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Abstract 12 

In the present paper, the possibility to use the information contained in RGB digital images to 13 

gain a fast and inexpensive quantification of colour-related properties of food is explored. To 14 

this aim, we present an approach which consists, as first step, in condensing the colour related 15 

information contained in RGB digital images of the analysed samples in one-dimensional 16 

signals, named colourgrams. These signals are then used as descriptor variables in 17 

multivariate calibration models. The feasibility of this approach has been tested using as a 18 

benchmark a series of samples of pesto sauce, whose RGB images have been used to predict 19 

both visual attributes defined by a panel test and the content of various pigments (chlorophylls 20 

a and b, pheophytins a and b, -carotene and lutein).The possibility to predict correctly the 21 

values of some of the studied parameters suggests the feasibility of this approach for fast 22 

monitoring of the main aspect-related properties of a food matrix. The values of the squared 23 

correlation coefficient computed in prediction on a test set (R
2

Pred) for green and yellow hues 24 

were greater than 0.75, while R
2

Pred values greater than 0.85 were obtained for the prediction 25 

of total chlorophylls content and of chlorophylls/pheophytins ratio. The great flexibility of 26 

this blind analysis method for the quantitative evaluation of colour related features of matrices 27 

with an inhomogeneous aspect suggests that it is possible to implement automated, objective, 28 

and transferable systems for fast monitoring of raw materials, different stages of the 29 

manufacture and end products, not necessarily for the food industry only. 30 

Keywords: RGB digital image analysis; multivariate calibration; wavelet transform; colour; 31 

food aspect; pigments; sensory evaluation;  32 
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1. Introduction 34 

Visual aspect is one of the most important parameters for the assessment of food quality. 35 

For this reason, food industry is more and more interested in optimising not only taste and 36 

nutritional characteristics of a food product, but also its appearance, which is a complex 37 

combination of different characteristics including colour, texture, defects, etc. The 38 

identification of objective methods able to quantify visual aspect, or to codify some 39 

characteristics like amounts and distribution of the colour, is therefore fundamental. For 40 

example, correlations with sensory evaluation scores could help to implement automated and 41 

transferable systems for on-line process control or to check the aspect of the final product, 42 

even at the supermarket. Moreover, the definition of mathematical models linking colour-43 

related aspects to chemical parameters (e.g. pH values or concentration of pigments) could 44 

help to explain the underlying mechanisms responsible for food appearance.  45 

This research field is even more attractive because the instrumentation required to reach 46 

these goals is accessible at very low costs. In fact, many different types of digital cameras, 47 

webcams and scanners are able to convert the visual aspect of a food matrix in a series of 48 

data, i.e. the digital Red, Green and Blue (RGB) image. The key point is the definition of 49 

proper automated methods able to extract from RGB images the useful information and to 50 

employ it for calibration, classification, process monitoring, etc.  51 

Scientific literature reports the use of digital images for the calibration of various food 52 

properties. The major part of the published research works describes applications for the 53 

prediction of technological and sensory aspects by means of various regression tools, 54 

including Multiple Linear Regression (MLR), Partial Least Squares (PLS) and Artificial 55 

neural Networks (ANN), in order to model the relationships between the information 56 

contained in the digital images and the investigated properties [1-8]. The image features that 57 

constitute the matrix of descriptors in the regression models are generally extracted by means 58 

of Multivariate Image Analysis (MIA) based techniques, which essentially consist in PCA of 59 

the unfolded image matrix. These techniques are able to convert images in objective and 60 

transferable information [7-9]. In some research works, the extracted image features are 61 

selected using different methods, such as Genetic Algorithms (GA) [2, 3] or Wavelet 62 

Transform (WT) [4]. 63 

Moisture [4, 10, 11], sensory and mechanical parameters [3, 12, 13] are some of the 64 

most frequently studied food properties using image analysis based calibration methods. 65 

Automated procedures to estimate the number of bacteria or the yeast mass grown on a proper 66 

support have been also reported [14, 15]. 67 
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Only few research works concerning the image-based quantification of food 68 

components using multivariate calibration [7, 16] have been reported. The estimate of the 69 

chemical characteristics of food based on RGB images seems a more difficult task, since few 70 

works are available in the literature. Some Authors have modelled various properties (ranging 71 

from the lipids and carotenoids content in wheat to the percentage of potato chip surface 72 

covered by seasoning [17-20]) by means of univariate methods, obtaining satisfactory results. 73 

However, these univariate methods are specifically designed for the problem at hand and 74 

rarely can be transferred to a different application. 75 

This short literature survey gives an idea of the wide possibilities offered by RGB 76 

imaging as a tool for fast and non-destructive characterisation of food matrices. However, the 77 

development of versatile methods, able to extract from the images a set of descriptors 78 

independently of the specific nature of the analysed matrix, and that can be used to build 79 

calibration models for a wide set of response variables, is not straightforward. In fact, many of 80 

the cited applications are customised on a specific food matrix for the prediction of a 81 

restricted group of variables. For example, the procedures that require image segmentation 82 

generally involve the customisation of the image analysis method. In fact, segmentation is 83 

often based on a problem-specific criterion, in order to isolate the sample from the 84 

background or to extract the informative portion of the image [3, 4, 11, 12, 16, 21, 22]. In 85 

other research works the customisation involves pretreatments like denoising, filtering, 86 

scaling and transformation of the colour space, which use is driven by the specific nature of 87 

the problem to be solved [4, 5, 7, 10, 11, 18, 23]. 88 

Following these considerations, in order to create a more versatile approach, Antonelli 89 

et al. [24] have developed an algorithm for the extraction of the overall colour-related 90 

information of the image, which is coded in the form of a signal named colourgram. The 91 

approach essentially consists in calculating the frequency distribution curves of a series of 92 

colour related parameters: red, green, blue, hue, saturation, lightness, and scores from the 93 

Principal Component Analysis (PCA) of the unfolded image data. The frequency distribution 94 

curves and the loadings and eigenvectors from PCA are then merged in sequence to give a 95 

