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Abstract This paper deals with the performance evaluation of production lines in which well defined
machine start/stop control policies are applied.

A modeling approach has been developed in order to reduce thecomplexity of a two-machine one-
buffer line where a specific control policy, called “restartpolicy”, is adopted. The restart policy exercises
control over the start/stop condition of the first machine: when the buffer gets full and, as a consequence,
the first machine is forced to stop production (i.e. it is blocked), the control policy keeps the first machine
in an idle state until the buffer becomes empty again. The rationale behind this policy is to reduce the
blocking frequency of the first machine, i.e. the probability that a blockage occurs on the first machine
due to the buffer filling up. Such a control policy is adopted in practice when outage costs (e.g. waste
production) are related to each restart of the machine.

The two-machine one-buffer line with restart policy (RP line) is here modeled as a continuous time
Markov process so as to consider machines having different capacities and working in an asynchronous
manner. The mathematicalRP model is described along with its analytical solution. Then, the most
critical line performance measures are derived and, finally, some numerical examples are reported to
show the effects of such a policy on the blocking frequency ofthe first machine.
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1 Introduction

This paper presents an innovative Markov model for inhomogeneous and asynchronous two-machine
one-buffer production lines where a control policy is applied to improve the line efficiency.

Production lines represent a particular configuration of manufacturing systems in which machines
are connected to one another so as to form a series. This configuration is generally adopted by companies
when high-volume production is required. Frequently, production lines are also automated so as to
achieve higher production rates and repetitiveness of taskprocesses.

The performance of a production line is strictly related to the nominal capacity and the reliability
parameters of the machines involved. Specifically, this work considers machines that can operate at
different nominal capacities and whose time-to-failure and time-to-repair distributions are exponential.
As regards the latter assumption, practical evidence showsthat failures and repairs can be often modeled
as memory-less processes, especially in case of automated production lines (see, e.g., Perrica et al,
2008).

Moreover, also interactions between machines play an important role in determining the whole line
performance. This is due to the fact that the effect of a failure occurring on a specific machine may
propagate to other machines located both in the upstream andin the downstream of the line. We refer
to a “starvation” when an operational machine is found idle as a consequence of an interruption of its
incoming flow since a machine in the upstream of the line has failed; we refer to a “blockage” when its
outgoing flow is prevented owing to a failure in the downstream. In order to reduce efficiency losses due
to machine interactions, buffers can be positioned along the line that can avoid starvation and blocking
events by accumulating and releasing material as needed.

Another strategy that can be employed to improve the line efficiency is to adopt “control policies”,
i.e. to exercise a kind of control over the behavior of the involved machines when certain conditions
occur. Specifically, this work focuses on a particular control policy typical of processes that incur sig-
nificant extra costs if interrupted for any reason. Such a control policy is called here “restart policy”
and acts as follows: when a machine is blocked because another machine has failed in the downstream
and the intermediate buffer is full (so as no decoupling effect takes place), it is not allowed to leave the
blocking state as soon as the buffer level starts to decrease. Hence, this restart policy forces a machine
once it has become blocked, to remain idle until the downstream buffer becomes empty again. The aim
is to reduce the probability of subsequent blocking events that can occur if the machine resumes produc-
tion when the level of the buffer is just below its maximum size, i.e., when there is little storage space
in the downstream.

The motivation to introduce this kind of control policy arises from a real world case study of auto-
mated packaging systems. In a typical line configuration package formation and filling is executed by
the first machine, called filling machine, with a continuous and aseptic process where the packaging
material passes through a heated hydrogen peroxide bath. The critical aspect is the production of a cer-
tain amount of waste when the filling machine resumes production after any stoppage. This is because
when the filling process is interrupted for any reason (e.g.,a failure or a blocking event) a portion of the
packaging material remains in contact with the hydrogen peroxide for too long. As a consequence, the
first packages produced when the stoppage is removed do not comply with the quality requirements.

Thus, in this case, such as in other applications with significant outage costs, the need arises to
reduce to a bare minimum the stoppages of the first machine of the line. On one hand, the reduction



The two-machine one-buffer continuous time model with restart policy 3

of internal stoppages can be only obtained by improving the failure rate of the very machine. On the
other hand, a reduction of those stoppages due to the blocking of the outgoing flow can be obtained by
introducing an intermediate buffer and the restart policy described above which forces the first machine
to wait for the buffer to become empty before resuming production after any blocking event.

Hence, the production line under analysis results to be a complex system whose overall performance
not only depends on machines’ capacities and reliability parameters, but also on the buffer allocation
along the line and, moreover, on the restart policy applied to the first machine.

Analytical modeling of production lines has been extensively investigated in the literature as dis-
cussed in Section 1.1. Nevertheless, to the author’s knowledge, none of the previous analytical models
is able to describe an inhomogeneous and asynchronous production line with a restart policy.

1.1 Literature review

Since there are several factors affecting the whole line performance (i.e. machines reliability parameters,
machine capacities and buffer allocation along the line), the design of a production line is a complex
task. As a consequence, there is an increasing need to develop efficient methodologies and approaches
to quickly compute line efficiency and productivity with respect to all the key factors. Specifically, this
work focuses on mathematical methods even if there are othermethodologies such as simulation. The
great advantage of mathematical modeling is that it can leadto the deepest understanding of the system
and provide results in very short periods of time (e.g., the model proposed in this paper can be solved
by a computer in few seconds). On the other hand, simulationsmay be more suitable to study large and
complex systems but are often awkward and time-consuming.

For short lines, i.e. consisting of two machines decoupled by one finite buffer (2M-1B line), ana-
lytical modeling makes it possible to quickly obtain accurate estimations of the line performance. For
extensive reviews, the reader can refer to Dallery and Gershwin (1992) and textbooks as Papadapoulos
et al (1993) and Gershwin (2002). Analytical models of production lines can be adopted to evaluate the
performance with respect to a predefined line configuration,as well as to be integrated in optimization
techniques to derive optimal buffer allocation (Papadopoulos and Vidalis, 1998, 1999, 2001a,b; Bulgak
et al, 1995; Gershwin and Schor, 2000; Spinellis and Papadopoulos, 2000; Lutz et al, 1998).

For lines longer than the 2M-1B system, exact analytical solutions are not available. Nevertheless,
approximate methodologies have been developed. These methodologies can be classified into two main
groups: “decomposition techniques”, whose main idea is to decompose the line in a series of 2M-1B
sub-systems (important works are Gershwin, 1987; Dallery et al, 1989; Choong and Gershwin, 1989;
Dallery and Frein, 1993; Burman, 1995; Yeralan and Tan, 1997; Tan and Yeralan, 1997; Gershwin and
Burman, 2000; Levantesi et al, 2003; Maggio et al, 2003; Gershwin and Werner, 2007), and “aggregation
techniques”, where the 2M-1B sub-system is replaced by one single equivalent machine (see Koster,
1987; Chiang et al, 2000, 2001; Enginarlar and Meerkov, 2005; Chiang et al, 2008). Finally, there exist
other approaches, such as the Expansion Method by MacGregorSmith and Daskalaki (1988).

An interesting point is that the main techniques addressinglong line performance estimation make
use of models developed for the 2M-1B sub-system. This emphasizes the importance of investigating
such a simple but not trivial system.

Since production lines are generally characterized by inhomogeneous asynchronous machines, sys-
tem models must be able to take into consideration machines having different nominal capacities work-
ing on an unsynchronized material flow. This is obtained by modeling the system as a continuous time
Markov process. This kind of modeling approach was originally proposed by Zimmern (1956) and ex-
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tended by Buzacott (1967a,b). Gershwin and Schick (1980) developed a continuous model for a 2M-1B
production line with deterministic processing rates. Thisline is called here the “Basic line” and the
corresponding model the “Basic model”.

Since then, extensions of the Basic model were carried out torepresent more complex behaviors of
the line. These studies significantly contribute to the literature since the more appropriate the model for
the 2M-1B sub-system is, the more representative the approach for the analysis of the whole line will be.
As an example, Tolio et al (2002) presented an analytical method where each machine can fail according
to different failure modes. Kim and Gershwin (2005) investigated the relationship between productivity
and quality and proposed a model with both quality and operation failures. Recent studies have been
carried out to generalize continuous time Markov models by including machines with multiple up and
down states (see, e.g., Tan and Gershwin, 2009, 2011; Tolio,2011).

