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a b s t r a c t

We study the Fisher information (FI) matrix of Markov switching vector autoregressive
moving average (MS VARMA) models and derive an explicit expression in closed form for
the asymptotic FI matrix of the underlying model. Our result is more general than the
available one in the literature for linear VARMA models, which has been recently studied
in Bao and Hua (2014), in two respects. First, we treat the variance of the error term in a
more general setting rather than considering it as a nuisance parameter. Then, we consider
non-trivial intercept in the MS VARMAmodel. Under general conditions, the asymptotic FI
matrix can be used to derive the asymptotic covariance matrix of the Gaussian maximum
likelihood estimator of the model parameters. Some examples and numerical applications
illustrate the results.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction and motivations

Markov switching vector autoregressive moving average (MS VARMA) models have been extensively used in statistics
and economics to model nonlinear multivariate time series. For information concerning the stationarity, estimation, and
consistency of such models, along with other statistical inference procedures, we refer to [2,5,8,10,11,23,29]. See also [3],
where explicit matrix expressions for the maximum likelihood (ML) estimator of the parameters in MS VAR(CH) models
have been derived, and [27] for a recent application of structural vector autoregressive models with Markov switching to
the financial crisis. Higher-order moments of MS VARMA models are provided in [4].

As stated in [23, Section 6.6.2], it is often impractical to evaluate analytically the asymptotic covariancematrix of a generic
MS VAR model. In this paper we study the Fisher information (FI) matrix of MS VARMA models and derive a closed form
expression for the asymptotic FImatrix by using appropriate techniques frommatrix calculus. Invoking standard asymptotic
theory (see, e.g., [11, Section 21], [23, Section 6.6.2], and [24, Section C.4]), one can use the inverse of such a matrix as the
asymptotic covariance matrix of the Gaussian ML estimator of the model parameters.

Our result is more general than what is available in the literature for linear VARMA models, which was recently studied
in [1], in two respects. First, we treat the variance of the error term in a more general setting rather than considering it as a
nuisance parameter. Then, we consider the case of a non-trivial intercept in the MS VARMA model.
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Despite the increasing interest in multivariate Markov switching processes, an explicit matrix expression for the
asymptotic covariance matrix of the ML estimators of MS VARMA models has heretofore not been provided, at least so far
as we know. Asymptotic properties of the ML estimator for MS VARmodels have been studied in [2,5], even for continuous-
valued switching processes, but the expression of the limiting covariance of theML estimator has a rather complicated form;
see the proof of Lemma 1 in [2] and Theorem 3 in [5]. An algorithm was provided in [26] for computing the asymptotic FI
matrix of a VARMA process at the scalar-level. It is based on a frequency domain representation of the FI matrix, known as
Whittle’s formula. That approach has been generalized and put in matrix-level form in a series of papers due to Klein, Spreij
and Mélard who have been working on algorithms for inverting asymptotic and exact FI matrices for many years. See [16,
18,20,21] for the asymptotic and exact FI matrices of a VARMA process. These authors then extend the proposedmethods to
the class of stationary vector autoregressive moving average processes with exogenous or input variables, called VARMAX
models. See [17,22] on the inversion of the exact FI matrix for VARMAX processes. The algorithm described in the latter
paper is composed of Chandrasekhar recursion equations at a vector–matrix level, and some of these recursions consist
of derivatives based on appropriate differential rules applied to a state space representation of the underlying model. For
the asymptotic properties of the ML estimator of the coefficients of VARMAX models, see [12]. Further recursive filtering
methods for computing asymptotic and exact FI matrices for a Gaussian VARMA model expressed in state space form have
been developed in [19,30]. Finally, [28] studies the FI matrix estimation in generalized linear mixed models.

Our main contributions are as follows. First, we use recursion equations at a vector–matrix level instead of writing re-
cursions for each element of the FI matrix. For this purpose, we apply matrix differential rules from [7,25], and use the
recursive filter and smoother algorithms for computing the full-sample conditioned regime probabilities as described in
[23, Section 5.2]. We also consider the underlying model in wider generality through changes in regime and non-trivial in-
tercept, and the variance of the error term is treated as an unknown parameter. Moreover, our matrix expressions improve
computational performance since they are readily programmable and greatly reduce the computational cost.

The matrix formulas we obtain are useful for statistical inference of MS VARMA models. To show their applicability, we
consider a testing hypothesis problem (e.g., Wald test) and perform the test using the asymptotic covariance matrix of the
ML estimator of the unknown parameters involved in a MS VARMAmodel. Also, via a numerical study we use the results to
construct asymptotic confidence intervals for the unknown parameters of a certain MS VARMA model.

The paper is organized as follows. In Section 2 we introduce the model, give some preliminaries and notations, and
formulate the main result concerning the closed form expression for the asymptotic FI matrix of an MS VARMA model.
The proof of the main theorem is given in Appendix A. Section 3 provides some examples and Section 4 illustrates the
computation of the asymptotic FI matrix via numerical simulation (the obtained expressions are given in Appendix B).
We also consider a testing hypothesis problem and the construction of asymptotic confidence intervals for the unknown
parameters of a 2-state bivariate ARMA(1, 1) model. Section 5 concludes with remarks. For the basic identities and results
on matrix calculus the reader is referred to [7,25].

