrams. The 

best classification model is highlighted in gray colour. 
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WPTER 
Cycle* 

PLS-DA 
Pretreat 

Vars LVs 
TRN (calculated) TRN (CV) TST 

SENS SPEC EFF SENS  SPEC  EFF SENS SPEC EFF 

27
 a

 None 3 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.957 0.978 

43
 a,b

 None 6 2 1.000 1.000 1.000 1.000 0.997 0.999 1.000 0.957 0.978 

28
 b

 None 6 2 1.000 1.000 1.000 1.000 0.997 0.999 1.000 0.957 0.978 

5
 c
 

Mean 
center 

123 9 1.000 0.971 0.986 0.992 0.970 0.981 0.833 0.957 0.893 

26
 d

 Autoscale 2 1 0.960 1.000 0.980 0.956 1.000 0.978 1.000 1.000 1.000 

* Different superscript letters (a, b, ...) indicate significant differences of the CV EFF values at P < 0.05 by one-way ANOVA followed by Tukey test. 

 
 

Table 3. WPTER cycles leading to the best PLS-DA classification models. The overall best 

classification model is highlighted in gray colour. 
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  TRN TST TST2 

A 82.50 85.71 73.79 
B 91.67 92.86 72.82 
C 85.00 84.29 51.46 
D 78.33 80.00 52.43 
E 96.67 100.00 78.16 
F 91.67 95.71 74.76 
best WPTER 100.00 97.14 79.61 

    P(χ2) 0.67 0.71 0.06 
 

Table 4.  Validity values of the assessors (from A to F) and of the PLS-DA predictions made with 

the best WPTER model, estimated separately for the samples belonging to the training 

set (TRN), for the original test set of 35 samples (TST), and for the test set of the 

remainder 103 samples (TST2). The last row reports the probability values of the chi-

squared test, made to test the uniformity of the Validity results. 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 37 

Highlights 

 

 Classification of raw ham images to detect the red skin defect 

 Use of a blind-analysis method based on image fingerprints (colourgrams) 

 Image classification made by expert assessors used as reference measurement 

 Classification Efficiency of an external test set = 98% using only 3 variables 

 Image-like visualization of the selected features for easy results interpretation 