4900 points-long one-dimensional signal, the colourgram, which codes the colour content of 96 

the image. 97 

A dataset composed by this kind of signals can then be used as an input to multivariate 98 

methods. For example, the most interesting features of a set of images can be investigated 99 

simply by calculating a PCA model on the corresponding matrix of colourgrams. Similarly, a 100 



 4 

matrix of colourgrams can be used as a set of descriptor variables to build classification or 101 

calibration models. 102 

Compared to other approaches described in the literature, the main advantage offered by 103 

colourgrams lies in the flexibility of their possible applications. This is mainly due to the fact 104 

that colourgrams contain the whole information content of two different colour spaces (RGB 105 

and HSI) and of quantities derived from the RGB space. Therefore, there are no a priori 106 

assumptions on the features bringing the useful information for the specific problem under 107 

investigation. On the contrary, an image fingerprint that reflects all the complex colour-108 

related features typical of a given food matrix is considered. 109 

Moreover, the conversion of the image in a one-dimensional signal before processing 110 

allows higher data compression and easier computation. In fact, starting from the millions of 111 

data of the original image, elaboration is performed on a 4900 points-long signal, which can 112 

be further significantly shortened, up to few units, using proper signal compression/feature 113 

selection methods. Moreover, the methods available for processing monodimensional signals 114 

are more numerous, widespread and fast than the algorithms for image analysis. 115 

The first application of the colourgrams approach [24] was made on an Italian pasta 116 

sauce, namely Pesto alla genovese. This food matrix was chosen as a benchmark, both since it 117 

contains particles of different size and colour, thus showing an inhomogeneous aspect, and for 118 

its colour instability, mainly due to the degradation of chlorophylls to pheophytins, which 119 

causes a change of colour from bright green to dull green-brownish [25]. The aim of this first 120 

work was to classify the digital images based on different pesto brands. The use of a feature 121 

selection algorithm based on the Wavelet Transform (WT) [26] for the identification of the 122 

most significant regions of the colourgrams allowed to reach a 100% classification efficiency 123 

in the prediction of an external test set. 124 

These satisfactory results encouraged us to go a step further, evaluating the possibility to 125 

employ colourgrams for calibration purposes. Therefore, in the present work, we used 126 

colourgrams to predict both sensory and chemical properties, merging the results of previous 127 

studies on sensory [27] and chemical analysis [28] with the information contained in RGB 128 

images. The same food matrix, pesto sauce, was used as a benchmark for the same reasons 129 

described above. 130 

Multivariate calibration models were built using both PLS and a feature 131 

selection/calibration algorithm based on WT [29], namely Wavelet Interface for Linear 132 

Modelling Analysis (WILMA) [30, 31]. The WILMA algorithm takes advantage of the multi-133 

scale characteristics of the wavelet transform, which permits to consider both the shape of the 134 
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signal (i.e., its frequency content) and its local aspects, such as peak positions and 135 

discontinuities. The variable selection implemented in WILMA allows to choose only those 136 

colour-related characteristics, which are the most relevant ones for a specific calibration task. 137 

The selected regions are generally contiguous, allowing an interpretation of the model based 138 

on visual inspection of these portions of the colourgram. In addition, this allowed the 139 

reconstruction of sample images displaying only the pixels with RGB values corresponding to 140 

the selected regions. In other terms, the feature selection made by the algorithm has been 141 

represented directly on the original images. Therefore, even though the colourgram contains 142 

only colour related information, regardless of spatial information (i.e., the specific location of 143 

each pixel is lost in the colourgram), it is still possible to have an “image-like” reconstruction 144 

of the selected features, which also allows their interpretation in spatial terms. 145 

The results of the use of colourgrams for calibration purposes are very encouraging, 146 

showing a wide range of possible applications. A common RGB camera, together with an 147 

appropriate data processing as described in this paper, is able to catch enough information to 148 

make it suitable for quality control both in on-line and in off-line applications. 149 

 150 

2. Experimental 151 

2.1 Sampling and acquisition of digital images  152 

In this study, twenty-four jars of pesto sauce from ten different producers have been 153 

considered. For nine producers two jars from single batches, indicated with letters from A to I 154 

have been analysed, while one producer supplied six jars from three different batches, 155 

indicated with letters from J to L. 156 

After opening the jars, subsamples were used for image acquisition. Then, a part was 157 

kept and stored in a dark place at 4 ◦C to be analysed in the following days for the 158 

determination of pigment concentration [28]. Another part was kept to fill identical glass pots, 159 

identified by a numerical code, which were stored in a dark place at 4 ◦C as well, to be used 160 

for the panel test sessions in the following days [27]. During this time no appreciable 161 

degradation occurs, because the samples are stable under these storage conditions. In fact, 162 

pigments degradation occurs during pesto processing, when the product is acidified and 163 

pasteurised to improve microbiological stability. 164 

For each one of the twenty-four original pesto jars, four aliquots of about 50 ml were 165 

separately collected and then spread on a flat (10×10) cm
2
 surface to an approximately 166 

constant 5 mm thickness, for subsequent digital image acquisition. A dataset of 96 digital 167 
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images of pesto was acquired as 24 bit RGB (16.8 millions of colours) with a 1280 × 960 168 

spatial resolution, using a common Fujifilm Finepix S5000 digital camera, and then 169 

transferred to a personal computer as jpeg compressed image files (compression ratio 8:1). 170 

The choice to use low spatial resolution compressed images (average file size 487 KB) 171 

instead of higher resolution raw images (average file size 9 MB) was made on the basis of 172 

preliminary trials, where the score plots obtained by the PCA on colourgrams of some sample 173 

images acquired both in raw and in compressed modes at different resolutions were 174 

compared, showing similar patterns. Even if raw images could give better results preserving 175 

all the potentially useful information, the usability of the method (in terms of data storage and 176 

of computational power requirements) was considered more important. 177 

The image acquisition system consisted in a white painted illumination chamber, 178 

equipped with 8 × 25W equally spaced tungsten lamps (Philips 25 W 240 V SES Argenta 179 

Lustre). The digital camera was placed on the aperture on the top of the chamber, 40 cm 180 

above the sample. A scene area of about 10 cm × 10 cm was covered, which corresponds to 181 

the sample surface area, taking care to avoid the presence of background pixels in the image. 182 