In this paper an interesting extension of the Basic model is discussed. Specifically, the introduction
of a “restart policy” is investigated. Such a control policyconsists in maintaining the first machine in a
“controlled idle state” each time it gets blocked, as a consequence of the buffer filling up, until the buffer
empties again. The objective is to reduce a key performance measure called here blocking frequency,
i.e., the frequency at which the buffer becomes full.

The first attempt to model this kind of restart policy was carried out by Gebennini et al (2009, in
press). Nevertheless, the model developed by the authors isa discrete time Markov model suitable for
transfer lines only, that is lines in which machines have thesame nominal capacity and the material flow
is synchronized. Hence, by introducing this restart policyinto the Basic model, the present study extends
the work of Gebennini et al (2009, in press) to the case of inhomogeneous asynchronous production
lines, so as to allow the consideration of machines having different capacities. This line with restart
policy is called here the “RP line” and the new corresponding model the “RP model”.

Note that the introduction of this control policy significantly increases the complexity of the mathe-
matics involved. This emphasizes the need for methodologies to facilitate mathematical modeling. The
literature regarding production lines lacks such a discussion. Therefore, this paper presents a modeling
approach for the 2M-1BRP line with restart policy based on the partitioning of the state space so as to
reduce its complexity. Two partitions of the state space canbe identified: first, each of them is mathe-
matically treated as it were the only one representing the system behavior (i.e. in isolation); then, the
solution to the original system is determined as a combination of the solutions found for the partitions
solved in isolation.

TheRP line is modeled as a continuous time Markov process and the analytical solution is provided
by applying the modeling approach formalized in this paper.

The remainder of the paper is organized as follows. Section 2describes the 2M-1BRP line and
introduces the main steps of the modeling approach. Section3 develops the continuous-time mixed
stateRP model. Section 4 provides key performance measures and proves the conservation of flow,
while Section 5 reports the solution technique. Finally, Section 6 shows interesting results from the
application of the proposed model and Section 7 points out some concluding remarks.

2 The 2M-1BRP line

The two-machine one-buffer line with restart policy (2M-1BRP line) is assumed to be made up of two
Markovian machines decoupled by a finite intermediate buffer. As described in Section 1, the behavior
of the system of interest is made complex by the application of a control policy, called restart policy
(RP), whose aim is to reduce the number of stoppages of the first machine due to blocking events.
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A blocking event occurs when the first machine is operationalbut it is prevented from processing
parts because the downstream buffer is full. Specifically, the restart policy acts as follows: when the
buffer fills up and the first machine gets blocked, the first machine is forced to remain idle until the
buffer becomes empty again. When the first machine is forced to remain idle it is said to be in the
so-called “controlled idle state”. This makes it possible to prevent situations where the first machine
resumes processing parts when the buffer level is still high. Thus, the probability of the next blocking
event occurring in a short time is significantly reduced.

As a consequence of the restart policy, it is possible to identify two different system behaviors:

– The standard operation way: both machines can interact, work, fail and be repaired according to
their own failure/repair rates and to the buffer level;

– Thebuffer drainage way: the second machine acts as it were isolated while the first machine remains
idle, i.e. in the “controlled idle state”. As a consequence,the buffer level can only decrease (if the
second machine is up) or stay constant (if it is down).

The 2M-1BRP line is supposed to operate according tostandard operation behavior. The switch
to the buffer drainage behavior occurs when the buffer fills up; the switch from thebuffer drainage
behavior to thestandard operation behavior occurs when the buffer becomes empty.

As discussed in Section 1, the restart policy aims to reduce the blocking frequency, i.e. the frequency
at which the buffer becomes full. Thus, it is particularly useful when some waste parts or outage costs
are produced each time the first machine resumes operation after a stoppage.

2.1 Modeling approach

This section introduces to the main steps and definitions of the modeling approach applied to the
continuous-time mixed state 2M-1BRP model in Section 3.

The hypothesis is to study the system in steady state. The Markov chain model consists of a state
spaceS and a transition probability matrixP whose entryp(Si,S j) is the probability of a transition
from stateSi ∈ S to stateS j ∈ S .

The procedure for obtaining the steady state probability distribution of the 2M-1BRP line is based
on the partitioning of the state spaceS in order to split the original model into two sub-models. The
steps are as follows.

Step 1: Partitioning the state space
It is assumed that the state spaceS can be partitioned into two non empty subsetsP1, P2 ∈ S so
that

P1∪ P2 = S , (1)

P1∩P2 = /0. (2)

As described in more detail in Section 3, it is convenient to relate the two partitionsP1 andP2 to
the two possible ways the system behaves, i.e. thestandard operation behavior (P1) and thebuffer
drainage behavior (P2).
The transitions linking states of one partition to states ofthe other partition are called hereswitching
transitions. Hence, there is an occurrence probability of the switchingtransition fromP1 to P2,
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denoted asP12
s , and an occurrence probability of the switching transitionfrom P2 to P1, denoted

asP21
s .

Specifically, in partitionPi, with i = 1,2, it is possible to identify a set ofinternal states. The set
of internal states Ii of partitionPi is defined as the collection of states that are connected for any
feasible transition to another state of the same partition,or, more precisely:

I
i = {Sl ∈ Pi| for all transition probabilityp(Sl ,Sm) 6= 0,Sm ∈ Pi} . (3)

Transitions between the two partitions, i.e.switching transitions, involve the definition ofboundary
states. A boundary state is a passing gate from one partition to the other. We can define two types
of boundary states, theexit states, i.e. the set of state for which there exists an outbound transition
to states outside the partition, and thearrival states, i.e. the set of states for which there exist an
inbound transition from states outside the partition.
In a formal manner, we define the set ofexit states of partition Pi towards partitionP j, with
i, j = 1,2 andi 6= j, as

E
i j = {E i j}= {Sl ∈ Pi|∃Sk ∈ P j, i 6= j : p(Sl ,Sk) 6= 0} . (4)

The set ofarrival states of partitionPi from partitionP j, with i, j = 1,2 andi 6= j, is defined as

A
i j = {Ai j}= {Sl ∈ Pi|∃Sk ∈ P j, i 6= j : p(Sk,Sl) 6= 0} . (5)

Figure 1 shows the partitionsP1 andP2 and theswitching transitions between the exit states of
one partition to the arrival states of the other partition.

Step 2: Partitions in isolation
The aim is to treat each partition independently, i.e. in “isolation”. In such a way the mathematical
treatment of the problem is extremely simplified. The original Markov chain model, described by
the whole state spaceS is split into two Markov chain sub-models, each of them described by a
single partitionPi ⊂ S , i = 1,2.
The main assumption for the application of this step is that the system is studied in steady state.
Under this condition the following proposition holds.

Proposition 1: For the system to be in steady state, the occurrence probability Pi j
s of

the switching transition from partitionPi to partitionP j equals the oc-
currence probabilityP ji

s of the switching transition from partitionP j to
partitionPi, for i, j = 1,2 andi 6= j.

Thus in steady state we have,

Pi j
s = P ji

s , i, j = 1,2, i 6= j . (6)

Let us consider partitionPi with i = 1,2. Given equation (6), it is possible to replace the switching
transition toP j with j 6= i by a transition from its own exit statesEi j to its own arrivalAi j state, given
that the new occurrence probability equals the probabilityPi j

s of the original switching transition.
Thus, as shown in Figure 1 partitionPi with i = 1,2 results to be “isolated” (or “in isolation”) in the
sense that each state of the partition is connected only to other states belonging to the same partition.
The two partitions in isolation represent two renewal processes so that the corresponding Markov
chain models can be solved independently. The solution to the Markov chain sub-model described by
partitionPi in isolation is the steady state probability distribution denoted here as̃f i, with i = 1,2.