2. Main result

Consider the M-state Markov switching K -dimensional ARMA(p, q) model

yt −

p
i=1

8st ,iyt−i = νst + ut −

q
j=1

2st ,jut−j, (1)

where yt is a random vector with values in RK , νst is a K × 1 real state-dependent vector, and 8st ,i and 2st ,j are K × K real
state-dependent matrices (8st ,p ≠ 0 and 2st ,q ≠ 0, where 0 denotes the null matrix).

Assumption 1. The process (st) is an irreducible, aperiodic and ergodic Markov chain with finite space Ξ = {1, . . . ,M},
stationary transition probabilities pij = Pr(st = j|st−1 = i) and unconditional (or steady-state) probabilities πi = Pr(st = i)
for all i, j ∈ {1, . . . ,M}.

Collect the transition probabilities pij in anM × M matrix P, known as the transition probability matrix. To allow for the
possibility of change in variance, we assume that ut = 6st ϵt , where 6st is a K × K real state-dependent matrix and (ϵt) is
a stationary and ergodic sequence of K -dimensional centered and uncorrelated variables with E(ϵtϵ⊤

t ) = IK (here IK is the
K × K identity matrix).

Assumption 2. The innovation (ϵt) is independent of (st), and (yt) is second-order stationary, i.e., it satisfies Theorem 2
from [8].

Since (st , ϵt) is an ergodic process, the MS VARMA is also ergodic. So, for instance, the ergodic theorem could be used to
obtain the asymptotic variance of the ML estimator. Using the lag operator L, such that Ljyt = yt−j, model (1) can be written
as

8st (L)yt = νst + 2st (L)ut , (2)
where 8st (L) = IK −

p
i=1 8st ,iL

i and 2st (L) = IK −
q

j=1 Θst ,jL
j. Let 8m(L) and 2m(L) be the matrix lag polynomials

obtained by replacing st by m in the definition of 8st (L) and 2st (L), respectively.
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Assumption 3. Given st = m, 8m(L) and 2m(L) have no common roots, and model (2) is casual and invertible, for all
m ∈ {1, . . . ,M}, i.e., det8m(z) ≠ 0 and det2m(z) ≠ 0, for all z ∈ C such that |z| ≤ 1 + ϵ, for some ϵ > 0.

Notice that the above model is far more general than a linear VARMA model, as recently studied in [1]. First, we allow
changes in regime and the linear model is just a particular case. Second, we treat the variance of the error term in a more
general setting rather than considering it as a nuisance parameter. Finally, we consider the case of non-trivial intercept.

Now we reparametrize model (2) by using absolutely summable sequences of matrices. Then we have

ut = Am(L)yt − 2−1
m (1)νm, yt = Bm(L)ut + 8−1

m (1)νm, (3)

where Am(L) = 2−1
m (L)8m(L) and Bm(L) = 8−1

m (L)2m(L), for all m ∈ {1, . . . ,M}. The matrix functions Am(z) and Bm(z)
can be determined by expanding 2−1

m (z)8m(z) and 8−1
m (z)2m(z) into power series over some open region containing the

complex unit disk and equating the matrix coefficients. We can set Am(L) =


∞

ℓ=0 AmℓLℓ and Bm(L) =


∞

ℓ=0 BmℓLℓ, where
the matrix sequences (Amℓ)ℓ and (Bmℓ)ℓ are absolutely (and also square) summable in a component-by-component sense;
see, e.g., [14]. We also write

2−1
m (L) =

∞
ℓ=0

9mℓLℓ (4)

for an absolutely summable sequence (9mℓ)ℓ. Following [11, Section 10], the matrices 9mℓ can be evaluated by requiring

(IK − 2m1L1 − 2m2L2 − · · · − 2mqLq)(IK + 9m1L1 + 9m2L2 + · · ·) = IK .

Setting the coefficient of Lℓ equal to zero produces

9mℓ = 2m19m,ℓ−1 + 2m29m,ℓ−2 + · · · + 2mq9m,ℓ−q (5)

for all ℓ ∈ {1, 2, . . .} with 9mℓ = 0 for ℓ < 0 and 9m0 = IK .
Denote, as usual, by 0y(h) = cov(yt , yt−h) the autocovariance function of the process y = (yt) driven by (1). An explicit

computation of 0y(h) was given in [8, Section 4]. Define

γm =

(vec8m1)

⊤
· · · (vec8mp)

⊤
⊤

, σm = vec�−1
m ,

δm =

(vec2m1)

⊤
· · · (vec2mq)

⊤
⊤

, αm =

ν⊤

m γ⊤

m δ⊤

m

⊤
,

where �m = 6mΣ⊤

m , for all m ∈ {1, . . . ,M}. Then γm is (pK 2) × 1, δm is (qK 2) × 1, σm is K 2
× 1, and αm is b × 1, where

b = K+(p+q)K 2. Set θm = (α⊤
m σ⊤

m)⊤. Collect θm into a vector θ, i.e., θ = (θ⊤

1 · · · θ⊤

M)⊤. Letρ = (p11 · · · p1M · · · pM1 · · · pMM)⊤

be the M2
× 1 vector of transition probabilities. Then λ = (θ⊤ ρ⊤)⊤ is the parameter vector of model (1). Under quite

general regularity conditions (such as identifiability, stability and the fact that the true parameter vector does not fall
on the boundaries, which we assume here), a ML estimator λ̂ for λ is consistent and asymptotically normal; see [2,5],
[23, Section 6.6.2], [24, Section C.4]. Then

√
T (λ̂ − λ)  N (0, F −1

a (λ)), where Fa(λ) is the asymptotic FI matrix.
The Gaussian conditional density of (yt) in (1) given st = m and Yt−1 = {yt−1, yt−2, . . .} is

ηm,t(θ) = p(yt |st = m, Yt−1; θ) =
1

(2π)K/2|�m|1/2
exp


−

1
2
u⊤

t �−1
m ut


.

