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ABSTRACT

MetalDetector identifies CYS and HIS involved in
transition metal protein binding sites, starting from
sequence alone. A major new feature of release 2.0
is the ability to predict which residues are jointly
involved in the coordination of the same metal ion.
The server is available at http://metaldetector.dsi
.unifi.it/v2.0/.

INTRODUCTION

Metalloproteins are a large and diverse class of proteins
which bind one or more metal ions in their native con-
formation (1). Metal atoms play a wide range of struc-
tural, regulatory or catalytic roles which are critical to
protein function (2). Zinc ions contribute, for instance,
to stabilize the structure of a huge number of transcription
factors such as zinc fingers. Enzymes often employ metal
ions as cofactors in their catalytic sites (3). Metal binding
proteins are implicated in heavy metal toxicity, in
processes such as apoptosis (4), aging (5) and carcinogen-
esis (6). Identifying metal binding sites in novel proteins
can significantly contribute to their functional character-
ization, as well as help in understanding metal-related
malfunctions.
X-ray absorption spectroscopy (HT-XAS) has recently

proved capable of identifying metalloproteins with high
reliability (7,8). However, the specific ligands involved
in binding the metal ion(s) cannot be identified by these
techniques. Bioinformatics tools can significantly contrib-
ute to a detailed annotation of metal binding sites, as well
as in scaling-up to proteome-wide analyses. Motif-based
approaches, relying on regular expression patterns or
Pfam probabilistic models, have been employed (9) for
sequence-based predictions on entire proteomes. The
drawback of these methods is that they cannot identify
novel sites: regular expression patterns tend to be quite
specific but with low coverage (many false negatives),
and Pfam models are limited to known metal-binding
domains. In order to overcome these limitations, a

number of supervised learning techniques [e.g.
(10,11,12)] have been recently developed for predicting
the metal bonding state of all residues in a sequence.
The task consists of discriminating between free and
metal-bonded residues (or disulfide bonded for cysteines).

MetalDetector (13) predicts metal-bonding state of
CYS and HIS residues, focusing on transition metals,
heme and Fe/S groups as candidate heterogens. The
system has been active since April 2008 and has served
roughly 10 000 queries so far. It was recently (8)
employed in combination with HT-XAS in order to
identify putative metal binding sites in a large set of
protein targets generated within the Protein Structure
Initiative (http://www.structuralgenomics.org).

Identification of binding sites geometry is the main new
feature of release 2.0 presented in this article. The task
consists in predicting the number of ions binding the
protein together to their respective sets of ligands in the
sequence. Figure 1 shows an example of a protein kinase C
cystein-rich domain (PDB entry 1tbn). It highlights the 3D
structure of the binding sites (top) and a graph-based rep-
resentation of the input sequence together to the desired
output (bottom). These predictions can have a significant
impact in a number of tasks, including: detailed functional
annotation of experimentally unsolved proteins, e.g. char-
acterization of active sites in enzymes, many of which
employ metal ions as cofactors (3); experimental determin-
ation of new metalloproteins, as the prediction of metal
binding sites can guide the preparation of samples for
in vitro studies (7).

There exist several web servers for metal-binding sites
prediction. DiANNA (10) predicts cysteine-bonding states
only, while it is not able to reconstruct metal-binding site
geometry; MetSite (14) identifies sites using sequence
profile information in combination with approximate
structural data coming from low-resolution (or predicted)
models; FINDSITE-metal (15) predicts metal-binding
sites from evolutionarily related templates detected by
threading; Feature (16) identifies zinc-binding sites for
proteins whose 3D structure is given. The applicability
of these web servers is thus limited to structurally
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determined proteins, or proteins for which a reasonable
3D model can be derived. SeqCHED (17) is a recently
developed server predicting metal binding geometry from
protein sequence, which relies on remote homology detec-
tion to create a structural model of the target protein, over
which the original CHED (18) structure-based algorithm
is applied. It thus cannot predict metal binding sites
for proteins having novel folds. Similar limitations hold
for the up-mentioned pattern-based or domain-based
approaches. MetalDetector2 is the first server capable of
predicting metal binding geometry for novel folds starting
from sequence information alone.

