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effective potential, so that the particle lagrangian is reduced to that of a linear sigma model

interacting with the effective potential. After fixing the correct effective potential, we test

the construction on spaces of maximal symmetry and use it to compute heat kernel coef-

ficients and type-A trace anomalies for a scalar field in arbitrary dimensions up to d = 12.

The results agree with expected ones, which are reproduced with great efficiency and ex-

tended to higher orders. We prove explicitly the validity of the simplified path integral on
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1 Introduction

The path integral formulation of quantum mechanics [1] carries a certain amount of sub-

tleties when applied to particles moving in a curved background. These subtleties are the

analogue of the ordering ambiguities of canonical quantization, and can be addressed by

specifying a regularization scheme needed to make sense of the path integral, at least per-

turbatively. The action of a nonrelativistic particle takes the form of a nonlinear sigma

model in one dimension, and as such it identifies a super-renormalizable one-dimensional

quantum field theory. It can be treated by choosing a regularization scheme supplemented

by corresponding counterterms, the latter being needed to match the renomalization con-

ditions, i.e. to fix uniquely the theory under study.

While several regularization schemes have been worked out and tested, see [2], in this

article we take up an old proposal, put forward by Guven in [3], of constructing the path

integral in curved spaces by making use of Riemann normal coordinates. It assumes that

in such a coordinate system an auxiliary flat metric can be used in the kinetic term, while

a suitable effective potential is supposed to reproduce the effects of the curved space. This

construction transforms the model into a linear sigma model. The simplifications expected

in having a linear sigma model, rather then a nonlinear one, are rather appealing, and mo-

tivated us to investigate the issue further. Indeed, a simplified path integral might be more

efficient for perturbative calculations, making worldline applications easier. We shall apply

and test the method on spaces of maximal symmetry (e.g. spheres) by perturbatively com-

puting the partition function, and check if it reproduces known results. This happens with

a dramatic gain in efficiency. We recall that the partition function on spheres can be used
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as generating function for the type-A trace anomalies of a scalar field in arbitrary d dimen-

sions. The evaluation of trace anomalies is a typical worldline calculation, performed in [4]

up to d = 6 by using the nonlinear sigma model. The linear sigma model allows to reproduce

those results and to push the perturbative order much further. We use it to scan dimensions

up to d = 12, though one could go higher if needed. Our conclusion is that the method is vi-

able on spaces of maximal symmetry, and indeed we provide an explicit proof of its validity.

However, an extension to generic curved spaces is not warranted, as we shall discuss later on.

We structure our paper as follows. We first review the path integral construction in

arbitrary coordinates, to put the new method in the right perspective. The action in ar-

bitrary coordinates is that of a nonlinear sigma model, and we seize the opportunity to

comment on its use in worldline applications. In section 3 we review the proposal of ref. [3],

and point out that the identification of the effective potential reported in that reference is

incorrect (though it could be a misprint). More importantly, we stress that the proof of

why the effective potential should work is not given in ref. [3], nor is it contained in the

cited references. In some of those references [5, 6], see also [7], we have found arguments

why the assumption of an effective potential might work perturbatively, at least up to few

perturbative orders. Those arguments use the Lorentz symmetry of flat space recursively,

and do not seem to apply on generic curved spaces. Thus in section 4 we restrict ourselves

to spaces of maximal symmetry, where those arguments might have a better chance of work-

ing. We test the method with the correct effective potential by computing perturbatively

the partition function. We find indeed that it reproduces more efficiently known results.

Moreover it permits to push the calculations to higher perturbative orders. In section 5 we

use the partition function to extract the type-A trace anomalies for a scalar field in arbi-

trary d dimensions up to d = 12. This produces further checks on the path integral results.

Conforted by this success, we are led to provide an explicit proof of the validity of the

simplified path integral on maximally symmetric spaces, which is presented in appendix A,

while appendix B is left for details on our linear sigma-model worldline calculations.