As proved in [23, Eq. (6.8)], the derivative of the log-likelihood function L(λ) with respect to θ for a K -dimensional time
series y1, . . . , yT of length T (sample size), generated by model (1), is

∂L(λ)

∂θ
=

T
t=1

M
m=1

∂ ln ηmt(θ)

∂θ
ξmt|T ,

where

ln ηmt(θ) = −
K
2
ln(2π) −

1
2
ln |�m| −

1
2
u⊤

t �−1
m ut .

Here ξmt|T = E(ξmt |YT ) are the smoothed regime probabilities and YT = {y1, . . . , yT } is the information set. Furthermore,
ξt = (ξ1t · · · ξMt)

⊤ is the random M × 1 vector whose mth element is equal to unity if st = m and zero otherwise. Note
that E(ξt) = E(ξt|T ) = π = (π1 · · · πM)⊤, where ξt|T = (ξ1t|T · · · ξMt|T )

⊤. A fast recursive algorithm to evaluate ξmt|T was
described in [23, Section 5]. See also [11, Eqs. (22.4.5), (22.4.6) and (22.4.14)]. More precisely, let ηt = ηt(θ) denote the
M ×1 vector of the densities of yt conditional on st and Yt−1, i.e., ηt = (η1t(θ) · · · ηMt(θ)). The filter inference ξt|t = E(ξt |Yt)
can be computed by iterating on the following pair of recursive formulas

ξt|t =
ηt ⊙ ξt|t−1

η⊤
t ξt|t−1

, ξt+1|t = P⊤ξt|t ,
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where the symbol ⊙ denotes the element-by-element multiplication. The iteration is started by assuming that the initial
state vector is drawn from the stationary unconditional probability distribution of the Markov chain, i.e., ξ1|0 = π. Finally,
the full-sample smoothed regime probabilities ξt|T can be found by iterating backward from t = T − 1, . . . , 1 by starting
from the last output ξT |T of the filter using the formula

ξt|T = {P(ξt+1|T (÷)ξt+1|t)} ⊙ ξt|t ,

where the symbol (÷) denotes the element-by-element division. For model (1), set

xt = (y⊤

t−1 · · · y⊤

t−p)
⊤

∈ RpK , wmt = (z⊤

m,t−1 · · · z⊤

m,t−q)
⊤

∈ RqK

where zm,t−j = 8m(L)yt−j − νm for all j ∈ {1, . . . , q} andm =∈ {1, . . . ,M}. Then we have the following result, whose proof
is given in Appendix A.

Main theorem. Under Assumptions 1–3, the partitioned form of the mth asymptotic Fisher information matrix Fa(θm) for
theMS VARMAmodel (1) has the following blocks pertaining to αm and σm:

Fa(θm) =


Fa(αm) 0⊤

0 Fa(σm)


,

where

Fa(σm) =
πm

2
(�m ⊗ �m). (6)

The block matrix Fa(αm) is

Fa(αm) =

 Fa(νm) Fa(γm, νm)⊤ 0⊤

Fa(γm, νm) Fa(γm) Fa(δm, γm)⊤

0 Fa(δm, γm) Fa(δm)

 .

The diagonal blocks are

Fa(νm) = πm2−1
m (1)⊤�−1

m 2−1
m (1), (7)

Fa(γm) =

∞
ℓ,n≥0

(9⊤

mℓ�
−1
m 9mn) ⊗ Qm(ℓ, n), (8)

Fa(δm) =

∞
ℓ,n,h,k≥0

(9mℓ�
−1
m 9⊤

mh) ⊗ {(Iq ⊗ 9mn)Rm(ℓ + n, h + k)(Iq ⊗ 9⊤

mk)}, (9)

where Qm(ℓ, n) = E(xt−ℓx⊤
t−nξmt|T ) and Rm(ℓ, n) = E(wm,t−ℓw⊤

m,t−nξmt|T ). The cross components are

Fa(γm, νm) =

∞
ℓ=0

{9⊤

mℓ�
−1
m 2−1

m (1)} ⊗ E(xt−ℓξmt|T ), (10)

Fa(δm, γm) = −

∞
ℓ,n,r≥0

(9mr�
−1
m 9mℓ) ⊗ {(Iq ⊗ 9mn)E(wm,t−r−nx⊤

t−ℓξmt|T )}. (11)

The matrix coefficients 9mℓ can be computed by the recursive expression in (5) and the smoothed regime probabilities ξmt|T are
derived by the smoothing algorithm described in this section.