[PUT FIGURE 1 HERE]
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Step 3: Partition probabilities
Considering the original system behavior, at each renewal of partitionPi in isolation, partitionP j

takes place, withi, j = 1,2 andi 6= j. Thus, in order to rebuild the original Markov model describing
the 2M-1BRP line, it is necessary to ensure that the system is in exactly one of the two partitions
at a time. As a consequence, it is necessary to introduce the term π i, called here as the “partition
probability” of Pi, representing the probability for the system being into partition Pi with i = 1,2.
The partition probabilities satisfy the following normalization equation:

2

∑
i=1

π i = 1. (7)

Step 4: System solution
Once both the isolated solutions and the partition probabilities have been found, it is possible to
express the system solutionf , i.e. the solution to the original Markov chain model, as a combination
of the solutionsf̃ i, with i = 1,2, found for each partition in isolation:

f =
2

∑
i=1

π i f̃ i
. (8)

3 The continuous-time mixed-stateRP model

In this section the modeling approach described in Section 2.1 is applied to the continuous-time mixed-
state model of the 2M-1BRP line.

Recall that if no control policy is in place, the continuous 2M-1B RP line becomes a simple 2M-1B
line investigated by the previous literature. In particular, we refer to a previous continuous-time mixed-
state model for a 2M-1B line without restart policy that is called here Basic model (see Gershwin and
Schick, 1980; Gershwin, 2002).

TheRP model significantly extends the Basic model. As explained inSection 2, the restart policy
introduces two different behaviors in the system, i.e. thestandard operation, where no control policy is
applied, and thebuffer drainage, where the first machine is put in the controlled idle state allowing the
buffer level to decrease.

3.1 Notation and assumptions

One of the main advantages of modeling the system by a continuous-time mixed-state model is that
inhomogeneous asynchronous machines can be properly addressed.

The main assumptions of the 2M-1BRP model are as follows:

1. A machine is said to be “starved” if its incoming flow is interrupt (the buffer is empty and the
upstream machine is down). A machine is said to be “blocked” if its outgoing flow is interrupt (the
buffer is full and the downstream machine is down). For the 2M-1B RP line it is assumed that the
first machine is never starved and the second machine is neverblocked;

2. The material that is processed is treated as though it is a continuous fluid;
3. The machine are either up (i.e. operational) or down (i.e.under repair) so that there is no middle

ground in the model;
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4. The machines may have different production rates so that the line can be inhomogeneous and asyn-
chronous;

5. The machines have exponentially distributed times between failures and time to repair;
6. The failures are assumed to be operation-dependent so as the first machine cannot fail while it is

blocked or in the controlled idle state, and the second one cannot fail while it is starved;
7. The intermediate buffer has a finite capacity (note that, as a consequence of assumption 2 the buffer

level is continuous in the range defined by zero and the maximum capacity);
8. The material in process is not destroyed or rejected at anystage in the system;
9. When the restart policy takes place the system switches from thestandard operation behavior to the

buffer drainage behavior. This happens when the buffer fills up. The system returns to thestandard
operation behavior when the buffer becomes empty again.

The following notation is adopted:

– x ∈ R is the buffer level, with 0≤ x ≤ N, beingN the buffer capacity (see assumption 7);
– αi = 0,1 is the condition of machinei, with i = 1,2 (see assumption 3): ifαi = 0 machinei is down,

if αi = 1 machinei is operational;
– µi is the production rate of machinei, with i = 1,2 (see assumption 4);
– pi is the failure rate of machinei, with i = 1,2 (see assumption 5);
– ri is the repair rate of machinei, with i = 1,2 (see assumption 5).

Note that ifµ1 < µ2 and the buffer is empty the second machine is forced to slow down its speed to
µ1. Thus, ifx = 0 the probability of failure of the second machine at timet+δ t, provided thatα2(t) = 1,
is pb

2δ t, where

pb
2 =

µ1

µ2
p2 . (9)

This is because failures are assumed to be operation dependent (see assumption 6). When the buffer is
not empty, such a probability isp2δ t.

Consider now the case whereµ1 > µ2 and, specifically, the state with the buffer level at the maximum
capacityN and both machines operational. In the Basic model without any control policy the system
can persist in this state, with the first machine reducing itsspeed toµ2. On the contrary, if the restart
policy is implemented we assume that as soon as the buffer level equalsN with the second machine in
an operational state (α2 = 1), either because it is repaired or because it does not fail (note that the first
machine must be operational to allow the buffer to fill up), the system switches instantaneously into the
buffer drainage behavior and the first machine is put in the controlled idle state.

The probability to have a repair at timet + δ t of a machinei failed att
(

αi(t) = 0
)

is riδ t.

3.2 Step 1: Partitioning the state space

It is convenient to partition the state space according to the two different ways the system behaves so
that we have:

– thestandard operation partition;
– thebuffer drainage partition.

Thus, the system state can be defined asS =
(

β ,x,α1,α2
)

where, as described in Section 3.1,x∈R

is the buffer level with 0≤ x ≤ N; αi = 0,1 is the condition of the machinei = 1,2; andβ is a binary
parameter that is conveniently introduced here to distinguish between states belonging to thestandard
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operation partition (β = 0) or thebuffer drainage partition (β = 1). It is assumed that whenβ = 1, i.e.
the first machine is in the controlled idle state,α1 is fixed and set to 1 (it is forced to remain idle, but it
is operational and cannot fail) so that states

(

1,x,0,α2
)

are not feasible.
Note that the system state includes three binary parametersand a continuous componentx. Thus, the

probability distribution has a density function on(0,N), denoted asf (β ,x,α1,α2). The aim of this work
is to express the solutionf (β ,x,α1,α2) in order to be able to compute some performance measures.

The switching transition from thestandard operation partition to thebuffer drainage partition occurs
if the buffer fills up.

Let us consider the simplest case whereµ1 ≤ µ2. The buffer might fill up only if the first machine
is up and the second is down. In fact, since the first machine isslower than the second one, if both the
machines are operational the buffer level tends to decreaseand the maximum buffer sizeN cannot be
reached. In other words, the only non-transient state with the buffer levelx = N is that withα1 = 1 and
α2 = 0. For convenience, we assume that this state belongs to thestandard operation partition so that it
is denoted as(0,N,1,0) where the first termβ is set to zero.

Note that state(0,N,1,0) is peculiar for the following considerations:

– in this state the first machine is blocked, i.e. it is operational but it cannot work since its outgoing
flow is prevented being the second machine down and no storagespace in the buffer;

– since the maximum buffer sizeN is defined by a physical limit, this state acts as amass point which
itself has nonzero probability (see Gershwin, 2002). Letp(0,N,1,0) be the probability for the system
being in state(0,N,1,0).

The behavior of the 2M-1MRP line under analysis is such that when the second machine is repaired
(and, consequently, the buffer level starts to decrease) the first machine is not allowed to resume pro-
duction but it is forced to remain idle, i.e. put in the “controlled idle state”. Thus, as soon as the second
machine is repaired the switching transition from thestandard operation partition to thebuffer drainage
partition occurs. This means that state(0,N,1,0) is the exit state of thestandard operation partition.
The arrival states of thebuffer drainage partition are states where the buffer level is reduced by at most
the amount processed by the second machine inδ t and both machines up since the first machine cannot
fail (it is prevented from working) and the second machine has been repaired. Thus, the arrival state of
thebuffer drainage partition is state(1,x,1,1) with ≤ N − µ2δ t ≤ x < N (note thatβ is set now to 1),
whereµ2δ t is what the second machine processes inδ t.

Since the switching transition occurs if the system is in state (0,N,1,0) and the second machine is
repaired, we have:

Ps = r2δ t p(0,N,1,0) . (10)

Once the system has entered thebuffer drainage partition, it remains in this partition until the buffer
becomes empty. Note that the first machine is in the “controlled idle state” so that it cannot work nor
fail and the buffer level can only decrease (if the second machine is up) or stay constant (if the second
machine is down).