In order to evaluate the effect of possible variations of the illumination conditions, 183 

preliminary tests were performed on the acquired images. However, the correction of the raw 184 

RGB values by means of a standard has not led to improvements of the results. Reasonably, 185 

this is due to the fact the light source variations within the relatively short time interval 186 

needed for image acquisition have not caused effects detectable by the CCD device of the 187 

RGB camera. 188 

 189 

2.2 Sensory and chemical analyses 190 

Sixteen judges had been specifically trained on the visual appearance of pesto samples, 191 

where the different attributes used to define aspect-related properties of pesto sauce were 192 

discussed with the help of some examples. Descriptive analysis was carried out evaluating the 193 

attributes listed in Table 1 on 10 cm long continuous line scales. In addition to six visual 194 

attributes, the personal preference of the judge, which is a hedonic attribute, was also 195 

included. Even if hedonic scales are usually reserved for consumer populations greater than 196 

30, this hedonic attribute was included anyway, considering it as a sort of dummy variable. In 197 

fact, the variance due to subjectivity of the single assessors would have made PR difficult to 198 

estimate. 199 
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Each one of the twelve batches of pesto was submitted four times to the evaluation of 200 

each panellist during three separate sessions. In each session, twelve different samples and 201 

four replicates were evaluated following a Latin squares design. Finally, the scoring of each 202 

sample was calculated as the mean of the four evaluations. For a more detailed description of 203 

the sensory analysis, see reference [27]. 204 

On the same batches subjected to sensory evaluation, a double determination of the 205 

amount of the main pigments has been conducted. In particular, the following species were 206 

quantified: chlorophylls a and b (Chl a and Chl b), lutein (Lut), -carotene (Car), pheophytins 207 

a and b (Pht a and Pht b). All pigments were determined by Reversed-Phase High-208 

Performance Liquid Chromatography (RP-HPLC), except for Car, which was directly 209 

quantified on the purified extract by Vis spectrophotometry [28]. 210 

Beyond the concentration values of the single pigments, some derived compositional 211 

characteristics were also considered in the subsequent calibration models: total chlorophylls 212 

(ChlTOT, defined as Chl a + Chl b), total pheophytins (PhtTOT, defined as Pht a + Pht b) and 213 

chlorophylls/pheophytins ratio (Chl/Pht, defined as ChlTOT/PhtTOT). This latter quantity 214 

was considered since it expresses the extent of chlorophylls degradation. 215 

 216 

2.3 Extraction and quantification of colour-related information 217 

The colour related information of each digital image was used to build the 218 

corresponding colourgram. To this aim, the three way array corresponding to the RGB image, 219 

having size {960, 1280, 3} (where 960 is the number of pixel rows, 1280 the number of pixel 220 

columns, and 3 corresponds to the R, G and B colour channels) is unfolded to a {(960 × 221 

1280), 3} bidimensional matrix containing all the pixels in rows and the R, G and B channels 222 

in columns. Then, this matrix is expanded by adding a series of columns, corresponding to 223 

parameters derived by R, G and B: Lightness (L), defined as the sum of the three channel 224 

values, the relative colours (rR, rG and rB), defined as the ratio between each channel and L, 225 

and the Hue, Saturation and Intensity values of the HSI colour space. Moreover, three PCA 226 

models are calculated: the first one on the unfolded RGB data matrix without any data 227 

pretreatment (raw), the second one after meancentering, and the last one after autoscaling. 228 

The nine score vectors (three for each PCA model) are also added as further columns to the 229 

data matrix. Then, for each one of the 19 columns of the resulting data matrix, the 230 

corresponding 256 points-long frequency distribution curve is calculated. The 19 frequency 231 

distribution curves are then joined in sequence to form a unique vector, and at the end the 232 
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values of the three loading vectors (nine points) and of the eigenvalues of the three Principal 233 

Components (PCs) are added for all the three PCA models, to form a one-dimensional signal, 234 

the colourgram, of length equal to (256×19 + 36) = 4900 points, which describes the colour 235 

properties of the image. For a more detailed description of the algorithm used to build the 236 

colourgrams, the reader is referred to Antonelli et al. [24]. The matrix composed by the 237 

colourgrams (colourgrams matrix) was then used as predictor matrix for calibration purposes. 238 

We are aware that the colour representation of the images by means of the whole 239 

colourgram is redundant; on the other hand, it must be emphasised that the 4900 points of a 240 

colourgram constitute anyway a small number, if compared to the (1280 × 960 × 3) = 241 

3,686,400 data values of the original image array. Most important, in the same manner as the 242 

useful chemical information for a specific task is present only in specific portions of a NIR 243 

spectrum, also in this case the most relevant parts of the colourgrams for a given problem can 244 

be selected by means of proper signal processing and feature selection methods. 245 

A simpler approach was also tested, using a reduced matrix, where for each digital 246 

image only 40 descriptor variables are calculated, corresponding to the mean, median, range 247 

and standard deviation values of parameters of the colourgram: R, G, B, L, rR, rG, rB, H, S, 248 

and I. 249 

The same objects subdivision between training and test set, each one containing 48 250 

objects, was done both for the colourgrams matrix and for the reduced matrix: for each batch 251 

all the replicates of the first jar were included in the training set and all the replicates of the 252 

second jar were included in the test set. 253 

 254 

2.4 Multivariate Calibration and Feature Selection  255 

As a starting point, PLS1 models have been applied to the colourgrams matrix and to the 256 

reduced matrix as predictors for each one of the 16 response variables. The combinations of 257 

different column-wise and row-wise preprocessing methods were considered. In particular, 258 

first order derivative (D1), second order derivative (D2) and standard normal variate (SNV) 259 

were applied alone and in combination with mean centering (MNCN). The best preprocessing 260 

and the optimal number of Latent Variables (LVs) were chosen on the basis of the results in 261 

contiguous blocks (12 groups) cross-validation. This cross-validation method was chosen in a 262 

way that the four replicates of each sample were contemporarily deleted during each cycle of 263 

cross-validation. As for the reduced matrix, autoscaling (AUTO) was used for data 264 