For practical inference purposes, expectations and infinite series in the above statement can be approximated by sample
means and summations up to orderN , respectively, for T (sample size) andN sufficiently large. Thematrices9mℓ are replaced
by their ML estimates9mℓ which can be obtained from the recurrence formula in (5) by using the ML estimates 2mj of 2mj

for all j ∈ {1, . . . , q}. Of course, we replace�−1
m by its ML estimate. This gives a convenient plug-in approach to approximate

the blockmatrices above. Recall that [10] introduced an EM algorithm for obtainingML estimates of parameters for discrete-
valuedMarkov switching processes. The simplicity of the EMalgorithmpermits potential application of the approach to large
vector systems. Further developments related to this algorithm have been recently proposed in [3]. Now the asymptotic
covariance matrix of the Gaussian ML estimatorθm of θm is given by

vara(θm) =
1
T


Fa(αm)−1 0

0⊤ Fa(σm)−1


.

Let us consider a constraint of the form Rθm = r, with rank (R) = r , involving the coefficients of the MS VARMA
at the regime st = m. The Wald test has an asymptotic χ2 distribution with r degrees of freedom, i.e., χ2

r = (Rθm −
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r)⊤{R vara(θm)R⊤
}
−1(Rθm−r). Letθmi andvmi denote the ith component ofθm and the ith element on the principal diagonal

of vara(θm), respectively. The sample standard error ofθmi is given by s.e.(θmi) =
√vmi, and the 95% confidence interval for

the true parameter value θmi isθmi ± 1.96
√vmi. A classical procedure to test a null hypothesis θmi = 0 can be performed

by using the t-statistic t =θmi/
√vmi. Section 4 is devoted to illustrate such procedures via numerical evaluation. Note that

∂2L(λ)/∂θm∂θ⊤

n = 0 for every m, n ∈ {1, . . . ,M} with m ≠ n. So, as done above, we can always consider the asymptotic
Fisher information matrix of parameters θm in each component, separately, that is, Fa(θ) = diag{Fa(θ1), . . . , Fa(θM)}.

Finally, note that a path dependence problem occurs for the case of an MS VARMA model because an unobservable
variable at date t (the lagged error term in VARMA models or the lagged conditional variance in GARCH models) depends
on the entire path of states that have been followed until that date. This is an estimation problem, but it will not affect
our results because the FI matrix is derived analytically, not involving practical estimation problems. However, when one
estimates the FI matrix, an approximation will be made as, for example, the usual Kim approximation proposed in [15].

3. Some examples

Example 3.1 (MS VAR(p) models). Suppose p ≥ 1. In this case, we have 2m(L) = IK and δm = 0 for every m ∈ {1, . . . ,M}.
Then θm = (ν⊤

mγ⊤
mσ⊤

m)⊤. The asymptotic FI matrix Fa(θm) reduces to the symmetric block matrix

Fa(θm) =

 Fa(νm) Fa(γm, νm)⊤ 0⊤

Fa(γm, νm) Fa(γm) 0⊤

0 0 Fa(σm)

 ,

where Fa(σm) is given in (6). From (7), (8) and (10) it follows that

Fa(νm) = πm�−1
m , Fa(γm) = �−1

m ⊗ E(xtx⊤

t ξmt|T ), Fa(γm, νm) = �−1
m ⊗ E(xtξmt|T ).

These formulas extend those given in Proposition 11.1 from [11], caseM = 1, and are simpler than the existing expressions
which involve integration over the frequency domain as in [2,5]. The inverse matrix of Fa(θm) can be derived using
Woodbury’s formula. In particular, if νm = 0, then vara(γm) = �m ⊗ Q−1

m , where Qm = E(xtx⊤
t ξmt|T ), form = 1, . . . ,M .

Example 3.2 (MS VMA(q) models). Suppose q ≥ 1. In this case, we have 8m(L) = IK and γm = 0 for every m ∈

{1, . . . ,M}. Then θm = (ν⊤
mδ⊤

mσ⊤
m)⊤. The asymptotic FI matrix Fa(θm) reduces to the diagonal block matrix Fa(θm) =

diag{Fa(νm), Fa(δm), Fa(σm)}, whose entries are given by (6), (7) and (9) in that order. For these models, the components
ofwm,t are zm,t−j = yt−j − νm for all j ∈ {1, . . . , q}.

4. A numerical illustration

In this section some numerical results are displayed for an MS VARMA process such that M = K = 2 and p = q = 1,
i.e., a 2-state bivariate ARMA(1, 1) model, viz

yt − 8st yt−1 = νst + ut − 2stut−1, ut ∼ NID(0, �st ),

where

νst =


−0.6(st − 2)
−0.1st + 0.4


, 8st =


0.6(st − 1) 0.4

−0.3(st − 2) −0.9st + 2.1


,

2st =


−0.9(st − 2) 0.1st
0.1(st + 1) 0.8(st − 1)


,

�st =


0.2st −0.3st + 0.7

−0.3st + 0.7 −3.3st + 7.8


,

and st ∈ {1, 2}. The transition probability matrix is

P =


p11 1 − p11

1 − p22 p22


,

where p11 = 0.2 and p22 = 0.7. The unconditional probabilities are π1 = 0.2727 and π2 = 0.7273. For m ∈ {1, 2}, we set
γm = vec8m, δm = vec2m and σm = vec�−1

m . The parameter vector θm = (α⊤
m σ⊤

m)⊤ is 14 × 1, where αm = (ν⊤
m γ⊤

m δ⊤

m)⊤

is 10 × 1. The basic assumption that the eigenvalues of 2st are less than 1 in modulus is fulfilled because its spectral radius
is 0.9744 − 0.0527st .