Hence, the switching transition from thebuffer drainage partition to thestandard operation partition
occurs whenx reaches the physical limit at zero since the second machine is up (α2 = 1). Specifically,
we assume that the switching transition occurs between state (1,x,1,1) with 0< x ≤ µ2δ t of thebuffer
drainage partition and state(0,0,1,1) of the standard operation partition where state(0,0,1,1) is a
mass point, similarly to(0,N,1,0).
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Since this switching transition occurs if the system is in state(1,x,1,1) with 0< x ≤ µ2δ t and the
second machine does not fail, we have:

Ps = (1− p2δ t)
∫ µ2δ t

0
f (1,x,1,1)dx , (11)

or, ignoring second order terms,

Ps = µ2δ t f (1,0,1,1) , (12)

Since the system is studied in steady state, Proposition 1 holds so that we have:

r2p(0,N,1,0) = µ2 f (1,0,1,1) , (13)

The above considerations have been done for the case withµ1 ≤ µ2, the exit and arrival states for
the case withµ1 > µ2 are reported in Table 1.

[PUT TABLE 1 HERE]

Note that when the system is in internal states of thestandard operation partition (i.e. with interme-
diate buffer levels) it can be seen as a simple 2M-1B line where machines work, fail and are repaired
according to their own reliability parameters. This occursin a previous model presented by the literature
that is referred here as the Basic model (see Gershwin and Schick, 1980; Gershwin, 2002). Thus, we
recall the Basic model for what concerns state of thestandard operation partition with intermediate
buffer level, but we extend it significantly by considering the switching transitions to/from thebuffer
drainage partition introduced by the restart policy.

3.3 Step 2: Partitions in isolation

In this section the two partitions are treated separately, i.e. in isolation.
By applying Step 2 of the modeling approach, we isolate each partition by using a direct transition

from its own exit states and its own arrival states. Once a partition as been “isolated” it can be solve by
taking it as “standing alone”.

For convenience, we use a simplified notation for the partitions in isolation. Specifically, the system
state for thestandard operation partition in isolation is defined asS S =

(

x,α1,α2
)

, for the buffer
drainage partition in isolation asS D = (x,α2), beingx the buffer level andαi = 0,1 the condition of
machinei = 1,2. S S =

(

x,α1,α2
)

corresponds to state(0,x,α1,α2) of the original Markov process,
S D = (x,α2) corresponds to state(1,x,1,α2) of the original Markov process. Note that states in the
buffer drainage partition in isolation do not depend onα1 since the first machine is in the controlled idle
state (it cannot work nor fail) and the second machine operates as it were isolated.

Let f S(x,α1,α2, t) and pS(x,α1,α2, t) be the probability density function and the probability of
being in state(x,α1,α2, t) belonging to thestandard operation partition, f D(x,α2, t) be the probability
density function for thebuffer drainage partition.
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3.3.1 Standard operation partition in isolation

This partition can be solved in isolation by considering it as the only one representing the system be-
havior. In words, transitions to/from thebuffer drainage partition (characterizing the original complex
behavior) are replaced with direct transitions from theexit to thearrival states of thestandard operation
partition itself. Thus, thestandard operation partition in isolation can be thought of as modeling a sys-
tem where each time the buffer fills up, it empties instantaneously as the second machine gets repaired
(or does not fail, in caseµ1 > µ2).

Specifically, forµ1 ≤ µ2 we have that

if the system is in state(N,1,0), it can enter only state(0,1,1), when the second machine is
repaired;

for µ1 > µ2 we have that

if the system is state(N,1,0) or if both machines are operational and the buffer level is approach-
ing the maximum capacity (i.e., the system is in states(x,1,1) with N − (µ1− µ2)δ t ≤ x < N)
it will pass to state(x,1,1) with 0 < x ≤ (µ1 − µ2)δ t if the second machine is repaired or no
failures occur, respectively.

As introduced above, thestandard operation partition in isolation can be modeled by means of the
Basic model without restart policy (see Gershwin and Schick, 1980; Gershwin, 2002) except for the
boundary equations that represent how the system leaves/enters theexit/arrival states.

For the sake of clarity, the most significant equations modeling this partition are discussed in the
sequel by treating the three casesµ1 < µ2, µ1 = µ2 andµ1 > µ2 separately.

All equations for this partition are listed in Appendix A.
Finally, the following normalization equation expressingthat the sum of all probabilities must equal

1 is needed to solve the partition in isolation:

1

∑
α1=0

1

∑
α2=0

[

∫ N

0
f S(x,α1,α2)dx+pS(0,α1,α2)+pS(N,α1,α2)

]

= 1. (14)

The technique used to determine the solution to thestandard operation partition in isolation is
explained in detail in Section 5.

Case µ1 ≤ µ2

As regards the lower boundary (x = 0), it is necessary to describe how the system arrives at the arrival
state

(

0,1,1
)

.
Sinceµ1 < µ2, it is possible to get to

(

0,1,1
)

from

–
(

0,1,1
)

if no failures occur;
–
(

0,0,1
)

if the first machine is repaired;
–
(

x,1,1
)

, with 0< x ≤ (µ2− µ1)δ t (for the case
mu1 < µ2), if no failures occur;

–
(

N,1,0
)

if the second machine is repaired;
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where the latter is the exit state introduced by the restart policy.
Symbolically, ignoring the second order terms,

pS(0,1,1, t + δ t) =(1− (p1+ pb
2)δ t)pS(0,1,1, t)+ r1δ tpS(0,0,1, t)+

+

∫ (µ2−µ1)δ t

0
f S(x,0,1,1, t)dx+ r2δ tpS(N,1,0, t) .

Lettingδ t → 0, the equation becomes

d
dt

pS(0,1,1) =− (p1+ pb
2)p

S(0,1,1)+ r1pS(0,0,1)+

+(µ2− µ1) f S(0,1,1)+ r2p
S(N,1,0) .

(15)

As regards the upper boundary (x = N), the introduction of the restart policy prevents the system
from reaching any internal states

(

x,α1,α2
)

from the upper boundary.
Thus, states

(

x,0,1
)

, with N − µ2δ t ≤ x < N, cannot be reached from the boundary (because
of the restart policy) or from any intermediate-buffer-level state (they cannot be reached from states
(

x ′,α1,α2
)

in δ t, if x ′ ≤ x andδ t is small, because when the second machine is working the buffer
level decreases).

Symbolically, if the second order terms are ignored, we obtain

∫ N

N−µ2δ t
f S(x,0,1, t + δ t)dx = 0,

or,
f S(N,0,1) = 0, (16)

If µ1 < µ2, we notice that also states
(

x,1,1
)

, with N − (µ2 − µ1)δ t ≤ x < N, cannot be reached
from the boundary since the restart policy forces the systemto enter the arrival state(0,1,1). Thus,

f S(N,1,1) = 0. (17)

Similarly, if µ1 = mu2 state
(

N,1,1
)

can be reached only from itself inδ t, if no failures occur. As a
consequence,

pS(N,1,1) = 0. (18)

Case µ1 > µ2

It is convenient to start by discussing the upper boundary. Recall that, thestandard operation partition
in isolation withµ1 > µ2 can be seen as representative of a fictitious system where as soon as the buffer
gets full with the second machine operational, it falls downto zero (note that reaching states withx = N
is possible only if the first machine is operational). This means that state

(

N,1,1
)

is transient. Thus,
the system passes directly from states

(

x,1,1
)

with N − (µ1− µ2)δ t ≤ x < N to states
(

x,1,1
)

with
0< x ≤ (µ1− µ2)δ t). Note state

(

0,1,1
)

is also transient since the system cannot persists in that state
if µ1 > µ2.

