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Abstract This paper deals with the performance evaluation of pradndines in which well defined
machine start/stop control policies are applied.

A modeling approach has been developed in order to reduathplexity of a two-machine one-
buffer line where a specific control policy, called “restaoticy”, is adopted. The restart policy exercises
control over the start/stop condition of the first machinbewthe buffer gets full and, as a consequence,
the first machine is forced to stop production (i.e. it is lked), the control policy keeps the first machine
in an idle state until the buffer becomes empty again. Thiemate behind this policy is to reduce the
blocking frequency of the first machine, i.e. the probapiiitat a blockage occurs on the first machine
due to the buffer filling up. Such a control policy is adoptegractice when outage costs (e.g. waste
production) are related to each restart of the machine.

The two-machine one-buffer line with restart polié3Rline) is here modeled as a continuous time
Markov process so as to consider machines having diffeegraities and working in an asynchronous
manner. The mathematicRP model is described along with its analytical solution. Théme most
critical line performance measures are derived and, finatlyne numerical examples are reported to
show the effects of such a policy on the blocking frequenayeffirst machine.

Elisa Gebennini

Dipartimento di Scienze e Metodi dell'Ingegneria,
Universita degli Studi di Modena e Reggio Emilia
Via Amendola 2, 42122 Reggio Emilia, Italy

Tel.: +39-0522-522672

E-mail; elisa.gebennini@unimore.it

Andrea Grassi

Dipartimento di Scienze e Metodi dell'Ingegneria,
Universita degli Studi di Modena e Reggio Emilia
Via Amendola 2, 42122 Reggio Emilia, Italy
E-mail: andrea.grassi@unimore.it

Cesare Fantuzzi

Dipartimento di Scienze e Metodi dell'Ingegneria,
Universita degli Studi di Modena e Reggio Emilia
Via Amendola 2, 42122 Reggio Emilia, Italy
E-mail: cesare.fantuzzi@unimore.it



2 Elisa Gebennini et al.

Keywords production line restart policy: continuous time Markov procesperformance estimation

1 Introduction

This paper presents an innovative Markov model for inhomeges and asynchronous two-machine
one-buffer production lines where a control policy is apglto improve the line efficiency.

Production lines represent a particular configuration ohufiacturing systems in which machines
are connected to one another so as to form a series. This gatfan is generally adopted by companies
when high-volume production is required. Frequently, picithn lines are also automated so as to
achieve higher production rates and repetitiveness offiestesses.

The performance of a production line is strictly relatedhe hominal capacity and the reliability
parameters of the machines involved. Specifically, thisknamsiders machines that can operate at
different nominal capacities and whose time-to-failurd ime-to-repair distributions are exponential.
As regards the latter assumption, practical evidence stmat$ailures and repairs can be often modeled
as memory-less processes, especially in case of automedddagtion lines (see, e.g., Perrica et al,
2008).

Moreover, also interactions between machines play an itapbrole in determining the whole line
performance. This is due to the fact that the effect of a failbccurring on a specific machine may
propagate to other machines located both in the upstrearmahd downstream of the line. We refer
to a “starvation” when an operational machine is found idl@aonsequence of an interruption of its
incoming flow since a machine in the upstream of the line hi¢edfawe refer to a “blockage” when its
outgoing flow is prevented owing to a failure in the downstneln order to reduce efficiency losses due
to machine interactions, buffers can be positioned alogaditie that can avoid starvation and blocking
events by accumulating and releasing material as needed.

Another strategy that can be employed to improve the lineieffty is to adopt “control policies”,
i.e. to exercise a kind of control over the behavior of theolmgd machines when certain conditions
occur. Specifically, this work focuses on a particular coinpiolicy typical of processes that incur sig-
nificant extra costs if interrupted for any reason. Such drobpolicy is called here “restart policy”
and acts as follows: when a machine is blocked because amo#@hine has failed in the downstream
and the intermediate buffer is full (so as no decouplingatffakes place), it is not allowed to leave the
blocking state as soon as the buffer level starts to decrekesee, this restart policy forces a machine
once it has become blocked, to remain idle until the dowastrbuffer becomes empty again. The aim
is to reduce the probability of subsequent blocking evérasdan occur if the machine resumes produc-
tion when the level of the buffer is just below its maximumesize., when there is little storage space
in the downstream.