2 Particle in curved space

The lagrangian of a nonrelativistic particle of unit mass in a curved d-dimensional space

contains just the kinetic term

L(x, ẋ) =
1

2
gij(x)ẋ

iẋj (2.1)

where gij(x) is the metric in an arbitrary coordinate system. It is the action of a nonlinear

sigma model in one dimension, and the corresponding equations of motion are the geodesic

equations written in terms of the affine parameter t, the time used in the definition of the

velocity ẋi = dxi

dt
. The corresponding hamiltonian reads

H(x, p) =
1

2
gij(x)pipj (2.2)

where pi are the momenta conjugated to xi. Upon canonical quantization it carries or-

dering ambiguities, which consist in terms containing one or two derivatives acting on the
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metric.1 These ambiguities are greatly reduced by requiring background general coordinate

invariance. Since the only tensor that can be constructed with one and two derivatives on

the metric is the curvature tensor, the most general diffeomorphism invariant quantum

hamiltonian takes the form

Ĥ = −1

2
∇2 +

ξ

2
R (2.3)

where ∇2 is the covariant laplacian acting on scalar wave functions, and ξ is an arbitrary

coupling to the scalar curvature R (defined to be positive on a sphere) that parametrizes

remaining ordering ambiguities. The value ξ = 0 defines the minimal coupling, while the

value ξ = d−2
4(d−1) is the conformally invariant coupling in d dimensions.

For definiteness let us review the theory with the minimal coupling ξ = 0. Other values

can be obtained by simply adding a scalar potential V = ξ
2R. The transition amplitude in

euclidean time β (the heat kernel)

K(x, x′;β) ≡ 〈x|e−βĤ(x̂,p̂)|x′〉 (2.4)

is defined with the covariant hamiltonian2

Ĥ(x̂, p̂) =
1

2
g−

1
4 (x̂) p̂i g

ij(x̂)g
1
2 (x̂) p̂j g

− 1
4 (x̂) . (2.5)

It solves the Schroedinger equation in euclidean time (heat equation)

− ∂

∂β
K(x, x′;β) = −1

2
∇2

xK(x, x′;β) (2.6)

and satisfies the boundary condition at β → 0

K(x, x′; 0) =
δ(d)(x− x′)

√

g(x)
. (2.7)

In eq. (2.6) ∇2
x indicates the covariant scalar laplacian acting on coordinates x.

The transition amplitude K(x, x′;β) can be given a path integral representation. Using

a Weyl reordering of the quantum Hamiltonian Ĥ(x̂, p̂) allows to derive a discretized phase-

space path integral containing the classical phase-space action suitably discretized by the

midpoint rule [9]. The action acquires a finite counterterm VTS of quantum origin, arising

form the Weyl reordering of the specific hamiltonian in eq. (2.5), originally performed

in [10] (the subscript TS reminds of the time slicing discretization of the time variable).

The perturbative evaluation of the phase space path integral can be performed directly in

the continuum limit [11]
∫

DxDp e−S[x,p] (2.8)

1In the coordinate representation the hermitian momentum acting on a scalar wave function takes the

form pi = −ig−
1
4 ∂ig

1
4 . Further details may be found in the book [2], or in the classic paper [8].

2We choose position eigenstates normalized as scalars: x̂i|x〉 = xi|x〉, 〈x|x′〉 = δ(d)(x−x′)√
g(x)

, 1 =
∫

ddx
√

g(x) |x〉〈x|, so that the amplitude K(x, x′;β) is a biscalar.
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with the phase-space euclidean action taking the form

S[x, p] =

∫ β

0
dt (−ipiẋ

i +H(x, p))

H(x, p) =
1

2
gij(x)pipj + VTS(x)

VTS(x) = −1

8
R(x) +

1

8
gij(x)Γl

ik(x)Γ
k
jl(x) . (2.9)

To generate the amplitude K(x, x′;β) the paths x(t) must satisfy the boundary conditions

x(0) = x′ and x(β) = x, while the paths p(t) are unconstrained. We recall that pertur-

bative corrections are finite in phase space. The presence of the noncovariant part of the

counterterm VTS corrects the noncovariance of the midpoint discretization, and it makes

sure that the final result is covariant. These noncovariant counterterms were also derived

in [12] (and reviewed in the book [13]) by considering point transformations (i.e. arbitrary

changes of coordinates) in flat space.

The definition of the corresponding path integral in configuration space encounters

more subtle problems. The classical action takes the form of a nonlinear sigma model in

one dimension

S[x] =

∫ β

0
dt

1

2
gij(x)ẋ

iẋj (2.10)

and power counting indicates that, in a perturbative expansion about flat space, it is

a super-renomalizable model, with superficial degree of divergence D = 2 − L where L

counts the number of loops [2]. Thus, viewing quantum mechanics as a particular QFT

in one euclidean dimension one finds that possible divergences may arise at one- and two-

loops. Therefore, just like in generic QFTs, one must define a regularization scheme with

corresponding counterterms. Usually counterterms contain an infinte part, needed to cancel

divergences, and a finite part, needed to match the renomalization conditions. In the

present case the counterterms are finite if one includes the local terms arising from the

general coordinate invariant path integral measure.