Therefore,
pS(N,1,1) = 0. (19)
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Another effect of the restart policy is that also states
(

x,0,1
)

with N −µ2δ t ≤ x < N can be reached
from the boundary. Thus, to the first order,

f S(N,0,1) = 0. (20)

As regards the lower boundary (x = 0), to arrive at state
(

x,1,1
)

with 0< x ≤ (µ1− µ2)δ t at time
t + δ t, the system may have been in one of three sets of states at timet. It could have been in state
(

0,0,1
)

with a repair of the first machine. It could have been in state
(

N,1,0
)

with a repair of the
second machine. It could have been in any state

(

x,1,1
)

with N − (µ1− µ2)δ t ≤ x < N if no failures
occur. The latter two transitions are not feasible in the Basic model since they are related to the restart
policy introduced in this work. Note that, sinceµ1 > µ2, it is not possible to reach state

(

x,1,1
)

with
0< x ≤ (µ1− µ2)δ t from any intermediate-buffer-level state

(

x ′
,α1,α2

)

with x ′ ≥ x.
Symbolically, ignoring the second order terms,

∫ (µ1−µ2)δ t

0
f S(x,1,1, t + δ t)dx =r1

∫ t+δ t

0
pS(0,0,1,s)ds+ r2

∫ t+δ t

0
pS(N,1,0,s)ds+

+

∫ N

N−(µ1−µ2)δ t
f S(x,1,1, t + δ t)dx .

Lettingδ t → 0, the equation becomes

(µ1− µ2) f S(0,1,1) = r1pS(0,0,1)+ r2pS(N,1,0)+ (µ1− µ2) f S(N,1,1) . (21)

3.3.2 Buffer drainage partition in isolation

In the buffer drainage partition the first machine is operational but in the controlled idle state, thus it
does not process material and, as a consequence, failures cannot occur. Hence, the system state for this
partition does not depend on the state of the first machine andcan be represented simply as(x,α2), with
α2 = 0,1.

Moreover, states belonging to thebuffer drainage partition are characterized by a buffer levelx with
0< x < N and, consequently, only states with intermediate buffer levels are involved.

This leads to the following equations for thebuffer drainage partition in isolation:

∂ f D

∂ t
(x,1,1) =−p2 f D(x,1,1)+ r2 f D(x,1,0) + µ2

∂ f D

∂x
(x,1,1) , (22)

∂ f D

∂ t
(x,1,0) =−r2 f D(x,1,0)+ p2 f D(x,1,1) , (23)

where thet argument is suppressed andf D(x,α2) represents the probability density function of state
(x,α2)

Since the steady state versions of equations (22) and (23) have to be simultaneously satisfied, it leads
to the following:

∂ f D

∂x
(x,1) = 0. (24)
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Therefore,f D(x,α2) is constant.
Thebuffer drainage partition in isolation can be thought of as describing the reduction of the buffer

level according to the production, failure and repair ratesof the second machine only. Thus, the prob-
ability density function describing the system behavior inthis case depends only onα2 and it can be
indicated simply as follows:

f D(x,α2) = f ∗D(α2) . (25)

Equations related to this partition are listed in Appendix A.
Similarly as in the previous case, the isolation procedure requires the following normalization equa-

tion in order to find the partition solution:

1

∑
α2=0

∫ N

0
f ∗D(α2)dx = N

1

∑
α2=0

f ∗D(α2) = 1. (26)

This makes it possible to obtain the solution to thebuffer drainage partition in isolation, as detailed
in Section 5.

3.4 Step 3: Partition probabilities

Once the solutions to both the isolated partitions have beenfound, it is necessary to consider that the
system can be in exactly one of the two partitions at a time, i.e. we have to compute the probability of
being either in thestandard operation partition or in thebuffer drainage partition.

Let T be the mean time between the occurrences of the same switching transition in steady state.
The following equation holds:

T = TS +TD
, (27)

whereT S is the mean time spent in states of thestandard operation partition duringT, andT D is the
mean time spent in states of thebuffer drainage partition duringT.

Thus, the probability of being in each partition can be expressed in terms ofT, TS andTD as follows:

π S =
TS

T
, (28)

π D =
TD

T
. (29)

SinceTS can be seen as the mean time between two switching transitions from thestandard opera-
tion partition to thebuffer drainage partition, we have:

TS =
1

φ S,D , (30)

whereφ S,D is the frequency of the switch from thestandard operation partition to thebuffer drainage
partition, being the system in states of thestandard operation partition.

In other words, given that the system is into thestandard operation partition,φ S,D is the probability
of entering (and not persisting) state(N,1,0) or, if µ1 > µ2, the probability of being in states

(

x,1,1
)

,
with N − (µ1− µ2)δ t ≤ x < N, and no failures occur. Thus,

φ S,D =

{

µ1 f S(N,1,0), if µ1 ≤ µ2,

µ1 f S(N,1,0)+ (µ1− µ2) f S(N,1,1), if µ1 > µ2
. (31)
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By similar reasoning,TD is defined as the mean time between two switching transitionsfrom the
buffer drainage partition to thestandard operation partition. Thus,

TD =
1

φ D,S , (32)

whereφ D,S is the frequency of the switch from thebuffer drainage partition to thestandard operation
partition, being the system in states of thebuffer drainage partition. Recall that in thebuffer drainage
partition we consider internal states only and the probability of entering any of them is constant, inde-
pendent on the buffer levelx. So,

φ D,S = µ2 f ∗D(1) . (33)

Finally, the expressions ofπ S andπ D become:

π S =
φ D,S

φ D,S +φ S,D =























µ2 f ∗D(1)
µ2 f ∗D(1)+ µ1 f S(N,1,0)

, if µ1 ≤ µ2,

µ2 f ∗D(1)
µ2 f ∗D(1)+ µ1 f S(N,1,0)+ (µ1− µ2) f S(N,1,1)

, if µ1 > µ2

, (34)

π D =
φ S,D

φ D,S +φ S,D =























µ1 f S(N,1,0)
µ2 f ∗D(1)+ µ1 f S(N,1,0)

, if µ1 ≤ µ2,

µ1 f S(N,1,0)+ (µ1− µ2) f S(N,1,1)
µ2 f ∗D(1)+ µ1 f S(N,1,0)+ (µ1− µ2) f S(N,1,1)

, if µ1 > µ2

. (35)

3.5 Step 4: System solution

In the case of interest, the system behavior is represented by either thestandard operation partition or
thebuffer drainage partition according to the buffer level. Specifically, thestandard operation partition
works until the buffer gets full and a blocking event occurs.Thebuffer drainage partition represent the
system behavior if a blocking event has occurred, until the buffer becomes empty again.

As explained in Step 4 of the modeling approach described in Section 2.1, the solution to the original
system is a combination of the solutions found for the two partitions in isolation.

Given that the system state is defined as in Section 3.2, we have:

f (β ,x,α1,α2) = (1−β )π S f S(x,α1,α2)+β π D f ∗D(α2) , (36)

whereπ S is the partition probability of being in thestandard operation partition andπ D = 1−π S

is the partition probability of being in thebuffer drainage partition as defined in Section 3.4.
Recall that the first machine cannot fail during thebuffer drainage partition since it is in the con-

trolled idle state. Thus,
f (1,x,0,α2) = 0. (37)

In order to complete the solution, boundary probabilities must be considered. Since states withx = 0
or x = N belong to thestandard operation partition only, we have:
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p(β ,0,α1,α2) =

{

π SpS(0,α1,α2) if β = 0

0 if β = 1,
(38)

and

p(β ,N,α1,α2) =

{

π SpS(N,α1,α2) if β = 0

0 if β = 1.
(39)

The solution to the 2M-1BRP model described in this paper can be obtained in closed form as
reported in Section 5.

4 Blocking frequency, production rate and conservation of flow

Since the aim of the restart policy is to reduce the stoppagesof the first machine due to blocking events,
the blocking frequencyf b is a fundamental performance measure.

Recall that the first machine gets blocked when the system reaches state(0,N,1,0), i.e. when the
buffer is full, the second machine is down and the first machine, even if still operational, cannot release
material. Therefore, the blocking frequencyf b can be determined as the probability of entering (or,
equally, of exiting) that state. So,

f b = r2p(0,N,1,0) , (40)

where, for the sake of simplicity, the blocking frequency isexpressed as the probability of exiting state
(0,N,1,0).

Another important performance measure is the line production rate. The production rate of each
machinei (with i = 1,2), i.e. the rate at which material leaves the machine, is equal to its capacity
multiplied by its efficiencyEi. Specifically, the speed at which machinei can operate isµi if machine
i is not limited by the other one (e.g., ifµ1 < µ2, when the buffer is empty and the first machine is
operational, the second machine cannot be faster than the first one).