 9 

preprocessing, and also in this case the optimal number of LVs was chosen based on 265 

contiguous blocks (12 groups) cross-validation. 266 

Since the information contained in colourgrams could be overwhelmed by 267 

uninformative variation, a feature selection technique was also used to compute the 268 

calibration models on the colourgrams matrix.  269 

To this aim, we used the WILMA algorithm, which is based on the Fast Wavelet 270 

Transform (FWT) [29], a decomposition method in the WT domain. As a first step, i.e. at the 271 

first decomposition level, FWT splits the low and the high frequency contents of the signal (in 272 

this case, of each colourgram) into two orthogonal and complementary sub-spaces, called 273 

approximation and detail vector, respectively. To this aim, a couple of filters (the high-pass 274 

and low-pass wavelet filters) are used. Then, at the subsequent decomposition levels, it 275 

recursively splits into the approximation and detail vectors the approximation vector of the 276 

previous decomposition level, using the same wavelet filters. Therefore, at a given 277 

decomposition level L, the signal is represented by the approximation vector at level L and by 278 

all the detail vectors from level L to level 1. Each one of these vectors, which are defined in 279 

the same domain of the original signal, can be considered as a filtered version of the original 280 

signal, where only a restricted frequency (scale) range is kept. In other words, the set of 281 

variables (namely the wavelet coefficients) that are obtained at the various decomposition 282 

levels represent the contributions to the analysed signal at each position (in the original 283 

domain) and frequency (or scale) value. This double representation, which is called signal 284 

multiresolution, allows an efficient separation among all the signal features, which in turn 285 

permits the selection of only those aspects that are the most relevant to model a given 286 

response variable. 287 

The wavelet coefficients, that constitute a set of independent variables derived from the 288 

colourgrams matrix, are then used in WILMA for the selection of the subset leading to the 289 

best predictive performance of the derived PLS/MLR regression models, evaluated by cross-290 

validation.  291 

Schematically, the WILMA algorithm works as follows: 292 

 the matrix of signals (colourgrams) is decomposed by means of FWT using a particular 293 

wavelet (i.e. a particular couple of wavelet filters) until its maximum level of 294 

decomposition; 295 

 for each decomposition level (including level 0, which corresponds to the original 296 

signal) the wavelet coefficients are ranked according to a criterion chosen by the user; in 297 
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the present work, based on our previous experience, we have considered the squared 298 

covariance of each coefficient with the response variable; 299 

 for each decomposition level, the optimal number of wavelet coefficients is iteratively 300 

selected using either MLR or PLS with a proper cross-validation procedure; in the 301 

present work, since we wanted to keep all the images (thus, all the colourgrams) of pesto 302 

from a given jar in the same cross-validation groups, we have used contiguous blocks 303 

cross-validation with 12 groups; 304 

 the wavelet coefficients belonging to the decomposition level that furnishes the best 305 

results in cross-validation are selected to build the final (optimal) calibration model; 306 

 for interpretative purposes, only the selected wavelet coefficients are reconstructed into 307 

the original domain, allowing to point out the signal regions that contain the useful 308 

information. 309 

 310 

For a detailed description of the WILMA algorithm, the reader is referred to more 311 

comprehensive references [30, 31].  312 

Since it is not possible to know in advance the combination of the WILMA parameters 313 

that leads to the best results, it is appropriate to cycle over different possible combinations in 314 

order to find the best calibration model. For this reason, 5 wavelets belonging to the symlet 315 

family (sym4sym8), and both the MLR and the PLS regression techniques were used. For all 316 

the sixteen modelled response variables, the combinations resulting from the parameters listed 317 

above were tested, leading to 10 cycles of calculation (5 wavelets × 2 regression methods). 318 

The optimal MLR and PLS regression models were selected based on their cross-validation 319 

performance; finally, they were validated using the external test set samples. 320 

For an easier comparison among the performances obtained for the different response 321 

variables with the different calibration methods, we have reported the results using the R
2
 322 

statistics, defined as: 323 

 

)1(V

ŷy
1R

y

2

2







n
 (1) 324 

where y are the experimentally measured values of the considered response variable, Vy 325 

is the corresponding variance, ŷ are the values calculated (for R
2

Cal) or predicted (in cross-326 

validation for R
2

CV and on the test set for R
2

Pred) by the model, and n is the number of 327 

considered objects (i.e. the number of the training set objects for R
2

Cal and R
2

CV, and of the 328 

test set objects for R
2

Pred). 329 
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For all the four methods used for calibration (PLS on colourgrams matrix, PLS on 330 

reduced matrix, WILMA-PLS and WILMA-MLR), the number of latent variables (PLS-based 331 

methods) or of selected variables (WILMA-MLR) that was included in the models was 332 

chosen based on the minimum error in cross-validation, up to a maximum value of 6. 333 

 334 

3. Results and Discussion 335 

Table 2 reports the performances of the best calibration models selected for each 336 

response variable with each calibration method. In particular, Table 2.a reports the PLS1 337 

models obtained using as X block both the colourgrams matrix (on the left side), composed by 338 

4900 variables, and the reduced matrix (on the right side), composed by 40 variables, while 339 

Table 2.b reports the results obtained with WILMA, considering separately the models 340 

selected with WILMA-PLS (on the left side) and with WILMA-MLR (on the right side). For 341 

a general comparison among the four calibration methods and to point out the response 342 

variables characterised by acceptable correlations with the information from digital images, 343 

the variable names and the model statistics for the method with best overall performance in 344 

prediction of the test set are highlighted in grey colour, when R
2

Pred is equal or greater than 345 

0.6. 346 

On the whole, acceptable models were obtained for 10 variables out of 16; better results 347 

were obtained for the chemical variables (pigments concentrations) rather than for the sensory 348 

ones. 349 

As for the sensory attributes, the three colourgrams-based methods converged, giving 350 

good calibration models only for yellow and green hues (YH and GH), while the reduced 351 

matrix-based approach gave acceptable results also for white amount (WA). As for GH, these 352 

results are coherent with the observations made in a previous research work [27], where it was 353 

observed that this parameter has a prominent role in the definition of the multivariate structure 354 

of the sensory data. In other words, the contribution of GH to the overall aspect is much 355 

evident, therefore it is easier to quantify by means of digital imaging techniques. 356 