The motivation to introduce this kind of control policy assfrom a real world case study of auto-
mated packaging systems. In a typical line configuratiorkpge formation and filling is executed by
the first machine, called filling machine, with a continuousl aseptic process where the packaging
material passes through a heated hydrogen peroxide bagttrifical aspect is the production of a cer-
tain amount of waste when the filling machine resumes praaluetiter any stoppage. This is because
when the filling process is interrupted for any reason (e.fpijlure or a blocking event) a portion of the
packaging material remains in contact with the hydrogenxide for too long. As a consequence, the
first packages produced when the stoppage is removed do mpiwith the quality requirements.

Thus, in this case, such as in other applications with sicanifi outage costs, the need arises to
reduce to a bare minimum the stoppages of the first machineedirte. On one hand, the reduction
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of internal stoppages can be only obtained by improving #ilere rate of the very machine. On the
other hand, a reduction of those stoppages due to the bpokithe outgoing flow can be obtained by
introducing an intermediate buffer and the restart poliegatibed above which forces the first machine
to wait for the buffer to become empty before resuming préidaafter any blocking event.

Hence, the production line under analysis results to be apt®nsystem whose overall performance
not only depends on machines’ capacities and reliabilinameters, but also on the buffer allocation
along the line and, moreover, on the restart policy appbetti¢ first machine.

Analytical modeling of production lines has been exterlgiievestigated in the literature as dis-
cussed in Section 1.1. Nevertheless, to the author’s kritgelenone of the previous analytical models
is able to describe an inhomogeneous and asynchronousgbialine with a restart policy.

1.1 Literature review

Since there are several factors affecting the whole linfopmiance (i.e. machines reliability parameters,
machine capacities and buffer allocation along the lif&,design of a production line is a complex
task. As a consequence, there is an increasing need to geaféient methodologies and approaches
to quickly compute line efficiency and productivity with pest to all the key factors. Specifically, this
work focuses on mathematical methods even if there are atkérodologies such as simulation. The
great advantage of mathematical modeling is that it cantle#ite deepest understanding of the system
and provide results in very short periods of time (e.g., tloeleh proposed in this paper can be solved
by a computer in few seconds). On the other hand, simulatrasbe more suitable to study large and
complex systems but are often awkward and time-consuming.

For short lines, i.e. consisting of two machines decoupledrte finite buffer (2M-1B line), ana-
lytical modeling makes it possible to quickly obtain acdarastimations of the line performance. For
extensive reviews, the reader can refer to Dallery and @ens{1992) and textbooks as Papadapoulos
et al (1993) and Gershwin (2002). Analytical models of piithn lines can be adopted to evaluate the
performance with respect to a predefined line configuratisnwell as to be integrated in optimization
techniques to derive optimal buffer allocation (Papaddp®and Vidalis, 1998, 1999, 2001a,b; Bulgak
et al, 1995; Gershwin and Schor, 2000; Spinellis and Pagadog, 2000; Lutz et al, 1998).

For lines longer than the 2M-1B system, exact analyticaltsmhs are not available. Nevertheless,
approximate methodologies have been developed. Theseduitigies can be classified into two main
groups: “decomposition techniques”, whose main idea isetmochpose the line in a series of 2M-1B
sub-systems (important works are Gershwin, 1987; Dallea},€1989; Choong and Gershwin, 1989;
Dallery and Frein, 1993; Burman, 1995; Yeralan and Tan, 198id and Yeralan, 1997; Gershwin and
Burman, 2000; Levantesi et al, 2003; Maggio et al, 2003; Beirsand Werner, 2007), and “aggregation
techniques”, where the 2M-1B sub-system is replaced by oggesequivalent machine (see Koster,
1987; Chiang et al, 2000, 2001; Enginarlar and Meerkov, 2080%ang et al, 2008). Finally, there exist
other approaches, such as the Expansion Method by MacGgegjtin and Daskalaki (1988).