Three well-defined regularizations have been studied in the literature, all prompted by

the effort of computing QFT trace anomalies with quantum mechanical path integrals [14,

15]. The latter extended to trace anomalies the quantum mechanical method used for

chiral anomalies in [16–18]. In the case of chiral anomalies the presence of a worldline

supersymmetry carries many simplifications. However, supersymmetry is not present in

the trace anomaly case, and the corresponding quantum mechanical path integrals must

be defined with great care to keep under control the full perturbative expansion.

To recall the various regularization schemes let us first notice that in configuration

space the formally covariant measure can be related to a translational invariant measure

by using ghost fields ai, bi and ci à la Feddeev-Popov

Dx =
∏

0<t<β

ddx(t)
√

g(x(t)) =
∏

0<t<β

ddx(t)

∫

DaDbDc e−Sgh[x,a,b,c] (2.11)

where

Sgh[x, a, b, c] =

∫ β

0
dt
1

2
gij(x)(a

iaj + bicj) . (2.12)
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Considering ai bosonic variable and bi, ci fermionic variables allows to reproduce the factor
g(x(t))√
g(x(t))

=
√

g(x(t)) in the measure. By Dx, Da, Db and Dc we indicate the trans-

lational invariant measure, useful for generating the perturbative expansion (e.g. Dx =
∏

0<t<β d
dx(t), and so on). Thus, the path integral for the nonlinear sigma model in

configuration space can be written as
∫

DxDaDbDc e−S[x,a,b,c] (2.13)

with the full action taking the form

S[x, a, b, c] =

∫ β

0
dt

(
1

2
gij(x)(ẋ

iẋj + aiaj + bicj) + VCT

)

(2.14)

and with VCT indicating the counterterm associated to the chosen regularization. To

generate the amplitude K(x, x′;β) the paths x(t) must of course satisfy the boundary

conditions x(0) = x′ and x(β) = x.

The time slicing regularization (TS) in configuration space was studied in [19, 20], by

deriving it from the phase space path integral, and studying carefully the continuum limit

of the propagators together with the rules that must be used in evaluating their products.

Indeed one may recall that the perturbative propagators are distributions: how to multiply

them and their derivatives together is the problem one faces in regulating the perturbative

expansion. This regularization inherits the counterterm VTS in (2.9).

Mode regularization (MR) was employed in curved space already in [14, 15]. The

complete counterterm was identified in [21] to address some mismatches originally found

between TS and MR. With the correct counterterm

VMR = −1

8
R− 1

24
gijg

klgmnΓi
kmΓj

ln (2.15)

those mismatches disappeared. The rules how to define the products of distributions in this

regularization scheme follows from expanding the quantum fluctuations in a Fourier series

truncated by a cut-off, which eventually is removed to reach the continuum limit. Including

the vertices originating from the counterterm produces the covariant final answer.

Finally, dimensional regularization (DR) was introduced in the quantum mechanical

context in [22–24]. It needs the counterterm

VDR = −1

8
R (2.16)

which has the useful property of being covariant.

All these regularizations have been extensively tested and compared, see e.g. [25, 26].

Extensions to supersymmetric models have been recently discussed again in [27], where the

counterterms in all the previous regularization schemes were identified for the supersym-

metric nonlinear sigma model with N supersymmetries at arbitrary N . Additional details

on the various regularization schemes may be found in the book [2].

The case of trace anomalies provided a precise observable on which to test and verify

the construction of the quantum mechanical path integrals in curved spaces, clearing the
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somewhat confusing status of the subject present in previous literature. With this tool

at hand, more general applications of the path integral were possible, in particular in the

first quantized approach to quantum fields [28] coupled to gravitational backgrounds, such

as the worldline description of fields of spin 0, 1/2 and 1 coupled to gravity [29–32], the

analysis of amplitudes in Einstein-Maxwell theory [33–36], the study of photon-graviton

conversion in strong magnetic fields [37, 38], the description of higher spin fields in first

quantization [39], as well as worldline approaches to perturbative quantum gravity [40].