Consequently, considering non-zero probabilities only, we have

P1 = µ1

[

∫ N

0

(

f (0,x,1,0)+ f (0,x,1,1)
)

dx+p(0,0,1,1)
]

, (41)

for the first machine, and

P2 = µ2

[

∫ N

0

(

f (0,x,0,1)+ f (0,x,1,1)
)

dx+
∫ N

0
f (1,x,1,1)dx

]

+ µ1p(0,0,1,1) , (42)

for the second one. Note that ifµ1 > µ2 the termp(0,0,1,1) is equal to zero.
Since the first machine is in the controlled idle state duringthe buffer drainage partition, states

belonging to this partition influences the production rate of the second machine only.
For the system to be in the steady state, the following equation (conservation of flow equation) must

be verified:
P1 = P2 . (43)

The proof is reported in Appendix B.
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5 Solution technique

In this section the solution technique adopted to solve the two partitions in isolation is explained in
detailed. Given the isolated solutionsf S(x,α1,α2) and f D(x,α2), the partition probabilities can be
easily determined according to equations (34) and (35) and,finally, the system solution according to
equation (36).

5.1 Standard operation partition in isolation

It is natural to assume the following exponential form for the solution to the steady state density equa-
tions of thestandard operation partition in isolation:

f S(x,α1,α2) =C Seλ xY α1
1 Y α2

2 . (44)

By substituting (44) in the internal equations belonging tothis partition (equations (92)-(95) in
Appendix A) we obtain the three following parametric equations:

2

∑
i=1

(piYi − ri) = 0, (45)

λ µ2 = (p2Y2− r2)
Y2+1

Y2
, (46)

−λ µ1 = (p1Y1− r1)
Y1+1

Y1
. (47)

If µ1 6= µ2, equations (45)-(47) can be reduced to a single quadratic equation inY1:

−(µ2− µ1)p1Y 2
1 +

[

(µ2− µ1)(r1+ r2)− (µ2p1+ µ1p2)
]

Y1+ µ2(r1+ r2) = 0. (48)

Equation (48) has the two following solutions:

Y11 =

[

(µ2− µ1)(r1+ r2)− (µ2p1+ µ1p2)
]

2(µ2− µ1)p1
+

−

√

[

(µ2− µ1)(r1+ r2)− (µ2p1+ µ1p2)
]2
+4µ2(µ2− µ1)p1(r1+ r2)

2(µ2− µ1)p1
,

(49)

Y12 =

[

(µ2− µ1)(r1+ r2)− (µ2p1+ µ1p2)
]

2(µ2− µ1)p1
+

+

√

[

(µ2− µ1)(r1+ r2)− (µ2p1+ µ1p2)
]2
+4µ2(µ2− µ1)p1(r1+ r2)

2(µ2− µ1)p1
.

(50)

By substituting (49) and (50) in (45) and (46) it is possible to find out the expression for the remain-
ing parametersY21, Y22, λ1, λ2.
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Moreover, another feasible solution is the following:

Y13 =
r1

p1
, (51)

Y23 =
r2

p2
, (52)

λ3 = 0. (53)

Consequently, the solution for internal states can be expressed as

f S(x,α1,α2) =
3

∑
j=1

C S
j eλ jx Y α1

1 j Y α2
2 j , (54)

where, from equation (53), the third component of the solution is constant.
If µ1 = µ2 = µ , equation (48) reduces to a linear equation whose solution is

Y11 =
r1+ r2

p1+ p2
. (55)

From the parametric equations (46) and (47) we obtain:

Y21 =
r1+ r2

p1+ p2
= Y11, (56)

λ1 =
1
µ
(r1p2− r2p1)

( 1
p1+ p2

+
1

r1+ r2

)

. (57)

It is convenient to treat separately the three cases relatedto µ1 = µ2, µ1 < µ2 andµ1 > µ2.

Case µ1 < µ2

The boundary conditions yield

p(0,0,0) = 0, (58)

p(0,1,0) = 0, (59)

p(0,0,1) =
µ2

r1

[

C S
1

( p1

p2
Y11+Y21

)

+C S
2

( p1

p2
Y12+Y22

)

+C S
3

( p1

p2
Y13+Y23

)

]

, (60)

p(0,1,1) =
µ2

p2

(

C S
1 Y11+C S

2Y12+C S
3Y13

)

, (61)

p(N,0,0) = 0, (62)

p(N,1,0) =
µ1

r2

(

C S
1 eλ1 NY11+C S

2 eλ2 NY12+C S
3Y13

)

, (63)

p(N,0,1) = 0, (64)

p(N,1,1) = 0. (65)

It is possible to express the constantsC S
2 andC S

3 in term ofC S
1 by equation (16) and (17). Specifically,

C S
2 =−

eλ1N

eλ2N

Y21
(

Y11−Y13
)

Y22
(

Y12−Y13
) C S

1 , (66)
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and

C S
3 = eλ1N Y21

Y23

(

Y11−Y13

Y12−Y13
−1

)

C S
1 . (67)

Therefore, the only unknown parameter in thestandard operation partition model isC S
1 . The value of

C S
1 can be found by means of the normalization equation for thestandard operation partition in isolation,

i.e. equation (14). Note that the Basic model without restart policy presents only two constants while
C S

3 6= 0 in theRP model as a consequence of the restart policy.

Case µ1 > µ2

The boundary probabilities are the following:

p(0,0,0) =0, (68)

p(0,1,0) =0, (69)

p(0,0,1) =
(µ2− µ1)

r1

(

C S
1 Y11Y21(1− eλ1N)+C S

2Y12Y22(1− eλ2N)
)

+

−
µ1

r1

(

C S
1 eλ1NY11+C S

2 eλ2NY12+C S
3Y13

)

, (70)

p(0,1,1) =0, (71)

p(N,0,0) =0, (72)

p(N,1,0) =
µ1

r2

(

C S
1 eλ1 NY11+C S

2 eλ2 NY12+C S
3Y13

)

, (73)

p(N,0,1) =0, (74)

p(N,1,1) =0. (75)

The constantsC S
2 andC S

3 can be expressed in terms of ofC S
1 by equation (101), reported in Appendix

A, evaluated at the steady state, and by equation (20).
Thus,

C S
2 =−

eλ1NY21Y13−Y23Y11

eλ2NY22Y13−Y23Y12
C S

1 , (76)

and

C S
3 =

[

−
Y11

Y13
+

Y12

Y13

(

eλ1 NY21Y13−Y23Y11

eλ2 NY22Y13−Y23Y12

)

]

C S
1 . (77)

Even in this case, the only unknown parameter isC S
1 whose value can be obtain by the normalization

equation for thestandard operation partition in isolation (equation 14).

Case µ1 = µ2 = µ

In this caseY12= 0 and, consequently,Y22 = 0 andλ2 = 0. Nevertheless, it is still necessary to consider
the parametersY13 andY23 given by equations (51) and (52) (λ3 = 0 from equation 53).

Consequently, the solution for internal states can be simply expressed as

f S(x,α1,α2) =C S
1 eλ1x Y α1+α2

11 +C S
3Y α1

13 Y α2
23 , (78)
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where, for the sake of clarity, the same notation used for theprevious cases has been maintained.
The boundary conditions yield

p(0,0,0) = 0, (79)

p(0,1,0) = 0, (80)

p(0,0,1) =
µ
r1

Y11

( p1

p2
+1

)

C S
1 +

µ
r1

( p1

p2
Y13+Y23

)

C S
3 , (81)

p(0,1,1) =
µ
p2

(C S
1 Y11+C S

3Y13) , (82)

p(N,0,0) = 0, (83)

p(N,1,0) =
µ
r2
[C S

1 eλ1NY11+C S
3Y13] , (84)

p(N,0,1) = 0, (85)

p(N,1,1) = 0. (86)

Recall that in the Basic model without restart policy the constantC S
3 in equation (78) is zero. On the

contrary, here the relation betweenC S
1 andC S

3 can be found by considering equation (16) leading to the
following:

C S
3 =−

eλ1xY11

Y23
C S

1 . (87)

The normalization equation (14) allows us to find the value ofC S
1 and complete the solution.