MATERIALS AND METHODS

Overview

There are two crucial aspects concerning prediction
of metal binding geometry. First, the number of admis-
sible configurations can be extremely large. For a pro-
tein chain with n CYS and HIS (candidate ligands),
m ions and ki ligands for the i-th ion, the number of
configurations is the multinomial coefficient
n!=k1!k2! � � � km!ðn� k1 � � � � � kmÞ!. In practice, each ion
is coordinated by a variable number of ligands (typically
ranging from 1 to 4, but occasionally more), and each
protein chain binds a variable number of ions (typically
ranging from 1 to 4). Assuming n=12, m=2 and ki=4
(like in the small example shown in Figure 1), we obtain
831 600 alternative configurations. We are not considering
the rare exceptions in which a CYS or HIS residue can
bind multiple ions (in the December 2009 release of PDB,
only 0.9% HIS and 1.6% CYS are found to be within 3 Å
of two different ions). This assumption allows us to
develop an efficient polynomial-time algorithm (19) for
geometry prediction. To reduce the output search space
and improve accuracy, we limit the maximum number of
ions to 4 (covering 97% of known transition metal sites in
current PDB). The second key aspect of the task is that the
participation of a residue to a metal binding site should
not be predicted independently from the other residues:
interdependencies between candidates should be taken
into account to form a collective prediction. These
aspects strongly suggest solutions based on structured-
output learning (20). This recent research field aims at
generalizing learning algorithms, traditionally developed
for classification or regression tasks, to predict outputs
consisting of complex structures [like the one shown in
Figure 1c].

In MetalDetector2, identification of binding geometry is
decomposed into two cascaded subtasks. The initial task
consists of assigning bonding state to every CYS and HIS
in two states (positive cases are metal-binding residues,
negative cases are the rest, including half-cystines, i.e. cyst-
eines forming disulfide bridges). The second task consists
of grouping together metal-binding CYS and HIS, assign-
ing them a conventional metal-ion identifier. This process
is illustrated in Figure 1. Identification of the involved
chemical element is not attempted.

The server uses a combination of different machine
learning algorithms. The overall operation flow is shown
in Figure 2.

Bonding state identification

This was the only functionality of MetalDetector1 (13)
and the first stage of prediction in MetalDetector2. In
Refs (11,13), we used a bidirectional recurrent neural
network and Viterbi decoding with a simple probabilistic
automaton to refine local predictions and obtain a collect-
ive assignment. In MetalDetector1, it was important
to train the predictor including examples of non-
metalloproteins and chains rich in disulfide bridges
(since otherwise metal-binding CYS and half-cystines
could be easily confused). When the input chain is not
known to be a metalloprotein, we still rely on
MetalDetector1 for prediction (Figure 2). On the other
hand, if the input chain is known to be a metalloprotein
(users can select a checkbox in the web interface to
indicate this knowledge), then half-cystines are rare
<3% and better accuracy can be obtained by training
on metalloproteins only. In this case, half-cystines are
not predicted and we solve the supervised sequence
labeling task using SVM-HMM (20), a model that can
be essentially interpreted as a hidden Markov model
with discriminatively learned parameters, and that collect-
ively assigns bonding state to all CYS and HIS in the
sequence. The SVM-HMM sequence is the subsequence
containing CYS and HIS only and observations (emis-
sions) for each position include vectors of multiple align-
ment profiles among other features. Preliminary
experiments showed that performance difference between
MetalDetector1 and SVM-HMM is negligible under the
same experimental conditions, while the latter is much
simpler to train and engineer. Notably, knowing that a

(a)

(b)

(c)

Figure 1. Metal binding prediction subtasks. (a): given sequence;
(b) candidate ligands (CYS and HIS) are assigned bonding state
(boldface for metal binding); (c) metal-binding residues are grouped
to form binding site configurations.
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protein binds metal simplifies the prediction task by
reducing the space of candidate outputs, resulting in
better prediction accuracy on average.