We generate T = 1000 observations of ut by using Gaussian deviates with zero mean and variance �st . Then the process
yt is obtained from the abovemodel by using true parameters. A partitioned formof the asymptotic FImatrix is considered in
Appendix B. The latter is evaluated at the ML estimates of true parameters by using the matrix expressions in the statement
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of the main theorem. Note that the summations in Eqs. (8)–(11) are taken up to order N = 100. The matrix coefficients in
(4) for this example are given by 9mℓ = 2ℓ

m, for each m ∈ {1, 2} and ℓ ≥ 0 (here we set 2ℓ
m = I2 for ℓ = 0).

Now we consider a testing hypothesis problem and show how the results can be used to perform the test using the
asymptotic covariance matrix of the ML estimator. Let the null hypothesis be vm = 0, where vm = (ν⊤

m 0 · · · 0)⊤ is 10 × 1,
for a fixed m ∈ {1, 2}. The Wald test has an asymptotic χ2 distribution with 2 degrees of freedom whose 95% critical value
is 0.103. Sincev⊤

m vara(αm)vm is 0.116 (resp. 0.004) for m = 1 (resp. m = 2), we reject (resp. accept) the null hypothesis
that the mth intercept is zero. Let us consider the null hypothesis rm = 0, where rm = (0 0 γ⊤

m 0 0 0 0)⊤ is 10 × 1. The
95% critical value for the χ2 distribution with 4 degrees of freedom is 0.711. Sincer⊤m vara(αm)rm is 46.73 (resp. 10.91) for
m = 1 (resp.m = 2), we reject the null hypothesis.

Finally, we use the results to construct asymptotic confidence intervals for the unknown parameters of the MS VARMA
model. The sample standard error of the (1, 1) element ν11 of ν1 is s.e.(ν11) =

√
0.0203 = 0.1425, whereν11 = 0.7210 is

the ML estimator of ν11. Then the 95% confidence interval for the true parameter value ν11 = 0.6 isν11 ± 1.96s.e.(ν11) =

0.7210 ± 0.2793, i.e., [0.4417, 1.0003]. The sample standard error of the element φ2,12 (resp. θ2,22) of 82 (resp. 22) iss.e.(φ2,12) =
√
0.0101 = 0.1005 (resp. s.e.(θ2,22) =

√
0.0672 = 0.2592), whereφ2,12 = 0.35 (resp.θ2,22 = 0.78). Then

the 95% confidence interval for the true parameter φ2,12 = 0.4 (resp. θ2,22 = 0.8) isφ2,12 ± 1.96s.e.(φ2,12) = 0.35± 0.1969
(resp.θ2,22 ± 1.96s.e.(θ2,22) = 0.78 ± 0.5080), i.e., [0.153, 0.547] (resp. [0.272; 1.288]).

5. Conclusions

In this paper we derived a closed form expression for the asymptotic FI matrix of the Gaussian ML estimator for MS
VARMA models by using matrix calculus. Then we used this matrix to derive the asymptotic covariance matrix of the ML
estimator of the model parameters. Its applicability relates with testing hypothesis problems and easier computation of
asymptotic confidence intervals for the unknown parameters of MS VARMA models.

Our approachmay be potentially useful for application in other situations such asMSVARMAmodelswith autoregressive
conditional heteroskedastic (ARCH) innovations. For example, one can consider such models in the framework of the
Baba–Engle–Kraft–Kroner (BEKK) formulation; see also [6]. Also, thesemethodsmight be applied for general classes of finite
mixture models, as considered, e.g., in [13]. The obtained results could be applied to further models such as multivariate
MS GARCH. These models suffer from path-dependence and their estimation needs approximated filters as, e.g., in [15].
Simulation results on univariate MS GARCH models can be found in [9] and further investigations for the multivariate case
would be of interest.
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Appendix A. Proof of the main theorem

A.1. Derivation of Fa(αm)

The block matrix Fa(αm) is

Fa(αm) = E


∂u⊤
t

∂αm


�−1

m ξmt|T


∂ut

∂α⊤
m


. (A.1)

From (3) and (4) we get
∂ut

∂8⊤

mi
=

∂ut

∂(vec8⊤

mi)
⊤

= 2−1
m (L)

∂{8m(L)yt}
∂(vec8⊤

mi)
⊤

= 2−1
m (L)

∂ vec(−8miyt−i)

∂(vec8⊤

mi)
⊤

= −2−1
m (L)

∂ vec(y⊤

t−i8
⊤

mi)

∂(vec8⊤

mi)
⊤

= −2−1
m (L)(IK ⊗ y⊤

t−i)
∂ vec8⊤

mi

∂(vec8⊤

mi)
⊤

= −2−1
m (L)(IK ⊗ y⊤

t−i)

= −


∞

ℓ=0

9mℓLℓ


(IK ⊗ y⊤

t−i) = −

∞
ℓ=0

9mℓ(IK ⊗ y⊤

t−i−ℓ)

= −

∞
ℓ=0

9mℓ ⊗ y⊤

t−i−ℓ (A.2)
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for all i ∈ {1, . . . , p} andm ∈ {1, . . . ,M}. Substituting (A.2) into (A.1) yields

Fa(8mi, 8mj) = E


∂u⊤

t

∂8mi


�−1

m ξmt|T


∂ut

∂8⊤

mj



= E


∞

ℓ=0

9⊤

mℓ ⊗ yt−i−ℓ


�−1

m ξmt|T


∞
n=0

9mn ⊗ y⊤

t−j−n



=

∞
ℓ=0

∞
n=0

(9⊤

mℓ�
−1
m 9mn) ⊗ E(yt−i−ℓy⊤

t−j−nξmt|T )

for all i, j ∈ {1, . . . , p}. Define

QT
m(ℓ, n) =

1
T

T
t=1

xt−ℓx⊤

t−nξmt|T ∈ R(pK)×(pK).