5.2 Buffer drainage partition in isolation

As regards thebuffer drainage partition in isolation, a solution satisfying equations (22) and (23) is the
following:

f ∗D(α2) =CD
( r2

p2

)α2
. (88)

The value ofCD can be obtained by the normalization equation for thebuffer drainage partition in
isolation (equation 26) as follows:

NCD
(

1+
r2

p2

)

= 1, (89)

so,
CD =

p2

N(p2+ r2)
. (90)

5.3 System solution

Once the solutions have been determined for both the partitions in isolation, we can derive the probabil-
ities of the system being in each partition from equation (34) and (35).

Finally, the solution to the original system can be expressed as follows:

f (β ,x,α1,α2) = (1−β )π S
( 3

∑
j=1

C S
j eλ jxY α1

1 j Y α2
2 j

)

+β π D p2

N(p2+ r2)

(

r2

p2

)α2

, (91)
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where the constant parametersC j, Yi j, λ j with i = 1,2 and j = 1,2,3 are computed according to
Section 5.

6 Numerical results

In the following some interesting numerical examples are proposed where theRP model described in
this paper is compared with the Basic model without restart policy (see Gershwin and Schick, 1980;
Gershwin, 2002). In this way it is possible to discuss the benefits that may derive from the adoption of
the restart policy.

In particular, scenarios withµ1e1 > µ2e2 and withµ1e1 < µ2e2 are investigated. Configurations in
which µ1 < µ2, µ1 = µ2, andµ1 > µ2 are evaluated as well.

Figure 2 depicts the blocking frequency of Example 1a, whoseinput data are reported in Table 2.
In this example the isolated productivity of the first machine µ1e1 is greater than that of the second
machineµ2e2, while µ1 ≤ µ2. Light lines represent theRP model and bold lines represent the Basic
model. Same line type means same input data. As can be easily seen, when the restart policy is not
adopted, the blocking frequency approaches a limit greaterthan zero as the buffer capacity increases.
Thus, whenµ1e1 > µ2e2,

– if the restart policy is not adopted, there is a nonzero probability of the buffer filling up even if large
buffer capacities are involved;

– the introduction of the restart policy makes it possible to significantly reduce the blocking frequency,
allowing it to tend to zero when the buffer capacity is large enough.

Therefore, ifµ1e1 > µ2e2 and the outage costs on the first machine are critical (so thatthe blocking
frequency results to be a key performance measure that should be taken as low as possible), the adoption
of the restart policy results to be convenient. This situation occur, e.g., in automated packaging lines of
the food and beverage sector.

[PUT TABLE 2 HERE]

[PUT FIGURE 2 HERE]

The same result is obtained in Figure 3 reporting Example 1b (refer to Table 3). Whileµ1e1 is still
greater thanµ2e2, nowµ1 ≥ µ2.

[PUT TABLE 3 HERE]

[PUT FIGURE 3 HERE]

Finally, Figure 4 reports the results of Example 2 representing scenarios withµ1e1 < µ2e2 (refer to
Table 4). As in previous figures, light lines represent theRP model and bold lines the Basic model, and
same line type means same input data. In such situations, theblocking frequency naturally approaches
the limit zero as the buffer capacity increases. This is truefor both models, with or without restart policy.
What can be noted is that the restart policy affects the rapidity of the convergence. This is especially
evident for the caseµ1 > µ2 (see Table 4 and the dashed line in Figure 4) where the restartpolicy makes
it possible to reduce the blocking frequency even when smallbuffers are adopted.

[PUT TABLE 4 HERE]
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[PUT FIGURE 4 HERE]

Thus, if µ1e1 < µ2e2 it is possible to reduce the blocking frequency by either using a large buffer
or adopting the restart policy. Moreover, it is important toconsider that if, on one hand, the restart
policy has a beneficial effect on the blocking frequency; on the other hand, the probability of starvation
increases. Figure 5 shows the starvation probability for Example 2. Since the adoption of the restart
policy implies an higher starvation probability, it may be convenient only if outage costs on the first
machine are highly critical and there exist constraints on the buffer capacity.

[PUT FIGURE 5 HERE]

In general, the decision whether or not to adopt the restart policy would be based on a carefully
considered evaluation of other constraints that are out of the scope of this work (e.g., buffer capacity
constraints and costs). This is especially true ifµ1e1 < µ2e2.

7 Conclusions

The work addresses the performance estimation of a 2M-1B production line in which a control policy
is adopted to control the machines’ behavior according to a specific event happening in the line, i.e. the
buffer filling up. Since the introduction of such a control policy increases the complexity of the problem,
a modeling approach based on the partitioning of the state space has been developed so as to facilitate
mathematical tractability.

The production line under study consists of two machines decoupled with a finite buffer where a
restart control policy (RP) is introduced on the first machine. The aim is to prevent the very machine
from producing parts each time the buffer gets full until it empties again. This policy is frequently
adopted in industrial installations where outage costs (e.g. production of a certain amount of waste) are
generated during the restart phase of the machines.

TheRP model is developed as a continuous time Markov process so as to allow the consideration
of machines having different capacities and working in an asynchronous manner. The exact analytical
solution of the model is provided and the conservation of flowis proved. Moreover, the expression of
the most important performance measures is derived.

Numerical examples prove the ability of theRP model to represent the effects of the adopted restart
policy on the blocking frequency (and, as a consequence, on the line efficiency), as a function of the
buffer capacity and the machines’ parameters. The resulting model represents an important tool able to
point out the convenience of adopting a restart policy in a production line and to measure its effects as a
function of the line characteristics.
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A Partitions in isolation: Model Equations

A.1 Standard Operation Partition in Isolation

Intermediate Buffer Levels

The internal equations are the same as the Basic model (see Gershwin and Schick, 1980; Gershwin, 2002).

∂ f S

∂ t
(x,1,1) =− (p1+ p2) f S(x,1,1)+(µ2 −µ1)

∂ f S

∂x
(x,1,1)+ r1 f S(x,0,1)+ r2 f S(x,1,0), (92)

∂ f S

∂ t
(x,0,0) =− (r1+ r2) f S(x,0,0)+ p1 f S(x,1,0)+ p2 f S(x,0,1), (93)

∂ f S

∂ t
(x,0,1) =µ2

∂ f S

∂x
(x,0,1)− (r1 + p2) f S(x,0,1)+ p1 f S(x,1,1)+ r2 f S(x,0,0), (94)

∂ f S

∂ t
(x,1,0) =−µ1

∂ f S

∂x
(x,1,0)− (p1 + r2) f S(x,1,0)+ p2 f S(x,1,1)+ r1 f S(x,0,0). (95)

Lower Boundary – x = 0

The equations modified to include the restart policy are equation (100) and equation (102).

– Boundary-to-Boundary Equations

d
dt

pS(0,0,0) =−(r1+ r2)pS(0,0,0)+ p1pS(0,1,0) , (96)

pS(0,1,0) = 0. (97)

– Interior-to-Boundary Equations

d
dt

pS(0,0,1) =r2pS(0,0,0)− r1pS(0,0,1)+ p1pS(0,1,1)+µ2 f S(0,0,1) , (98)

d
dt

pS(0,1,1) =− (p1+ pb
2)p

S(0,1,1)+ r1pS(0,0,1)+(µ2 −µ1) f S(0,1,1)+

+ r2pS(N,1,0) if µ1 ≤ µ2 , (99)

pS(0,1,1) =0 if µ1 > µ2 . (100)

– Boundary-to-Interior Equations

µ1 f S(0,1,0) =r1pS(0,0,0)+ pb
2pS(0,1,1) , (101)

(µ1−µ2) f S(0,1,1) =r1pS(0,0,1)+ r2pS(N,1,0)+(µ1 −µ2) f S(N,1,1) if µ1 > µ2 . (102)

Upper Boundary – x = N

The equations modified to include the restart policy are equation (107) and equation (108). Moreover, if a restart policyis applied,
equation (105) holds in all the cases of interest (i.e.µ1 < µ2, µ1 = µ2 andµ1 > µ2).