Binding geometry identification

The core and novel feature in MetalDetector2 takes as
input a protein chain and a (predicted) bonding state as-
signment and predicts binding geometry. This task is
formalized as a link prediction in a bipartite graph,
where a ligand node is connected to an ion node if and
only if the residue coordinates that ion. In order to solve
the structured-output learning problem, we introduce a
function F(x, y) measuring the ‘compatibility’ between
the input information x (sequence and bonding state as-
signment) and every admissible binding geometry y. The
function is a linear combination of features of both x
and y. The difficulty in this learning task is the inference
step where F must be maximized with respect to y (in
general, this is a hard combinatorial optimization
problem). It turns out that under relatively mild assump-
tions, namely that every CYS or HIS coordinates at most
one metal ion, there exists an optimal greedy algorithm
that can identify very efficiently the binding configuration
y that maximizes F—see Ref. (19) for details. Features of
x and y required to construct F are defined by means of a
kernel function that defines the similarity between two
chains. The kernel takes into account several sources of
information, including the coordination pattern of each
(predicted) site and multiple alignment profiles.

THE WEB SERVER INTERFACE

Input

The input sequence can be entered either as a plain
aminoacid string or in FASTA format. The web interface
allows to choose between three different settings,

corresponding to the three different paths in Figure 2:
(i) no prior knowlegde (default operation mode); (ii) the
chain is known to belong to a metalloprotein; (iii) the
chain is known to belong to a metalloprotein, and
the user can also provide (a guess for) the bonding state
of each CYS and HIS. Note that checking in the web
interface that a chain is known to bind metal is a form
of positive evidence (i.e. not checking it means ignorance,
not negative evidence). This knowledge can be obtained,
for example, if the protein was annotated as a
metalloprotein via HT-XAS (7,8).

Output

Output is either presented on a separate web page or de-
livered by via e-mail. It consists of a table having an entry
for each CYS and HIS, with the indication of its position
within the sequence, its predicted bonding state and, if the
residue was predicted as metal bonded, the assigned metal
ion identifier. Residues predicted to coordinate the same
ion will share the same identifier. Every identifier is an
integer ranging from 1 to 4 (maximum number of
binding sites that can be predicted). Its value has no
special biochemical semantics but lower values corres-
ponds to a higher level of confidence for the predictor,
as the greedy algorithm first builds sites where it is more
confident. Figure 3 shows a web browser output for PDB
entry 1t3qA.

RESULTS AND DISCUSSION

We evaluated performance according to several measures:

. precision (PB) and recall (RB) of residue bonding state;
precision is the ratio of true positives by the total
number of residues predicted in metal-bonding state;
recall or sensitivity is the ratio of true positives by the
total number of metal-binding residues;

. precision (PE) and recall (RE) of (ligand prediction, i.e.
assignment of a residue to a metal ion. As we are not
trying to predict ions of the chemical elements but to
correctly group together ligands of the same ion,
equivalence classes due to arbitrary reordering of ion
identifiers are taken into account. In Figure 1, for
instance, the correct labeling is {(3,33,36,52),
(16,19,41,44)}. A prediction like {(16,19,41,52),
(33,35,36)} would contain five out of seven correct as-
signments, while the true overall number of ligands is
eight, giving PE=5/7 and RE=5/8. Note that the
measure also accounts for residues predicted as
non-metal-binding, like 3 or 44, and non-ligands pre-
dicted as metal binding, like 35. The former negatively
affect recall, the latter precision.

. true-positive hit rate (HT) and false-positive hit rate
(HF) where a hit is counted whenever the intersection
between a predicted and a true site is non-empty: HT

is, therefore, the fraction of sites having at least one
correctly identified ligand, and HF is the fraction of
predicted sites having no correctly identified residues.

The server was tested on three distinct data sets, accord-
ing to the different criteria for redundancy elimination.

Bonding state predictor
(SVM-HMM)

Site geometry
predictor

(structured-output SVM 
with greedy inference)

Known to be a 
metalloprotein?