Then

plimT→∞ QT
m(ℓ, n) = E(xt−ℓx⊤

t−nξmt|T ) = Qm(ℓ, n),

soQm(ℓ, n) can be approximated byQT
m(ℓ, n) for T sufficiently large. Then the (pK 2)×(pK 2) blockmatrixFa(γm) is given by

(8). This result generalizes Proposition 11.1 from [11] for the case of a pth Gaussian vector autoregression without changes
in regime (i.e.,M = 1 and 2m(L) = IK ), i.e., Fa(γ) = �−1

⊗ Q, where Q = E(xtx⊤
t ).

From (3) we get

∂u⊤
t

∂2mj
=


∂ut

∂2⊤

mj

⊤

=


∂ vec(u⊤

t )

∂{vec(2⊤

mj)}
⊤

⊤

=


∂ vec{2−1

m (L)⊤}

∂{vec(2⊤

mj)}
⊤

⊤

[IK ⊗ {8m(L)yt − νm}]

=


{2−1

m (L)⊤ ⊗ 2−1
m (L)⊤}Lj

∂ vec(2⊤

mj)

∂{vec(2⊤

mj)}
⊤

⊤

[IK ⊗ {8m(L)yt − νm}]

= {2−1
m (L) ⊗ 2−1

m (L)}(Ik ⊗ zm,t−j)

=

∞
ℓ=0

∞
n=0

(9mℓ ⊗ 9mn)(IK ⊗ zm,t−j−ℓ−n)

=

∞
ℓ=0

∞
n=0

9mℓ ⊗ (9mnzm,t−j−ℓ−n) (A.3)

for all j ∈ {1, . . . , q} and m ∈ {1, . . . ,M}. Substituting (A.3) into (A.1) yields

Fa(2mi, 2mj) = E


∂u⊤

t

∂2mi


�−1

m ξmt|T


∂ut

∂2⊤

mj


= E


ℓ,n≥0

9mℓ ⊗ (9mnzm,t−i−ℓ−n)

�−1

m ξmt|T ×


h,k≥0

9⊤

mh ⊗ (z⊤

m,t−j−h−k9
⊤

mk)


=


ℓ,m,h,k≥0

(9mℓ�
−1
m 9⊤

mh) ⊗ {9mnE(zm,t−i−ℓ−nz⊤

m,t−j−h−kξmt|T )9
⊤

mk}

for all i, j ∈ {1, . . . , q}. Set

RT
m(ℓ, n) =

1
T

T
t=1

wm,t−ℓw⊤

m,t−nξmt|T ∈ R(qK)×(qK).

Then

plimT→∞ RT
m(ℓ, n) = E(wm,t−ℓw⊤

m,t−nξmt|T ) = Rm(ℓ, n),

so Rm(ℓ, n) can be approximated by RT
m(ℓ, n) for T sufficiently large. This proves that the (qK 2)× (qK 2) block matrix Fa(δm)

is given by (9).
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Since zm,t−j = 2m(L)ut−j = 2m(L)6st−jϵt−j, we could derive further matrix expressions for Fa(2mj) and Fa(δm), as
indicated below. In fact, we have

vec E(zm,t−jz⊤

m,t−jξmt|T ) = E

{2m(L) ⊗ 2m(L)}(6st−j ⊗ 6st−j) ξmt|T vec(ϵt−jϵ

⊤

t−j)


= E

{2m(L) ⊗ 2m(L)}(6st−j ⊗ 6st−j)ξmt|T


vec E(ϵt−jϵ

⊤

t−j)

= E

{2m(L) ⊗ 2m(L)}(6st−j ⊗ 6st−j)ξmt|T


vec IK

because (ϵt) is independent of (st) (and hence ξmt|T ). For r ≥ 1, we have

E(�st−r ξmt|T ) = E[E(�st−r ξmt|T |st−r)]

= E


M

n=1

�nE(ξmt|T |st−r = n)p(r)
nmπn



=

M
n=1

�nE{E(ξmt|T |st−r = n)}p(r)
nmπn

=

M
n=1

�nE(ξmt|T )p(r)
nmπn = πm

M
n=1

�np(r)
nmπn,

where p(r)
nm = Pr(st = m|st−r = n) is the (n,m)th element of the matrix Pr . Here Pr

= P if r = 1, and Pr
= P · · · P (r times)

if r > 1. Putting such formulas together yields the claim.
From (3) we get

∂ut

∂ν⊤
m

=
∂ut

∂{vec(ν⊤
m)}⊤

= −
∂2−1

m (1)νm

∂{vec(ν⊤
m)}⊤

= −
∂ vec{ν⊤

m2−1
m (1)⊤}

∂{vec(ν⊤
m)}⊤

= −2−1
m (1). (A.4)