– Boundary-to-Boundary Equations

d
dt

pS(N,0,0) =−(r1+ r2)pS(N,0,0) . (103)

– Interior-to-Boundary Equations

d
dt

pS(N,1,0) = r1pS(N,0,0)− r2pS(N,1,0)+ p2pS(N,1,1)+µ1 f S(N,1,0) , (104)

pS(N,1,1) = 0. (105)
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– Boundary-to-Interior Equations

pS(N,0,1) = 0, (106)

f S(N,0,1) = 0. (107)

f S(N,1,1) = 0 if µ1 < µ2 . (108)

Normalization

1

∑
α1=0

1

∑
α2=0

[

∫ N

0
f S(x,α1,α2)dx+pS(0,α1,α2)+pS(N,α1,α2)

]

= 1. (109)

A.2 Buffer Drainage Partition in Isolation

Intermediate Buffer Levels

d
dt

f ∗D(1) =−p2 f ∗D(1)+ r2 f ∗D(0) . (110)

d
dt

f ∗D(0) =−p2 f ∗D(1)+ r2 f ∗D(0) . (111)

Normalization

1

∑
α2=0

∫ N

0
f ∗D(α2)dx = 1. (112)

B Conservation of flow: Proof

For the system to be in the steady state, the following equation (conservation of flow equation) must be verified:

P1 = P2 . (113)

Proof: For the sake of clarity, the expression of the total system solution can be split into the components related to the two
partitions as follows:

P1 = π Sµ1

[

∫ N

0

(

f S(x,1,0)+ f S(x,1,1)
)

dx+pS(0,1,1)

]

, (114)

P2 = π S
[

µ2

∫ N

0

(

f S(x,0,1)+ f S(x,1,1)
)

dx+µ1pS(0,1,1)

]

+π Dµ2

[

∫ N

0
f ∗D(1)dx

]

(115)

By adding the steady state versions of the internal differential equations (92)-(95) in Appendix A, we obtain

d
dx

[

(µ2−µ1) f S(x,1,1)+µ2 f S(x,0,1)−µ f S(x,1,0)
]

= 0. (116)

Therefore,
(µ2−µ1) f S(x,1,1)+µ2 f S(x,0,1)−µ f S(x,1,0) = K , (117)

whereK is a constant that can be found by evaluating (117) for particular values ofx and distinguishing betweenµ1 ≤ µ2 and
µ1 > µ2.

Consider first the caseµ1 ≤ µ2 andx = 0, by adding equations (98), (99) and (101), in Appendix A, evaluated at steady state
and considering non-zero probabilities only, we obtain

(µ2−µ1) f S(0,1,1)+µ2 f S(0,0,1)−µ f S(0,1,0) =−r2pS(N,1,0) . (118)
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On the other hand, ifµ1 > µ2 and we add equations (98), (100) and (101) reported in Appendix A, it results

(µ2−µ1) f S(0,1,1)+µ2 f S(0,0,1)−µ f S(0,1,0) =−r2pS(N,1,0)− (µ1 −µ2) f S(N,1,1) . (119)

Thus,

K =

{

−r2pS(N,1,0), if µ1 ≤ µ2,

−r2pS(N,1,0)− (µ1 −µ2) f S(N,1,1), if µ1 > µ2
. (120)

Moreover, from the steady state version of equation (104) inAppendix A, we have:

r2pS(N,1,0) = µ1 f S(N,1,0) ,

and consequently,

K =

{

−µ1 f S(N,1,0), if µ1 ≤ µ2,

−µ1 f S(N,1,0)− (µ1 −µ2) f S(N,1,1), if µ1 > µ2
. (121)

The same value forK can be found atx = N considering the equations related to the upper boundary.
Subtracting (114) from (115) yields

P2−P1 = π S
∫ N

0

[

(µ2−µ1) f S(x,1,1)+µ2 f S(x,0,1)−µ1 f S(x,1,0)
]

dx+π D µ2

∫ N

0
f ∗D(1)dx , (122)

where equation (122) is valid for bothµ1 ≤ µ2 andµ1 > µ2.
Finally, considering equations (117) and (121) and recalling the expressions forπ S andπ D (equations (34) and (35)), we

obtain

P2−P1 = π S[−µ1 f S(N,1,0)
]

N +π Dµ2 f ∗D(1)N =

=−
µ2 f ∗D(1)

µ2 f ∗D(1)+µ1 f S(N,1,0)
µ1 f S(N,1,0)N +

µ1 f S(N,1,0)
µ1 f ∗D(1)+µ2 f S(N,1,0)

µ2 f ∗D(1)N =

= 0, if µ1 ≤ µ2 ,

(123)

and

P2−P1 = π S[−
(

µ1 f S(N,1,0)+(µ1−µ2) f S(N,1,1)
)]

N +π Dµ2 f ∗D(1)N =

=−
µ2 f ∗D(1)

µ2 f ∗D(1)+µ1 f S(N,1,0)+(µ1−µ2) f S(N,1,1)

(

µ1 f S(N,1,0)+(µ1 −µ2) f S(N,1,1)
)

N+

+
µ1 f S(N,1,0)+(µ1 −µ2) f S(N,1,1)

µ2 f ∗D(1)+µ1 f S(N,1,0)+(µ1 −µ2) f S(N,1,1))
µ2 f ∗D(1)N =

= 0, if µ1 > µ2 .

(124)

Therefore, equation (113) is proved.
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Fig. 1 Step 1 and Step 2 of the modeling approach.
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Fig. 2 Blocking frequency for Example 1a: bolt lines for the Basic model; light lines for theRP model.
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Fig. 3 Blocking frequency for Example 1b: bolt lines for the Basic model; light lines for theRP model.
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µ1 ≤ µ2 µ1 > µ2
standard op. buffer drain. standard op. buffer drain.

Exit States (0,N,1,0) (1,x,1,1), 0< x ≤ µ2δ t (0,N,1,0) (1,x,1,1), 0< x ≤ µ2δ t
(0,x,1,1), N − (µ1−µ2)δ t ≤ x < N

Arrival States (0,0,1,1) (1,x,1,1), N −µ2δ t ≤ x < N (0,x,1,1), 0< x ≤ (µ1−µ2)δ t (1,x,1,1), N −µ2δ t ≤ x < N

Table 1 Exit and arrival states of thestandard operation andbuffer drainage partition.
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r1 r2 p1 p2 µ1 µ2 e1 e2 µ1e1 µ2e2 type of curve
0.2 0.3 0.02 0.25 1 1 0.91 0.55 0.91 0.55 solid
0.2 0.3 0.02 0.25 1 1.2 0.91 0.55 0.91 0.65 dashed
0.2 0.3 0.02 0.25 1 1.4 0.91 0.55 0.91 0.76 dotted-dashed
0.2 0.3 0.02 0.25 1 1.6 0.91 0.55 0.91 0.87 dotted

Table 2 Input data for Example 1a (µ1e1 > µ2e2 with µ1 ≤ µ2).
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r1 r2 p1 p2 µ1 µ2 e1 e2 µ1e1 µ2e2 type of curve
0.1 0.4 0.05 0.25 1 1 0.67 0.62 0.67 0.62 solid
0.1 0.4 0.05 0.25 1.2 1 0.67 0.62 0.80 0.62 dashed
0.1 0.4 0.05 0.25 1.4 1 0.67 0.62 0.93 0.62 dotted-dashed
0.1 0.4 0.05 0.25 1.6 1 0.67 0.62 1.07 0.62 dotted

Table 3 Input data for Example 1b (µ1e1 > µ2e2 with µ1 ≥ µ2).
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r1 r2 p1 p2 µ1 µ2 e1 e2 µ1e1 µ2e2 type of curve
0.4 0.2 0.03 0.01 1 1.1 0.93 0.95 0.93 1.05 solid
0.1 0.4 0.05 0.02 1.2 1 0.67 0.95 0.80 0.95 dashed

Table 4 Input data for Example 2 (µ1e1 < µ2e2).