Conversely, CH and PS cannot be predicted, regardless of the method used for 357 

calibration. To explain the failure of our approach in the prediction of these parameters, it 358 

must be recalled that colourgrams retain the colour information but lose the spatial 359 

information. This is the reason why is not possible to determine if the pixels of similar colour 360 

are grouped together in relatively large clusters (corresponding to coarse PS or low CH) or 361 

more uniformly distributed along the spatial dimensions (corresponding to fine PS or high 362 
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CH). The only texture-related information that could have been partly extrapolated by the 363 

colourgrams approach (and that justified our attempt to predict PS and CH) derives from 364 

“boundary” pixels, i.e. from those pixels corresponding to the boundaries between particles 365 

having different colour. Their “intermediate” colour properties could have allowed their 366 

distinction from the “bulk” pixels and therefore their use to estimate PS and CH. However, 367 

the experimental results confirm that this hypothesis is not verified, and that in order to obtain 368 

textural information with a colourgrams-based approach further work is needed, to insert also 369 

spatial information in the signals. 370 

As expected, PR generally shows the worst performance in prediction (lowest R
2

Pred 371 

values). In fact, we recall that this hedonic attribute was considered as a sort of dummy 372 

variable, since the variance due to subjectivity of the single assessors would have made 373 

difficult to estimate PR based on images. Thus, these bad results in prediction can be 374 

considered as a sort of check of the correctness of the validation procedure. 375 

As for the chemical variables, only those related to the pigments whose contribution to 376 

the overall colour (green) is more evident, i.e. pheophytins and chlorophylls, gave acceptable 377 

results. In particular, independently of the specific calibration method, the best models were 378 

obtained for the Chl/Pht ratio (highest R
2

Pred = 0.872 with WILMA-PLS) and for the total 379 

amount of chlorophylls, ChlTOT (highest R
2

Pred = 0.876 with WILMA-MLR). 380 

Satisfactory models with all the calibration methods were obtained for Chl a and Chl b, 381 

with the only exception of Chl a modelled with the reduced matrix. Pht a and Pht b gave 382 

worse results, even though generally acceptable. Conversely, none of the four calibration 383 

methods gave satisfactory results for the quantification of Lut and of Car. On the one hand, 384 

this fact suggests that RGB images are not able to detect all the pigments, but only the ones 385 

with the higher contribution to the overall colour of the samples, at least under our 386 

experimental conditions. On the other hand, all the four calibration methods show a good 387 

degree of convergence in predicting the same chemical variables, suggesting that the 388 

approaches adopted for calibration are not prone to overfitting. 389 

The performance of the different methods used to build the calibration models showed 390 

that the simplest approach, i.e. PLS on the reduced matrix, gave better results than expected. 391 

In fact, it led to the best models for three out of the sixteen response variables (WA, Pht a and 392 

PhtTOT). In particular, it is the only one able to correctly predict the values of WA. This fact 393 

suggests that the use of global parameters, like those of the reduced matrix, can be sometimes 394 

more effective than a detailed analysis of the frequency distribution curves (as it is done using 395 

WILMA).Figure 1 shows the VIP (Variable Importance in Projection) scores plot of the PLS 396 



 13 

regression model of WA based on the reduced matrix. The VIP scores estimate the 397 

importance of each variable in the projection used in a PLS model [32]; the “greater than one 398 

rule”, which derives from the fact that the average of squared VIP scores equals 1, helps to 399 

determine whether a certain variable is actually significant to the model. From this figure it is 400 

clear that the useful information to estimate WA consists mainly in the mean and median 401 

values of the intensities of the single channels (R, G, and B, where G is the most important 402 

one, as it could be expected based on the green dominant colour of pesto), of their sum (as 403 

expressed by L), and of their maximum values (as expressed by I). 404 

The global number of acceptable results (R
2

Pred > 0.6) obtained with the reduced matrix 405 

and with the colourgrams matrix is analogous. However, the overall performance in 406 

prediction of colourgrams-based models is better. In fact, with the reduced matrix only three 407 

variables lead to R
2

Pred > 0.7 with a maximum of R
2

Pred = 0.773 for ChlTOT, while using 408 

colourgrams the number of models with R
2

Pred > 0.7 ranges from 5 (PLS and WILMA-PLS) to 409 

6 (WILMA-MLR) and the number of models with R
2

Pred > 0.8 ranges from 1 (PLS) to 3 410 

(WILMA-PLS and WILMA-MLR). 411 

As for the colourgrams-based models obtained with PLS, it is evident (Table 2.a) that 412 

there is not a specific pretreatment prevailing on the other ones, even though in general 413 

derivatives, alone or combined with mean centering, perform better than SNV. 414 

Figure 2 reports the VIP scores plot of the PLS model on colourgrams for GH (Figure 415 

2.b) together with a mean colourgram of the training set (Figure 2.a). Six distinct colourgram 416 

portions, corresponding to the frequency distribution curves of different parameters related to 417 

the colour content of the image, have a strong influence on the model (VIP score values much 418 

higher than 1). These portions, highlighted in grey colour, correspond to rG (1), H (2), PC3 419 

scores of the PCA on raw (3), meancentered (4) and autoscaled (5) matrices, and to the 420 

loadings and eigenvalues for all the three PCA models (6) [24]. The selection of the frequency 421 

distribution curves of rG and H can be easily connected with the nature of the investigated 422 

property. The interpretation of the selected distribution curves of the PCA scores of the third 423 

component of the three PCA models and of the corresponding loadings and eigenvalues is 424 

more difficult, but it highlights the need to account for the inner relations between the R, G 425 

and B channels, in order to model properly the GH sensory attribute. 426 

In general, the fact that only few narrow regions are necessary to model the response 427 

variable, suggested us how the implementation of feature selection techniques can be of great 428 

help in building efficient and at the same time parsimonious models, where – starting from the 429 