Metaldetector v1.0
(SVM/RNN cascade)

No

Yes

Bonding state 
known?

No

Yes

(c)

(b)

(a)

Figure 2. Schematic diagram of methods in MetalDetector v2.0.
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(All the data sets are available online at in the server
website Supplementary Data). The first data set was
obtained starting from the one in Ref. (11), where
redundacy between sequences was removed using
UniqueProt (21). the 199 metal-binding chains were
collected from that data set, after removing sites contain-
ing residues different from CYS/HIS, or with a coordin-
ation number greater than four. Results in the first row of
Table 1 are averages of 30 different train/test random
splits, always in a ratio of 80/20. When starting from
known bonding state, the predictor achieves on this data
PE=RE=90±3. We finally measured accuracy in the
metalloprotein prediction task (i.e. classifying the whole
sequence as metalloprotein or not), on the whole data set
in Ref. (11): MetalDetector v2.0 correctly predicted as
metalloproteins 65% of the ones in this data set, and as
non-metalloproteins 96% of the 2362 chains having no
metal-bonded CYS/HIS.

The second data set was built according to the
Structural Classification of Proteins (SCOP) hierarchy
(22): the goal here was to test the predictor on new (i.e.
not seen during the training phase) SCOP folds/
superfamilies. We started from the December 2009
release of PDB, extracting 17 783 protein chains with at
least a CYS or HIS bonded to a metal ion, and we retained
only those chains which were mapped in SCOP 1.75
release (June 2009). After removing very few cases of
chains bonded to more than five ions, we finally

obtained a sequence-unique data set of 1 824 protein
chains by running CD-HIT v4.0 (23) with sequence
identity threshold set to 0.9 (default value).
Using this second data set, we partitioned the chains in

10 different subsets, maintaining the same average per-
centage of ligands in each subset, and allowing no pair
of chains in different subsets to belong to the same
SCOP superfamily. In a second version of this data set,
we considered SCOP folds instead of superfamilies, and
we therefore had to discard multi domain chains, as
building the partition would have been otherwise unfeas-
ible: this version of the data set was therefore reduced to
1466 chains. We trained 10 different models, using 9 of the
subsets as the training set and the remaining subset as
the test set. Results are summarized in the second and
the third row in Table 1. Performance measures are
averaged on the 10 splits.
The predictor available on the web server was trained

on the whole SCOP-based data set. As a final test, we
extracted 549 metal-bonded chains from PDB entries de-
posited in 2010 (after removing duplicates). Performance
of the web server on this data set is reported in the fourth
row of Table 1. Results in this setting are comparable to
those obtained on the SCOP-based data sets.
In the Supplementary Data, we show the breakdown of

prediction performance according to the number of
coordinating ligands per ion. These results indicate that
in the majority of cases MetalDetector2 is capable of

Figure 3. Output of the predictor for PDB entry 1t3qA.

Table 1. Evaluation of MetalDetector2

Data set Size PB RB PE RE HT HF

UniqueProt 199 79±4 88±4 68±4 74±4 93±4 10±3
SCOP-folds 1824 62±5 71±10 61±6 57±7 70±9 19±4
SCOP-superfamilies 1466 60±4 74±10 56±6 60±10 74±10 22±5
PDB 2010 549 60 75 50 62 77 20
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identifying most of the binding site: in PDB 2010 data set,
for example, among the 268 sites having 2 coordinating
residues, MetalDetector2 correctly identifies both residues
in 41.6% of the cases and one of the two 42.0% of the
times. In 65 and 62% of the cases, the server misses at
most one ligand in the sites with three and four
coordinating residues, respectively. Concerning precision,
at least half of the returned candidates actually belong to
the site on average.

CONCLUSION

This release of MetalDetector adds an important feature
to metalloproteins prediction, namely the ability to
identify the number of binding sites and the involved
CYS and HIS ligands. Unlike existing servers that can
perform this task, MetalDetector does not rely on 3D
structure similarity and can predict binding sites of
proteins in novel folds.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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