Substituting (A.4) into (A.1) yields the matrix expression (7) for Fa(νm).
For each i ∈ {1, . . . , p}, we have

Fa(8mi, νm) = E


∂u⊤
t

∂8mi


�−1

m ξmt|T


∂ut

∂ν⊤
m


= E


∞

ℓ=0

9⊤

mℓ ⊗ yt−i−ℓ


�−1

m ξmt|T2
−1
m (1)



=

∞
ℓ=0

{9⊤

mℓ�
−1
m 2−1

m (1)} ⊗ E(yt−i−ℓξmt|T )

hence the (pK 2) × K cross component Fa(γm, νm) is given by (10).
We now show that the (qK 2) × K cross component Fa(δm, νm) is zero.
In fact,

Fa(2mj, νm) = E


∂u⊤
t

∂2mj


�−1

m ξmt|T


∂ut

∂ν⊤
m


= −E


ℓ,n≥0

(9mℓ ⊗ 9mn)(IK ⊗ zm,t−j−ℓ−n)


�−1

m ξmt|T2
−1
m (1)


= −


ℓ,n≥0

(9mℓ ⊗ 9mn)

�−1

m ⊗ E(zm,t−j−ℓ−nξmt|T )


2−1
m (1)

for all j ∈ {1, . . . , q}. Now the middle term vanishes because

E(zm,t−rξmt|T ) = E{2m(L)6st−r ϵt−rξmt|T }

= E{2m(L)6st−r ξmt|T }E(ϵt−r) = 0.

Here we use the fact that E(ϵt) = 0 and (ϵt) is independent of (st), and hence ξmt|T . Thus Fa(δm, νm) = 0.



132 M. Cavicchioli / Journal of Multivariate Analysis 157 (2017) 124–135

For every i ∈ {1, . . . , p} and j ∈ {1, . . . , q}, we have

Fa(2mj, 8mi) = E


∂u⊤
t

∂2mj


�−1

m ξmt|T


∂ut

∂8⊤

mi


= −E


r,n≥0

(9mr ⊗ 9mn)(IK ⊗ zm,t−j−r−n)


�−1

m ξmt|T


∞

ℓ=0

9mℓ ⊗ y⊤

t−i−ℓ


= −


ℓ,n,r≥0

(9mr ⊗ 9mn)(�
−1
m ⊗ IK )


9mℓ ⊗ E(zm,t−j−r−ny⊤

t−i−ℓξmt|T )


= −


ℓ,n,r≥0

(9mr�
−1
m 9mℓ) ⊗


9mnE(zm,t−j−r−ny⊤

t−i−ℓξmt|T )


hence the (qK 2) × (pK 2) cross component Fa(δm, γm) is given by (11).

A.2. Derivation of Fa(σm) and Fa(σm, αm)

Now we derive the elements of the FI matrix Fa(θm) which involve σm. The derivative of L(λ) with respect to σm is

∂L(λ)

∂σm
=

T
t=1

∂ ln ηmt(θ)

∂σm
ξmt|T ,

where
∂ ln ηmt(θ)

∂σm
=

1
2
vec�m −

1
2
ut ⊗ ut

and ut is given in (3). Then we get

∂2 ln ηmt(θ)

∂σm∂σ⊤
m

=
1
2

∂ vec�m

∂(vec�−1
m )⊤

= −
1
2
(�m ⊗ �m).

Substituting this relation into

Fa(σm) = −E


∂2 ln ηmt(θ)

∂σm∂σ⊤
m

ξmt|T


gives (6). The first derivatives of the function ln ηmt = ln ηmt(θ) with respect to αm = (ν⊤

mγ⊤
mδ⊤

m)⊤ are given by

∂ ln ηmt

∂νm
= 2−1

m (1)⊤�−1
m ut ,

∂ ln ηmt

∂8mi
=

∞
ℓ=0

9⊤

mℓ�
−1
m uty⊤

t−i−ℓ,

∂ ln ηmt

∂2mj
=


ℓ,n≥0

9mnzm,t−j−ℓ−nu⊤

t �−1
m 9mℓ

for all i ∈ {1, . . . , p} and j ∈ {1, . . . , q}. The second derivatives of ln ηmt with respect to σm and the components of αm are

∂2 ln ηmt

∂νm∂σ⊤
m

= u⊤

t ⊗ 2−1
m (1)⊤,

∂2 ln ηmt

∂8mi ∂σ⊤
m

=

∞
ℓ=0

(yt−i−ℓu⊤

t ) ⊗ 9⊤

mℓ,

∂2 ln ηmt

∂2mj∂σ⊤
m

=


ℓ,n≥0

{9⊤

mℓ ⊗ 9mn)

IK ⊗ (zm,t−j−ℓ−nu⊤

t )

.

Then we have

Fa(νm, σm) = −E


∂2 ln ηmt

∂νm∂σ⊤
m

ξmt|T


= −E{u⊤

t ⊗ 2−1
m (1)⊤ξmt|T }

= −E(u⊤

t ξmt|T ) ⊗ 2−1
m (1)⊤ = 0.
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This follows from

E(utξmt|T ) = E(6st ϵtξmt|T ) = E(6st ξmt|T )E(ϵt) = 0.