comprehensive description of the image colour content furnished by the colourgram – at the 430 
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end only few descriptors can be extracted for a specific task. In fact, the results obtained by 431 

applying WILMA to the colourgrams matrix demonstrate that the selection of variables is 432 

useful, not only since this often led to models more efficient than those obtained with PLS, 433 

but also since the number of selected wavelet coefficients (“cfs” columns in Table 2.b) is 434 

frequently very low. Beyond the aspects connected to predictive performance and robustness, 435 

the advantages offered by the high reduction of useful descriptors is twofold. On the one 436 

hand, simple models based on few variables are computationally very fast, which makes 437 

easier their online implementation. On the other hand, the representation in the original 438 

images of only those pixels having values included in the intervals selected on colourgrams 439 

enables i) a direct visualisation of the choices made by the algorithm for model interpretation 440 

purposes and ii) the monitoring of each analysed image, e.g. to check for possible outlying 441 

samples or to check if an image defect affects the descriptors used for calibration. 442 

All the five tested wavelets have been selected in the various models (“Wav” columns in 443 

Table 2.b), confirming that the optimal wavelet depends on the specific calibration task, even 444 

if sym6 and sym7 have been selected more frequently than the other ones. Also the optimal 445 

wavelet decomposition levels vary considerably (“Lev” columns in Table 2.b), including the 446 

extreme possibilities of the original signal (0) and of the maximum decomposition level (12). 447 

As for the performance in prediction, the best results were obtained with WILMA-PLS, 448 

which gives acceptable results (R
2

Pred > 0.6) for nine out of the sixteen modelled variables. 449 

However, satisfactory results were obtained also with WILMA-MLR, with the advantage that 450 

the number of selected wavelet coefficients (descriptors) is extremely reduced, ranging from 451 

one to six. It is noteworthy the fact that, though based on different strategies for feature 452 

selection, WILMA-MLR and WILMA-PLS converge for both the PS and PR models, where 453 

the same unique wavelet coefficient is selected for each one of these response variables. The 454 

tendency to converge towards the same (bad) solution, without finding any possible chance 455 

correlation with a higher number of coefficients, demonstrates that the adopted feature 456 

selection / cross-validation procedure is not prone to overfitting. 457 

The overall best results in prediction were obtained using WILMA-MLR for the model 458 

of total chlorophylls content (ChlTOT). Figure 3 reports both the original colourgrams 459 

(Figure 3.a) and the reconstruction of the selected wavelet coefficients into the original 460 

domain (Figure 3.b). The three portions of the colourgram that have been selected correspond 461 

to the frequency distribution curves of H (1) and of the PC3 scores of the PCA models on the 462 

meancentered (2) and on the autoscaled (3) matrices. The comparison between this Figure and 463 

Figure 2.b, that reports the VIP scores of the PLS model for GH, shows the success of the 464 
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blind analysis approach, suggesting how different algorithms converge to analogous signal 465 

regions for correlated properties (the correlation coefficient between GH and 466 

ChlTOT = 0.8273). 467 

The first one of the three regions highlighted in Figure 3 (H) is represented in more 468 

detail in Figure 4, where the training set objects are represented with black lines and the test 469 

set objects with grey lines. In Figure 4.a different shapes of the frequency distribution curves 470 

can be observed, which correspond to the different jars of pesto sauce. The reconstruction of 471 

the (unique) wavelet coefficient selected in the H region of the colourgram shows that this 472 

coefficient is located in a way to account for all the main differences between the various H 473 

frequency distribution curves. 474 

Given the importance of this colourgram region to model ChlTOT, considered that it 475 

corresponds to a limited number of H values, we have then verified whether these values 476 

effectively correspond to image pixels pertaining to the parts of pesto sauce where 477 

chlorophylls are still present. To this aim, we have considered two images, one taken on a 478 

sample with a high ChlTOT value (sample K) and another one taken on a sample with a low 479 

ChlTOT value (sample G). For both images the H values were calculated for each pixel, and 480 

only those pixels having H values lying within the selected range were maintained, the 481 

remainder ones being set to black (R=G=B=0). Figure 5 reports the original images (on the 482 

left side) and the reconstructed ones (on the right side) for sample K (a1 and a2) and for 483 

sample G (b1 and b2). It is evident the high difference in the number of selected pixels for the 484 

two samples, which is the quantity that the calibration model correlates to ChlTOT. A more 485 

accurate comparison between the original and the reconstructed images reveals that the 486 

selected pixels essentially correspond to the green particles of the sample. This kind of 487 

representation, in a more explicit manner than Figure 4.b, allows to see what the algorithm 488 

actually considered (as for the contribution of H), and to “resume” the spatial information that 489 

in the colourgram was lost. 490 

In view of possible implementations of the method for quality control in a laboratory 491 

and, after a proper engineering, also on a production line, images like those in Figure 5 give 492 

additional information for the interpretation of results. In addition, these outputs are also 493 

accessible to people not necessarily expert in the technical (chemometric) aspects of the 494 

image elaboration. Moreover, the variables selection process allows a drastic lowering of the 495 

number of informative features extracted by means of the colourgram. This fact suggests that, 496 

once the proper model able to work on a few variables has been developed, it should be 497 
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possible to process each image in a very short time and contemporarily to monitor the 498 

analysed samples in real time. 499 

 500 

4. Conclusions 501 

The information relative to the colour of a sample, codified in the form of a signal 502 

extracted from the RGB image data, allowed to build reliable multivariate calibration models 503 

with several chemical and sensory properties of pesto sauce, which has been chosen as a 504 

benchmark food matrix. Although in this preliminary research work calibration models were 505 

obtained on a relatively small set of samples, satisfactory results were gained for the 506 

properties that mainly contribute to the sample aspect, i.e. the sensory properties GH and YH, 507 

and the chlorophylls and chlorophylls/pheophytins ratio as for the pigments content. 508 