3 A linear sigma model

In the previous section we have reviewed the quantum mechanical path integral for a non-

linear sigma model, that describes a particle moving in a curved space by using arbitrary

coordinates. In this section we wish to take up in a critical way an old proposal, put forward

by Guven in [3], of constructing the path integral in curved space by using Riemann normal

coordinates. The proposal assumes that in Riemann coordinates an auxiliary flat metric

can be used in the kinetic term, while an effective potential reproduces the effects of the

curved space. This construction aims at transforming the original nonlinear sigma model

into a linear one. If correct, it carries several simplifications, making perturbative calcula-

tions simpler and more efficient. It may also improve its use in the worldline applications

mentioned earlier.

Thus, let us review the considerations put forward in [3]. First of all it is convenient

to consider the transition amplitude as a bidensity by defining

K(x, x′, β) = g
1
4 (x)K(x, x′, β)g

1
4 (x′) (3.1)

so that, from (2.6), K is seen to satisfy the equation

− ∂

∂β
K(x, x′;β) = −1

2
g

1
4 (x)∇2

x g
− 1

4 (x)K(x, x′;β) (3.2)

with boundary condition

K(x, x′; 0) = δ(d)(x− x′) (3.3)

where ∇2
x is the scalar laplacian ∇2 = 1√

g
∂i
√
ggij∂j acting on the x coordinates. The

differential operator appearing on the right hand side of eq. (3.2) can be rewritten through

a direct computation as

− 1

2
g

1
4∇2 g−

1
4 = −1

2
∂ig

ij∂j + Veff (3.4)

where derivatives act through and with the effective potential given by

Veff = −1

2
g

1
4∇2g−

1
4 = −1

2
g−

1
4∂i

√
ggij∂jg

− 1
4 (3.5)

where all derivatives now stop after acting on the last function. At this stage, one may

use Riemann normal coordinates (see [41, 42], and also [43, 44] for their application to

nonlinear sigma models). It was claimed in [6] that the Lorentz invariance (rotational
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invariance in euclidean conventions) of the momentum-space representation of K written

in Riemann normal coordinates implies that the gij in the ∂ig
ij∂j operator of (3.4) can

be replaced by the constant δij . Indeed, in the momentum-space representation of K

previously studied in ref. [5] by using Riemann normal coordinates, it was found that in an

adiabatic expansion of K the first few terms depended on certain scalar functions, which

were functions of δijx
ixj only (see also the book [7]). However it is not obvious why such a

property should hold to all orders. In a curved space Lorentz invariance obviously cannot

hold, for example scalar terms proportional to Rijx
ixj may also arise (by Rij we consider

the Ricci tensor evaluated at the origin of the Riemann coordinates, and by xi the Riemann

normal coordinates themselves). Guven in [3] claimed however that in Riemann normal

coordinates eq. (3.4) simplifies to

− 1

2
g

1
4∇2 g−

1
4 = −1

2
δij∂i∂j + Veff (3.6)

while referring to [45] for a proof. Thus he was led to consider the euclidean Schroedinger

equation

− ∂

∂β
K(x, x′β) =

(

− 1

2
δij∂i∂j + Veff(x)

)

K(x, x′;β) (3.7)

that can be solved by a standard path integral for a linear sigma model

K(x, x′;β) ∼
∫ x(β)=x

x(0)=x′

Dx e−S[x] , S[x] =

∫ β

0
dt

(
1

2
δij ẋ

iẋj + Veff(x)

)

. (3.8)

However again, in reviewing this construction, we have not been able to find the proof

of (3.6) in [45], which does not contain such statements. Also the effective potential used

in [3] does not coincide with the one written in eq. (3.5) (even taking care of the different

conventions used). In any case, it is the potential in (3.5) that might have a chance of

working.

Given this state of understanding, we still find the conjecture that “the path integral

in curved space can be reduced in Riemann normal coordinates to that of a linear sigma

model” to be rather appealing. Also, the reasonings leading to (3.6) has a better chance

of working if one considers maximally symmetric spaces, where Lorentz (or rotational)

symmetry can indeed be implemented in a suitable sense. This is indeed the case, and

we prove in appendix A that the bidensity (3.1), on a d-dimensional maximally symmetric

space described by Riemann normal coordinates satisfies the heat equation with the flat

operator (3.4). Thus, in the next sections, we proceed in testing explicitely the path integral

construction on spaces of maximal symmetry.

4 Path integral on maximally symmetric spaces

We wish to test the path integral in Riemann normal coordinates using the linear sigma

model of eq. (3.8) and considering maximally symmetric spaces. In particular, we wish

to compare it with the path integral calculation done with the nonlinear sigma model

and Riemann normal coordinates in [4]. The observable computed there was the transition
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amplitude at coinciding pointsK(x, x, β). In the present analysis we use the same notations

of ref. [4], except for a change in sign in the Ricci tensors, so to have a positive Ricci scalar

on spheres.