For all i ∈ {1, . . . , p}, we get

Fa(8mi, σm) = −E


∂2 ln ηmt

∂8mi∂σ⊤
m

ξmt|T


= −

∞
ℓ=0

E(yt−i−ℓu⊤

t ξmt|T ) ⊗ 9⊤

mℓ = 0.

In fact, by using (3) we see that

E(yt−i−ℓu⊤

t ξmt|T ) =

∞
n=0

BmnE(ut−i−ℓ−nu⊤

t ξmt|T ) = 0

for every i ∈ {1, . . . , p} and ℓ ≥ 0. Recall that

vec{E(ut−ru⊤

t ξmt|T )} = E{(6st ⊗ 6st ) vec(ϵt−rϵ
⊤

t )ξmt|T }

= E{(6st ⊗ 6st )ξmt|T } vec E(ϵt−rϵ
⊤

t ) = 0

for every r ≥ 1. Thus the K 2
× (pK 2) cross component Fa(σm, γm) is zero. For all j ∈ {1, . . . , q}, we have

Fa(2mj, σm) = −E


∂2 ln ηmt

∂2mj∂σ⊤
m

ξmt|T


= −E


ℓ,n≥0

9⊤

mℓ ⊗ (9mnzm,t−j−ℓ−nu⊤

t )ξmt|T


= −


ℓ,n≥0

(9⊤

mℓ ⊗ 9mn){IK ⊗ E(zm,t−j−ℓ−nu⊤

t ξmt|T )} = 0.

This follows from the fact that

E(zm,t−j−ℓ−nu⊤

t ξmt|T ) = E{2m(L)ut−j−ℓ−nu⊤

t ξmt|T }

= E


∞
h=0

9mhut−j−ℓ−n−hu⊤

t ξmt|T



=

∞
h=0

9mhE(ut−j−ℓ−n−hu⊤

t ξmt|T ) = 0

for all j ∈ {1, . . . , q} and ℓ, n ≥ 0. Thus the K 2
× (qK 2) cross component Fa(σm, δm) is zero. From above, the asymptotic

covariance matrix of the Gaussian ML estimator σ̂m of σm is given by

vara(σ̂m) =
2

πm
(�−1

m ⊗ �−1
m ).

It follows that vara(�̂m) = 2πm
−1(�m ⊗ �m). For example, consider the simple univariate ARMA(p, q), which is a special

case with M = 1 and K = 1. Then the asymptotic variance of the estimated error variance �̂ = σ̂ 2 is 2σ 4.

Appendix B. Example in Section 4

Let us consider the partitioned form of the asymptotic FI matrix Fa(θm) as given in the statement of the main theorem.
The matrix expressions in that statement yield the following submatrices of Fa(θm), for m ∈ {1, 2}, rounded to 4 decimal
places. From Eq. (6), we get

Fa(σ1) =

0.0055 0.0109 0.0109 0.0218
0.0109 0.1227 0.0218 0.2455
0.0109 0.0218 0.1227 0.2455
0.0218 0.2455 0.2455 2.7614

 ,

Fa(σ2) =

0.0582 0.0145 0.0145 0.0036
0.0145 0.1745 0.0036 0.0436
0.0145 0.0036 0.1745 0.0436
0.0036 0.0436 0.0436 0.5236

 .
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The entries of the block matrices in the asymptotic FI submatrix Fa(αm), for m ∈ {1, 2}, are computed according to
Eqs. (7)–(11).

Fa(ν1) =


2.5038 0.2338
0.2338 0.0225


, Fa(ν2) =


5.6843 11.2107
11.2107 32.2110


,

Fa(γ1) =

1.3620 2.9200 0.1483 0.3179
2.9200 7.8598 0.3180 0.8561
0.1483 0.3180 0.0161 0.0346
0.3179 0.8561 0.0346 0.0933

 ,

Fa(γ2) =

0.0454 0.0997 0.1312 0.2875
0.0997 0.2850 0.2874 0.8170
0.1312 0.2874 0.3815 0.8366
0.2875 0.8170 0.8366 2.3793

 ,

Fa(δ1) =

10.6115 2.2637 2.3129 0.4934
2.2637 0.4833 0.4934 0.1053
2.3129 0.4934 0.5041 0.1075
0.4934 0.1053 0.1075 0.0230

 ,

Fa(δ2) =

0.0216 0.0938 0.0956 0.4150
0.0938 0.4074 0.4151 1.8029
0.0956 0.4151 0.4339 1.8837
0.4150 1.8029 1.8837 8.1808

 ,

Fa(γ1, ν1) =

1.6598 0.1551
3.1018 0.2898
0.1807 0.0169
0.3376 0.0315

 , Fa(γ2, ν2) =

0.0484 0.1393
0.0948 0.2771
0.1457 0.4039
0.2903 0.8035

 ,

Fa(δ1, γ1) =

1.1827 2.8741 0.1292 0.3134
0.2439 0.5976 0.0267 0.0652
0.2576 0.6270 0.0282 0.0684
0.0531 0.1304 0.0058 0.0142

 ,

Fa(δ2, γ2) =

−0.0192 −0.0596 −0.0558 −0.1722
−0.0843 −0.2595 −0.2456 −0.7500
−0.0843 −0.2631 −0.2475 −0.7656
−0.3710 −1.1457 −1.0893 −3.3342

 .
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