These results suggest the possibility to implement quantitative models in automated 509 

monitoring systems of raw materials, different stages of the manufacture and end products, to 510 

check the sensory quality and the state of preservation, which is reflected into the pigment 511 

amount. 512 

It is important to stress that the application to the colourgrams of algorithms that 513 

perform feature selection allows to extract, from a signal containing a wide range of 514 

potentially useful information, only a small number of useful variables, without specific a 515 

priori assumptions on the types of features to be considered. This implies a great flexibility in 516 

the possible uses, including all applications on any kind of sample having an inhomogeneous 517 

aspect, where a colour-related problem has to be handled. 518 

Considering the continuous improvements of the image data quality and of the 519 

commercially available computational power and data storage capabilities, the possibility to 520 

use raw images at higher resolutions could help in enhancing the quality of the analysed data 521 

and therefore of the calibration models. 522 

Finally, the reported results also suggest possible further developments of this approach, 523 

like the inclusion into the colourgrams of additional information, which could include both 524 

global parameters such as means and/or standard deviations, and also other variables 525 

describing texture-related aspects of the image. 526 

527 



 17 

References 528 

 529 

[1] M.M. Lana, L.M.M. Tijskens, O. van Kooten, J. Food Eng. 77 (2006) 871–879. 530 

[2] P. Jackman, D.W. Sun, P. Allen, J. Food Eng. 96 (2010) 151–165. 531 

[3] P. Jackman, D.W. Sun, C.J. Du, P. Allen, Pattern Recogn. 42 (2009) 751–763. 532 

[4] M. Shafafi Zenoozian, S. Davahastin, J. Food Eng. 90 (2009) 219–227. 533 

[5] S.M.B. Johansen, J.L. Laugesen, T. Janhøj, R.H. Ipsen, M.B. Frøst, Food Qual. Prefer. 19 534 

(2008) 232–246. 535 

[6] C.J. Du, D.W. Sun, P. Jackman, P. Allen, Meat Sci. 80 (2008) 1231–1237. 536 

[7] H. Yu, J.F. MacGregor, Chemom. Intell. Lab. Syst. 67 (2003) 125–144. 537 

[8] S. Garcia-Munoz, D.S. Gierer, Int. J. Pharm.395 (2010) 104–110. 538 

[9] J.M. Prats-Montalban, A. Ferrer, R. Bro, T. Hancewicz, Chemom. Intell. Lab. Syst. 96 539 

(2009) 6–13. 540 

[10] M. Mohebbi, M.R. Akberzadeh-T, F. Shahidi, M. Moussavi, H.B. Ghoddusi, Comp. 541 

Electr. Agric. 69 (2009) 128–134. 542 

[11] C. Zheng, D.W. Sun, L. Zheng, J. Food Eng. 77 (2006) 858–863. 543 

[12] M.R. Chadraratne, S. Samarasinghe, D. Kulasiri, R. Bikerstaffe, J. Food Eng. 77 (2006)  544 

492–499. 545 

[13] J. Qiao, N. Wang, M.O. Ngadi, S.Kazemi, J. Food Eng. 79 (2007) 1065–1070. 546 

[14] A. Borin, M. Flôres Ferrão, C. Mello, L. Cordi, L.C.M. Pataca, N. Durán, R.J. Poppi, 547 

Anal. Bional. Chem. 387 (2007) 1105–1112. 548 

[15] C.A. Acevedo, O. Skurtys, M.E. Young, J. Enrione, F. Pedreschi, F. Osorio, LWT-Food 549 

Sci. Technol. 42 (2009) 1444–1449. 550 

[16] P. Rajbhandari, P.S. Kindstedt, J. Dairy Sci. 88 (2005) 4157–4164. 551 

[17] I. Konopka, W. Kozirok, D. Rotkiewicz, Food Res. Int. 37 (2004) 429–438. 552 

[18] R.A. Quevedo, J.M. Aguilera, F. Pedreschi, Food Bioprocess. Technol. 3 (2010) 637–553 

643. 554 

[19] T. Zhou, A.D. Harrison, R. McKellar, J.C. Young, J. Odumeru, P. Piyasena, X. Lu, D.G. 555 

Mercer, S. Karr, Food Res. Int. 37 (2004) 875–881. 556 

[20] C. Reyes, S.A. Barringer, J. Food Proc. Preserv. 29 (2005) 369–377. 557 

[21] V. Gökmen, H.Z. Şenyuva, B. Dülek, A.E. Cetin, Food Chem. 101 (2007) 791–798. 558 

[22] A. Mateo, F. Soto, J.A: Villarejo, J. Roca-Dorda, F. De la Gandara, A. García, Aquac. 559 

Eng. 35 (2006) 1–13. 560 

[23] F. Pedreschi, J. León, D. Mery, P. Moyano, Food Res. Int. 39 (2006) 1092–1098. 561 

[24] A. Antonelli, M. Cocchi, P. Fava, G. Foca, G.C. Franchini, D. Manzini, A. Ulrici, Anal. 562 

Chim. Acta 515 (2004) 3–13. 563 

[25] T.P. Coultate, Colours, in: Food – The Chemistry of its Components, fourth ed., RCS 564 

Paperbacks, Cambridge, UK, 2002, pp. 175–217. 565 

[26] M. Cocchi, R. Seeber, A. Ulrici, Chemom. Intell. Lab. Syst. 57 (2001) 97–119. 566 

[27] F. Masino, G. Foca, A. Ulrici, L. Arru, A. Antonelli, J. Sci. Food Agr. 88 (8) (2008) 567 

1335–1343. 568 

[28] F. Masino, A. Ulrici, A. Antonelli, Eur. Food Res. Technol. 226 (2008) 569–575. 569 

[29] B. Walczak (Ed.), Wavelets in Chemistry. Elsevier, Amsterdam, 2000. 570 

[30] M. Cocchi, R. Seeber, A. Ulrici, J. Chemometrics 17 (2003) 512–517. 571 

[31] A. Ulrici, M. Cocchi, G. Foca, C. Durante, A. Marchetti, L. Tassi, in: M.P. Colombini, L. 572 

Tassi (Eds.), New trends in analytical, environmental and cultural heritage chemistry, 573 