An interesting point is that the main techniques addredsing line performance estimation make
use of models developed for the 2M-1B sub-system. This esipésathe importance of investigating
such a simple but not trivial system.

Since production lines are generally characterized byrmygeneous asynchronous machines, sys-
tem models must be able to take into consideration machmésdndifferent nominal capacities work-
ing on an unsynchronized material flow. This is obtained byleing the system as a continuous time
Markov process. This kind of modeling approach was origynadoposed by Zimmern (1956) and ex-
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tended by Buzacott (1967a,b). Gershwin and Schick (198@ldped a continuous model for a 2M-1B
production line with deterministic processing rates. Tlimig is called here the “Basic line” and the
corresponding model the “Basic model”.

Since then, extensions of the Basic model were carried agpi@sent more complex behaviors of
the line. These studies significantly contribute to theditere since the more appropriate the model for
the 2M-1B sub-system is, the more representative the appfoathe analysis of the whole line will be.
As an example, Tolio et al (2002) presented an analyticahatkivhere each machine can fail according
to different failure modes. Kim and Gershwin (2005) invgated the relationship between productivity
and quality and proposed a model with both quality and omerdailures. Recent studies have been
carried out to generalize continuous time Markov modelsnzjuiding machines with multiple up and
down states (see, e.g., Tan and Gershwin, 2009, 2011; P8lid,).

In this paper an interesting extension of the Basic modebkisugsed. Specifically, the introduction
of a “restart policy” is investigated. Such a control polaynsists in maintaining the first machine in a
“controlled idle state” each time it gets blocked, as a cqnsece of the buffer filling up, until the buffer
empties again. The objective is to reduce a key performareasure called here blocking frequency,
i.e., the frequency at which the buffer becomes full.

The first attempt to model this kind of restart policy was iggrout by Gebennini et al (2009, in
press). Nevertheless, the model developed by the authardigrete time Markov model suitable for
transfer lines only, that is lines in which machines havestdime nominal capacity and the material flow
is synchronized. Hence, by introducing this restart pality the Basic model, the present study extends
the work of Gebennini et al (2009, in press) to the case ofrimbgeneous asynchronous production
lines, so as to allow the consideration of machines haviffgrént capacities. This line with restart
policy is called here theRP line” and the new corresponding model tHeP‘model”.

Note that the introduction of this control policy signifi¢tgrincreases the complexity of the mathe-
matics involved. This emphasizes the need for methoddddgiéacilitate mathematical modeling. The
literature regarding production lines lacks such a disonsS herefore, this paper presents a modeling
approach for the 2M-1BRP line with restart policy based on the partitioning of theestspace so as to
reduce its complexity. Two partitions of the state spacebmidentified: first, each of them is mathe-
matically treated as it were the only one representing tiseeay behavior (i.e. in isolation); then, the
solution to the original system is determined as a comhinatf the solutions found for the partitions
solved in isolation.

TheRP line is modeled as a continuous time Markov process and thlgtasal solution is provided
by applying the modeling approach formalized in this paper.

The remainder of the paper is organized as follows. Sectideszribes the 2M-1BRP line and
introduces the main steps of the modeling approach. Se8tidevelops the continuous-time mixed
stateRP model. Section 4 provides key performance measures anépitbe conservation of flow,
while Section 5 reports the solution technique. Finallyctie® 6 shows interesting results from the
application of the proposed model and Section 7 points auesmoncluding remarks.