On maximally symmetric spaces the Riemann tensor is related to the metric tensor by

Rmnab = M2(gmagnb − gmbgna) (4.1)

where M2 is a constant that can be either positive, negative, or vanishing (flat space). The

Ricci tensors are then defined by

Rmn = Ram
a
n = M2(d− 1)gmn

R = Rm
m = M2(d− 1)d (4.2)

so that the constant M2 is related to the constant Ricci scalar R by

M2 =
R

(d− 1)d
(4.3)

which is positive on a sphere. We want to use Riemann normal coordinates. The expansion

of the metric in normal coordinates around a point (called the origin) is obtained by

standard methods and reads

gmn(x) = δmn + (δmn − x̂mx̂n)

(

−1

3
(Mx)2 +

32

6!
(Mx)4 − 16

7!
(Mx)6 + · · ·

)

(4.4)

where xm denote now Riemann normal coordinates and

x =
√
~x 2 , x̂m =

xm

x
. (4.5)

One may compute all terms of the series recursively, and sum the series to get [4]

gmn(x) = δmn + Pmn

∞∑

n=1

2(−1)n

(2n+ 2)!
(2Mx)2n

= δmn + Pmn
1− 2(Mx)2 − cos(2Mx)

2(Mx)2
(4.6)

where the projector Pmn is defined by

Pmn = δmn − x̂mx̂n . (4.7)

Defining the auxiliary functions

f(x) =
1− 2(Mx)2 − cos(2Mx)

2(Mx)2
, h(x) = − f(x)

1 + f(x)
(4.8)

allows to write the metric, its inverse, and the metric determinant in Riemann normal

coordinates as

gmn(x) = δmn + f(x)Pmn

gmn(x) = δmn + h(x)Pmn

g(x) = (1 + f(x))d−1 (4.9)
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where, on the right hand side of these formulae, indices are raised and lowered with the

flat metric δmn.

We are now ready to consider the linear sigma model (3.8). We wish to evaluate the

transition amplitude at coinciding points x = x′ = 0 (taken to be the origin of the Riemann

coordinates) in a perturbative expansion in terms of the propagation time β. To control

the β expansion it is useful to rescale the time t → τ = t
β
so that τ ∈ [0, 1] and the action

takes the form

S[x] =

∫ 1

0
dτ

(
1

2β
δij ẋ

iẋj + βVeff(x)

)

. (4.10)

The leading term for β → 0 is just the free particle which is exactly solvable. It is nota-

tionally convenient to set M = 1, as M can be reintroduced by dimensional analysis. Now

we must compute the potential Veff(x). Using eqs. (4.8) and (4.9), from (3.5) we find

Veff(x) =
(d− 1)

8

[

(d− 5)

4

(
f ′

1 + f

)2

+
1

1 + f

(
(d− 1)

x
f ′ + f ′′

)]

(4.11)

which is evaluated to

Veff(x) =
d− d2

12
+

(d− 1)(d− 3)

48

(
5x2 − 3 +

(
x2 + 3

)
cos(2x)

)

x2 sin2(x)
(4.12)

and which expands to

Veff(x) =
d− d2

12
+ (d− 1)(d− 3)

(
x2

120
+

x4

756
+

x6

5400
+

x8

41580
+

+
691x10

232186500
+

x12

2806650
+O

(
x14

)
)

. (4.13)

The perturbative expansion of the path integral is obtained by setting

S[x] = Sfree[x] + Sint[x] (4.14)

with

Sfree[x] =
1

β

∫ 1

0
dτ

1

2
δij ẋ

iẋj , Sint[x] = β

∫ 1

0
dτ Veff(x) . (4.15)

so that eq. (3.1) reduces to (x = 0 is the Riemann normal coordinate of the origin)

K(0, 0;β) =
〈e−Sint〉
(2πβ)

d
2

(4.16)

where 〈. . .〉 denotes normalized correlation function with the free path integral.
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Using the free propagator and Wick contractions, we obtain the following perturbative

answer (see appendix B for details)

K(0, 0;β) =
1

(2πβ)
d
2

exp

[
βR

12
− (βR)2

6!

(d− 3)

d(d− 1)
− (βR)3

9!

16(d− 3)(d+ 2)

d2(d− 1)2

−(βR)4

10!