Research Signpost, Trivandrum, India, 2008, pp. 77–136. 574 

[32] I.G. Chong, C.H. Jun, Chemom. Intell. Lab. Syst. 78 (2005) 103–112. 575 

576 



 18 

Captions to Tables and Figures 577 

 578 

Table 1. List of the  visual attributes, together with the corresponding abbreviations and 579 

ranges. 580 

Table 2. Best calibration results a) from PLS models obtained on Colourgrams matrix and 581 

on reduced matrix, and b) from WILMA models obtained using PLS or MLR as 582 

regression methods on Colourgrams matrix. Grey background indicates the overall 583 

best model for a specific property. A separation between sensory and chemical 584 

variables is highlighted. 585 

 586 

 587 

Figure 1. Plot of the VIP scores of the PLS model on the reduced matrix for the prediction 588 

of WA. 589 

Figure 2.  Green hue (PLS model): a) mean colourgram for training set; b) VIP scores where 590 

the regions that are significant to model GH are highlighted. 591 

Figure 3. Selected signal regions for ChlTOT (WILMA-MLR model): a) original 592 

colourgrams; b) reconstructed signal where the regions significant to model 593 

ChlTOT are highlighted.  594 

Figure 4. Zoom on the selected region n. 1 of Figure 3, corresponding to the frequency 595 

distribution curve of the Hue values. The rectangles plotted with dotted lines 596 

define the property intervals that were selected for the further image 597 

reconstruction. 598 

Figure 5. Examples on K and G samples of image reconstruction for ChlTOT (WILMA-MLR 599 

model). Original sample images (a1 and b1), and corresponding images 600 

reconstructed with selected Hue values (a2 and b2). 601 

602 
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TABLES 603 

 604 

Abbreviation Variable name Range (from 0 to 10) 

GH Green Hue from dull to bright 

YH Yellow Hue from low to high 

BH Brown Hue from low to high 

WA White Amount from low to high 

CH Colour Homogeneity from low to high 

PS Particle Size from fine to coarse 

PR PReference from low to high 

 605 

 606 

Table 1 607 

 608 

609 
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 610 

a) 611 

Variable 

PLS on colourgrams matrix PLS on reduced matrix 

Pretreatment LVs R
2
Cal R

2
CV R

2
Pred Pretreatment LVs R

2
Cal R

2
CV R

2
Pred 

GH D2 2 0.837 0.630 0.781 AUTO 6 0.967 0.843 0.674 
YH SNV 1 0.789 0.522 0.757 AUTO 6 0.976 0.750 0.696 
BH D1+MNCN 3 0.731 0.068 0.527 AUTO 2 0.595 0.281 0.366 
WA D1+MNCN 4 0.909 0.537 0.491 AUTO 3 0.837 0.632 0.683 

CH D1+MNCN 3 0.793 0.064 0.344 AUTO 5 0.853 0.333 0.402 
PS D2 1 0.282 -0.439 0.145 AUTO 6 0.895 -0.289 -0.413 
PR D1 1 0.282 -0.383 0.160 AUTO 6 0.877 -0.145 -1.945 

Car D2+MNCN 1 0.399 0.045 0.467 AUTO 6 0.942 0.481 0.509 
Lut SNV+MNCN 1 0.432 0.020 0.496 AUTO 5 0.908 0.339 0.516 

Chl a D2 2 0.748 0.495 0.650 AUTO 4 0.909 0.290 0.374 
Chl b D1 3 0.916 0.842 0.718 AUTO 1 0.845 0.725 0.732 

ChlTOT D2 6 0.979 0.877 0.733 AUTO 1 0.803 0.567 0.773 
Pht a D2 6 0.879 0.352 0.378 AUTO 5 0.944 0.667 0.665 
Pht b SNV+MNCN 1 0.567 0.273 0.607 AUTO 3 0.786 0.419 0.313 

PhtTOT D1 3 0.662 0.196 0.432 AUTO 5 0.925 0.574 0.641 
Chl/Pht D1 5 0.961 0.817 0.803 AUTO 4 0.972 0.822 0.738 

 612 

b) 613 

Variable 
WILMA-PLS WILMA-MLR 

cfs Wav Lev LVs R
2
Cal R

2
CV R

2
Pred cfs Wav Lev R

2
Cal R

2
CV R

2
Pred 

GH 34 sym6 3 1 0.865 0.765 0.745 4 sym8 1 0.888 0.817 0.777 
YH 117 sym4 3 1 0.822 0.750 0.731 4 sym8 5 0.876 0.720 0.766 
BH 43 sym7 5 3 0.741 0.325 0.554 6 sym4 2 0.599 0.113 -0.391 
WA 20 sym4 9 3 0.901 0.698 0.469 4 sym7 3 0.840 0.697 -0.520 
CH 1 sym7 1 1 0.329 0.078 0.298 3 sym8 5 0.739 0.428 -0.082 
PS 1 sym6 2 1 0.258 0.047 0.239 1 sym6 2 0.258 0.047 0.239 
PR 1 sym7 2 1 0.232 0.011 0.129 1 sym7 2 0.232 0.011 0.129 

Car 767 sym7 3 2 0.790 0.283 0.206 4 sym6 1 0.625 0.327 0.322 
Lut 767 sym7 3 2 0.787 0.306 0.286 2 sym4 0 0.436 0.229 0.509 

Chl a 3 sym5 1 3 0.880 0.678 0.674 3 sym6 1 0.881 0.623 0.713 
Chl b 24 sym5 3 1 0.926 0.892 0.803 1 sym4 2 0.901 0.828 0.802 

ChlTOT 26 sym6 3 6 0.991 0.924 0.839 4 sym6 1 0.970 0.938 0.876 
Pht a 122 sym6 2 1 0.615 0.506 0.627 4 sym7 1 0.702 0.506 0.495 
Pht b 89 sym5 2 1 0.658 0.470 0.627 2 sym5 1 0.579 0.425 0.617 

PhtTOT 150 sym8 2 1 0.602 0.498 0.608 4 sym4 0 0.685 0.478 0.542 

Chl/Pht 13 sym7 12 5 0.972 0.919 0.872 3 sym6 1 0.978 0.935 0.872 
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Figure 3 634 
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