2 The 2M-1BRPline

The two-machine one-buffer line with restart policy (2M-RB line) is assumed to be made up of two
Markovian machines decoupled by a finite intermediate lbuffe described in Section 1, the behavior
of the system of interest is made complex by the applicatfoa control policy, called restart policy
(RP), whose aim is to reduce the number of stoppages of the firshimadue to blocking events.
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A blocking event occurs when the first machine is operatitwilit is prevented from processing
parts because the downstream buffer is full. Specificdily,restart policy acts as follows: when the
buffer fills up and the first machine gets blocked, the first nivae is forced to remain idle until the
buffer becomes empty again. When the first machine is foroce@rnain idle it is said to be in the
so-called “controlled idle state”. This makes it possildeptevent situations where the first machine
resumes processing parts when the buffer level is still .higius, the probability of the next blocking
event occurring in a short time is significantly reduced.

As a consequence of the restart policy, it is possible totifjetwvo different system behaviors:

— The standard operation way: both machines can interact, work, fail and be repaic@ling to
their own failure/repair rates and to the buffer level;

— Thebuffer drainageway: the second machine acts as it were isolated while thexfashine remains
idle, i.e. in the “controlled idle state”. As a consequeribe, buffer level can only decrease (if the
second machine is up) or stay constant (if it is down).

The 2M-1BRP line is supposed to operate accordingstandard operation behavior. The switch
to the buffer drainage behavior occurs when the buffer fills up; the switch from buéfer drainage
behavior to thestandard operation behavior occurs when the buffer becomes empty.

As discussed in Section 1, the restart policy aims to redueblocking frequency, i.e. the frequency
at which the buffer becomes full. Thus, it is particularlyefid when some waste parts or outage costs
are produced each time the first machine resumes operat@raatoppage.

2.1 Modeling approach

This section introduces to the main steps and definitiondhefmodeling approach applied to the
continuous-time mixed state 2M-1RP model in Section 3.

The hypothesis is to study the system in steady state. ThedMahain model consists of a state
space” and a transition probability matri® whose entryp(S,S;) is the probability of a transition
from stateS € .7 to stateSj € .7

The procedure for obtaining the steady state probabilgtritiution of the 2M-1BRP line is based
on the partitioning of the state spacé in order to split the original model into two sub-models. The
steps are as follows.

Step 1: Partitioning the state space
Itis assumed that the state spagecan be partitioned into two non empty subséts, %%, € . so
that

DU Py=, 1)
PN Py =0. (2

As described in more detail in Section 3, it is convenienelate the two partitions?; and £, to
the two possible ways the system behaves, i.esttirelard operation behavior (1) and thebuffer
drainage behavior (¢7,).

The transitions linking states of one partition to statethefother partition are called heseitching
transitions. Hence, there is an occurrence probability of the switchiiagsition from4?2; to #,,
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denoted a®22, and an occurrence probability of the switching transifimm 2, to &1, denoted
asP?L.

Specifically, in partition#;, with i = 1,2, it is possible to identify a set dfiternal states. The set
of internal statesI' of partition &7; is defined as the collection of states that are connectedhor a
feasible transition to another state of the same partitgrmore precisely:

I' = {§ € 2] for all transition probabilityp(S, Sm) # 0,Sn € Zi} . (3)

Transitions between the two partitions, isaitching transitions, involve the definition oboundary
states. A boundary state is a passing gate from one partition to theroWe can define two types
of boundary states, thexit states, i.e. the set of state for which there exists an outboundsitian

to states outside the partition, and #eival states, i.e. the set of states for which there exist an
inbound transition from states outside the partition.

In a formal manner, we define the set @ft states of partition &7 towards partitionZ?j, with

i,j=212andi # j, as
BV ={EV} ={S € #|3Sce 2},i#:p(S.S) #0}. (4)
The set ofarrival states of partition &7 from partition2?;, with i, j = 1,2 andi # |, is defined as
AV ={Al} ={S € Z|3Sc€ 2.1 #]:p(S.S) #0}. (5)