2(d− 3)(d2 + 20d+ 15)

d3(d− 1)3

+
(βR)5

11!

8(d− 3)(d+ 2)(d2 − 12d− 9)

3d4(d− 1)4

+
(βR)6

13!

8(d−3)(1623d4−716d3−65930d2−123572d−60165)

315d5(d− 1)5

+O(β7)

]

(4.17)

with the exponential that can be expanded to identify the first six heat kernel coefficients

(also known as Seeley-DeWitt coefficients).

Amazingly, it compares successfully with eq. (16) of ref. [4] (taking into account that

ξ = 0 and that the sign of R has been reversed). In that reference the calculation was

performed up to order (βR)3. In the present case those results are reproduced almost

trivially, and in fact we have been able to push the calculation to higher orders. For

arbitrary d these higher orders are new, as far as we know. In the next section we will

further test our coefficients at specific values of d. It is also amusing to note that the path

integral result is exact on the 3-sphere, as the effective potential Veff in eq. (4.12) becomes

constant at d = 3. This is as it should be, as the transition amplitude on S3 is known

exactly [46], thanks to the fact that S3 coincides with the group manifold SU(2).

5 Type-A trace anomaly of a scalar field

A further test is to use our results to compute the type-A trace anomaly of a conformal

scalar field. Trace anomalies characterize conformal field theories. They amount to the

fact that the trace of the energy-momentum tensor for conformal fields, which vanishes at

the classical level, acquires anomalous terms at the quantum level. These terms depend

on the background geometry of the spacetime on which the conformal fields are coupled

to, and they are captured by the appropriate Seeley-DeWitt coefficient sitting in the heat

kernel expansion of the associated conformal operator, see [47] for example.

A simple way to obtain this relation is to view the trace anomaly as due to the QFT

path integral measure, so that it is computed by the regulated Jacobian arising from

the Weyl transformation of the QFT path integral measure [48]. For a scalar field the

infinitesimal Weyl transformation δσgmn(x) = σ(x)gmn(x), applied to the one-loop effective

action, yields
∫

ddx
√
gσ(x)

〈
Tm

m(x)
〉
= lim

β→0
Tr

{

σe−βR
}

(5.1)
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where the consistent regulator R, that appears in the exponent, is just the conformal

operator associated to the scalar field, and reads

R = −1

2
∇2 +

ξ

2
R (5.2)

with ξ = d−2
4(d−1) . It can be identified as the hamiltonian operator (2.3) for a non-relativistic

particle in curved space. Therefore, one identifies the trace anomaly in terms of a particle

path integral by
〈
Tm

m(x)
〉
= lim

β→0
K(x, x;β) (5.3)

where it is understood that the limit picks up just the β-independent term — divergent

terms are removed by QFT renormalization. This procedure selects the appropriate Seeley-

DeWitt coefficient sitting in the expansion of K(x, x;β).

Trace anomalies have been classified as type-A, type-B and trivial anomalies in [49].

On conformally flat spaces the type-B and trivial anomalies vanish, so that only the type-A

anomaly survives. It is proportional to the topological Euler density, and its coefficient

enters the so-called c-theorem of 2 dimensions [50] and a-theorem of 4 dimensions [51] at

fixed points. These theorems capture the irreversibility of the renormalization group flow

in 2 and 4 dimensions. Their extension to arbitrary even dimensions has been conjectured,

but not proven (see also [52] for a more general conjecture).

We are going to use the previous results on the sphere (a conformally flat space) to

calculate the type-A trace anomaly for a scalar field in arbitrary dimensions up to d = 12,

which will serve as a further test on the linear sigma model approach of the previous

section. Using the expansion obtained in the previous section, and choosing x as the origin

of the RNC coordinate system, we have by definition gmn(x) = δmn in Riemann normal

coordinates, and
〈
Tm

m(x)
〉
= lim

β→0
K(x, x;β) (5.4)

so that expanding (4.17) (recall that there x = 0 indicates the origin of the RNC), and

picking the β0 term in the chosen dimension d, we obtain the trace anomalies for a conformal

scalar field in d dimensions reported in table 1, where the second form is written in terms

of a2 = 1
M2 = d(d−1)

R
to directly compare with the results tabulated in [53].

The comparison is successful, except at d = 12, where our respective coefficients differ

by a number of the order of 10−13. Our result is correct as using the zeta function approach

employed in [53, 54] we have been able to reproduce our findings.3 It compares well

also with a nice formula obtained in [55] using AdS/CFT arguments, and confirmed later

in [56, 57], for evaluating the type-A trace anomaly of conformal scalar operators. The

direct evaluation of that formula produces, modulo different normalizations, the correct

numerator 133 787 of the anomaly at d = 12.