Figure 1 shows the partitiong?; and &7, and theswitching transitions between the exit states of
one partition to the arrival states of the other partition.
Step 2: Partitions in isolation
The aim is to treat each partition independently, i.e. ioldson”. In such a way the mathematical
treatment of the problem is extremely simplified. The orgjiarkov chain model, described by
the whole state spac# is split into two Markov chain sub-models, each of them désct by a
single partition?; C .7, i =1,2.
The main assumption for the application of this step is thatdystem is studied in steady state.
Under this condition the following proposition holds. -
Proposition 1:  For the system to be in steady state, the occurrence piipa®y of
the switching transition from partitio#; to partition.2?; equals the oc-
currence probability?d' of the switching transition from partitioe?; to
partition &7, fori, j = 1,2 andi # |.
Thus in steady state we have,

PI =Pl 0j=12,i#]. (6)

Let us consider partitio?; with i = 1,2. Given equation (6), it is possible to replace the switghin
transition to2; with j # i by a transition from its own exit stat& to its own arrivalAll state, given
that the new occurrence probability equals the probalfityof the original switching transition.
Thus, as shown in Figure 1 partitio#; with i = 1, 2 results to be “isolated” (or “in isolation”) in the
sense that each state of the partition is connected only&r etates belonging to the same partition.
The two partitions in isolation represent two renewal psses so that the corresponding Markov
chain models can be solved independently. The solutioretdtdrkov chain sub-model described by
partition 2 in isolation is the steady state probability distributiemdted here a§', withi = 1,2.

[PUT FIGURE 1 HERE]
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Step 3: Partition probabilities
Considering the original system behavior, at each renefyzduition &7 in isolation, partition?’|
takes place, with, j = 1,2 andi # j. Thus, in order to rebuild the original Markov model desitrip
the 2M-1BRP line, it is necessary to ensure that the system is in exaotyad the two partitions
at a time. As a consequence, it is necessary to introducethert, called here as the “partition
probability” of &, representing the probability for the system being intdipan % with i = 1,2.
The partition probabilities satisfy the following nornmdtion equation:

inj =1. (7)

Step 4: System solution
Once both the isolated solutions and the partition prolissilhave been found, it is possible to
express the system solutidpi.e. the solution to the original Markov chain model, as embmation
of the solutionsf’, with i = 1,2, found for each partition in isolation:

N

f=Y nf. (8)

3 The continuous-time mixed-stateRP model

In this section the modeling approach described in SectibisZapplied to the continuous-time mixed-
state model of the 2M-1BP line.

Recall that if no control policy is in place, the continuotd-2B RP line becomes a simple 2M-1B
line investigated by the previous literature. In particitee refer to a previous continuous-time mixed-
state model for a 2M-1B line without restart policy that islead here Basic model (see Gershwin and
Schick, 1980; Gershwin, 2002).

The RP model significantly extends the Basic model. As explaineSeation 2, the restart policy
introduces two different behaviors in the system, i.e.shadard operation, where no control policy is
applied, and théuffer drainage, where the first machine is put in the controlled idle stal@nahg the
buffer level to decrease.

3.1 Notation and assumptions

One of the main advantages of modeling the system by a cantgitime mixed-state model is that
inhomogeneous asynchronous machines can be properlysaddre
The main assumptions of the 2M-HP model are as follows:

1. A machine is said to be “starved” if its incoming flow is imgpt (the buffer is empty and the
upstream machine is down). A machine is said to be “blockei$ ibutgoing flow is interrupt (the
buffer is full and the downstream machine is down). For the ZB/RP line it is assumed that the
first machine is never starved and the second machine is himaied;

. The material that is processed is treated as though itasncious fluid;

3. The machine are either up (i.e. operational) or down (irgler repair) so that there is no middle

ground in the model;

N
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4. The machines may have different production rates so ltledirie can be inhomogeneous and asyn-
chronous;

. The machines have exponentially distributed times betvailures and time to repair;

. The failures are assumed to be operation-dependent $® disst machine cannot fail while it is
blocked or in the controlled idle state, and the second oneatdail while it is starved;

. The intermediate buffer has a finite capacity (note trea @onsequence of assumption 2 the buffer
level is continuous in the range defined by zero and the maxicapacity);