3The mismatch could perhaps have happened due to some inappropriate rounding of the exact number,

occasionally introduced by calculators. We thank Zura Kakushadze for having pointed out such a

possibility to us.
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d 〈Tµ
µ〉 〈Tµ

µ〉

2 R
24π

1
12πa2

4 − R2

34 560π2 − 1
240π2a4

6 R3

21 772 800π3
5

4 032π3a6

8 − 23R4

339 880 181 760π4 − 23
34 560π4a8

10 263R5

2 993 075 712 000 000π5
263

506 880π5a10

12 − 133 787R6

1 330 910 037 208 675 123 200π6 − 133 787
251 596 800π6a12

Table 1. The type-A trace anomaly of a scalar field.

6 Conclusions

We have tested a method of computing the path integral for a particle in curved spaces in

Riemann normal coordinates that employs a linear sigma model action with an additional

scalar effective potential. This method was proposed by Guven in [3], but with assumptions

whose proof were not given. We have checked the method by restricting it to maximally

symmetric geometries, and found that indeed it reproduces correct results in a quite efficient

way. In particular, we have used it to obtain the first six Seeley-DeWitt coefficients at

coinciding points for the d-dimensional sphere (more generally, for maximally symmetric

spaces), and computed the type-A trace anomaly for a scalar field up to d = 12. This

helped us also to correct a wrong value for the trace anomaly of a scalar field in twelve

dimensions reported in ref. [53]. The success of the simplified path integral on maximally

symmetric spaces has led us to search for a simple proof of its validity, which we have found

and reported in appendix A.

It would be interesting to extend the present method to supersymmetric nonlinear

sigma models, so to consider fields of spin 1/2 and 1, if not higher, in worldline applications,

or to consider curved spaces with boundaries, following the path integral treatment of

refs. [58, 59] which dealt with flat space only.

As for arbitrary geometries, we cannot say much at this stage. If a proof of the crucial

relation used in constructing the path integral cannot be produced, one may still test it

by a perturbative computation at sufficiently high order. We wish to be able to report on

this subject in a near future.
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A A simple proof in maximally symmetric spaces

Here we give a simple proof that the bidensity (3.1) satisfies the heat equation

− ∂

∂β
K(x, x′β) =

(

− 1

2
δij∂i∂j + Veff(x)

)

K(x, x′;β) (A.1)

in a maximally symmetric space described by Riemann normal coordinates. For this to be

true we must show that the “curved” differential operator (3.4) acts on (3.1) identically as

the “flat” operator (3.6), i.e.

(

∂ig
ij∂j − δij∂i∂j

)

K(x, x′;β) = 0 . (A.2)

Taking x′ = 0 as the origin of the Riemann normal coordinates, and using (4.7) and (4.9),

the left hand side of (A.2) reduces to

[

h(x)P ij(x)∂i∂j + ∂i
(
h(x)P ij(x)

)
∂j

]

K(x, 0;β) . (A.3)

In maximally symmetric spaces, all curvature tensors are given algebraically in terms of the

metric and of the constant scalar curvature R, see eqs. (4.1)–(4.3), so that by symmetry

arguments the bidensityK(x, 0;β) can only depend on the coordinates through the “scalar”

function x2 = δijx
ixj . Therefore, using the orthogonality condition P ijxj = 0, one gets

∂i
(
h(x)P ij(x)

)
∂jK(x, 0;β) = −2(d− 1)h(x)

∂

∂x2
K(x, 0;β) (A.4)

and

h(x)P ij(x)∂i∂jK(x, 0;β) = 2h(x)δijP
ij(x)

∂

∂x2
K(x, 0;β) = 2(d− 1)h(x)

∂

∂x2
K(x, 0;β) .

(A.5)

Therefore, (A.2) is proven. Casting (A.1) in the form of a path integral is now immediate.

B Computational details

The free propagator for xi(τ) vanishing at τ = 0 and τ = 1 is obtained from (4.15) and

reads

〈xi(τ)xj(σ)〉 = −βδij∆(τ, σ) (B.1)

with

∆(τ, σ) = (τ − 1)σ θ(τ − σ) + (σ − 1)τ θ(σ − τ)

=
1

2
|τ − σ| − 1

2
(τ + σ) + τσ (B.2)

where θ(x) is the Heaviside step function with θ(0) = 1
2 .

– 13 –



J
H
E
P
0
4
(
2
0
1
7
)
0
5
0

The perturbative expansion is obtained from (4.16). In expanding the exponential

with Sint it is useful to define

Sint =

∞∑

m=0

S2m (B.3)

where S2m is the term containing the power (x2)m, with x2 = ~x 2 = xixi. For simplicity

we denote them by

S2m = βk2m

∫ 1

0
dτ (x2)m . (B.4)

where the numerical coefficients k2m are read off from (4.13). It is sufficient to compute

the connected correlation functions, denoted by 〈. . .〉c, and express (4.16) as

K(0, 0;β) =
e−S0

(2πβ)
d
2

exp

[

−〈S2〉 − 〈S4〉 − 〈S6〉 − 〈S8〉 − 〈S10〉

+
1

2
〈S2

2〉c + 〈S2S4〉c +
1

2
〈S2

4〉c + 〈S2S6〉c −
1

3!
〈S3

2〉c +O(β7)

]

(B.5)

where we have kept terms contributing up to order β6 only. Using Wick contractions we

find the following result

K(0, 0;β) =
1

(2πβ)
d
2

exp

[

β
d(d− 1)

12
− (d− 1)(d− 3)

(

β2 d

720
+ β3d(d+ 2)

22680
(B.6)

+β4d(d
2 + 20d+ 15)

1814400
− β5d(d+ 2)(d2 − 12d− 9)

14968800

−β6d(1623d
4 − 716d3 − 65930d2 − 123572d− 60165)

245188944000

)

+O(β7)

]

where the intermediate results that we have summed here above are as follows (using the

abbreviation ∆(τ1, τ2) ≡ ∆12)

Order β. There is only a constant term that does not require any Wick contraction

− S0 = β
d(d− 1)

12
(B.7)

Order β2.

− 〈S2〉 = β2k2d

∫ 1

0
dτ1∆11

︸ ︷︷ ︸

− 1
6

(B.8)

Order β3.

− 〈S4〉 = −β3k4d(d+ 2)

∫ 1

0
dτ1∆

2
11

︸ ︷︷ ︸
1
30

(B.9)
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Order β4.

−〈S6〉 = β4k6 (d
3 + 6d2 + 8d)

︸ ︷︷ ︸

d(d+2)(d+4)

∫ 1

0
dτ1∆

3
11

︸ ︷︷ ︸

− 1
140

(B.10)

1

2
〈S2

2〉c = β4k22d

∫ 1

0
dτ1

∫ 1

0
dτ2∆

2
12

︸ ︷︷ ︸
1
90

(B.11)

Order β5.

−〈S8〉 = −β5k8

(

d4 + 12d3 + (12 + 32)d2 + 48d
)

︸ ︷︷ ︸

d(d+2)(d+4)(d+6)

∫ 1

0
dτ1∆

4
11

︸ ︷︷ ︸
1

630

(B.12)

〈S2S4〉c = −β5k2k4(4d
2 + 8d)

∫ 1

0
dτ1

∫ 1

0
dτ2∆

2
12∆22

︸ ︷︷ ︸

− 1
420

(B.13)

Order β6.

−〈S10〉 = β6k10

(

d5+20d4+(80+60)d3+(240 + 160)d2+384d
)

︸ ︷︷ ︸

d(d+2)(d+4)(d+6)(d+8)

∫ 1

0
dτ1∆

5
11

︸ ︷︷ ︸

− 1
2772

(B.14)

− 1

3!
〈S3

2〉c =
β6

3!
k32 8d

∫ 1

0
dτ1

∫ 1

0
dτ2

∫ 1

0
dτ3∆12∆23∆31

︸ ︷︷ ︸

− 1
945

(B.15)

〈S2S6〉c = β6k2k66d(d
2 + 6d+ 8)

∫ 1

0
dτ1

∫ 1

0
dτ2∆

2
12∆

2
22

︸ ︷︷ ︸
1

1890

(B.16)

1

2
〈S2

4〉c =
β6

2
k24









8d(d+ 2)

∫ 1

0
dτ1

∫ 1

0
dτ2∆

4
12

︸ ︷︷ ︸
1

3150

+8d(d2 + 4d+ 4)

∫ 1

0
dτ1

∫ 1

0
dτ2∆11∆

2
12∆22

︸ ︷︷ ︸
13

25200









. (B.17)
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