. The material in process is not destroyed or rejected astage in the system;

. When the restart policy takes place the system switcloes fihestandard operation behavior to the
buffer drainage behavior. This happens when the buffer fills up. The systduorne to thestandard
operation behavior when the buffer becomes empty again.

o Ol

~

© 00

The following notation is adopted:

x € R is the buffer level, with &< x < N, beingN the buffer capacity (see assumption 7);

a; = 0,1 is the condition of machinewith i = 1,2 (see assumption 3): éf; = 0 machind is down,
if aj =1 machind is operational;

L is the production rate of machimgwith i = 1,2 (see assumption 4);

pi is the failure rate of machinewithi = 1,2 (see assumption 5);

ri is the repair rate of machinewith i = 1,2 (see assumption 5).

Note that ifu; < p2 and the buffer is empty the second machine is forced to slawndts speed to
H1. Thus, ifx = 0 the probability of failure of the second machine at timedt, provided thatr,(t) = 1,
is p9at, where

b_ Ha
P2 =" P2 (9)
This is because failures are assumed to be operation depdsde assumption 6). When the buffer is
not empty, such a probability i3, dt.

Consider now the case whare > > and, specifically, the state with the buffer level at the maxin
capacityN and both machines operational. In the Basic model withoytcamtrol policy the system
can persist in this state, with the first machine reducingpised tgu,. On the contrary, if the restart
policy is implemented we assume that as soon as the buffelréeualsN with the second machine in
an operational statexf = 1), either because it is repaired or because it does notfaié (that the first
machine must be operational to allow the buffer to fill upg fystem switches instantaneously into the
buffer drainage behavior and the first machine is put in the controlled iddest

The probability to have a repair at tinhe- 6t of a machine failed att (ai (t) = O) isr;ot.

3.2 Step 1: Partitioning the state space

It is convenient to partition the state space according ¢otwo different ways the system behaves so
that we have:

— thestandard operation partition;
— thebuffer drainage partition.

Thus, the system state can be definedras (B,x, a1, az) where, as described in Section Xk R
is the buffer level with 0< x < N; a; = 0,1 is the condition of the machirie= 1,2; andf is a binary
parameter that is conveniently introduced here to distsighetween states belonging to #tandard
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operation partition (3 = 0) or thebuffer drainage partition (3 = 1). It is assumed that wheh= 1, i.e.
the first machine is in the controlled idle state,is fixed and set to 1 (it is forced to remain idle, but it
is operational and cannot fail) so that sta(tﬂasg 0, az) are not feasible.

Note that the system state includes three binary paransetdra continuous componeafrhus, the
probability distribution has a density function @ N), denoted a$ (3, x, a1, a2). The aim of this work
is to express the solutiof(3,x, a1, az) in order to be able to compute some performance measures.

The switching transition from the&kandard operation partition to thebuffer drainage partition occurs
if the buffer fills up.

Let us consider the simplest case whgie< L». The buffer might fill up only if the first machine
is up and the second is down. In fact, since the first machisvger than the second one, if both the
machines are operational the buffer level tends to decraadehe maximum buffer sizd cannot be
reached. In other words, the only non-transient state Witbtuffer levek = N is that witha; = 1 and
o = 0. For convenience, we assume that this state belongs statidard operation partition so that it
is denoted ag0,N, 1,0) where the first ternf is set to zero.

Note that staté¢0, N, 1,0) is peculiar for the following considerations:

— in this state the first machine is blocked, i.e. it is operaldut it cannot work since its outgoing
flow is prevented being the second machine down and no stepEge in the buffer;

— since the maximum buffer si2¢ is defined by a physical limit, this state acts asass point which
itself has nonzero probability (see Gershwin, 2002) (6t N, 1,0) be the probability for the system
being in staté0,N, 1,0).

The behavior of the 2M-1NRP line under analysis is such that when the second machinpasres
(and, consequently, the buffer level starts to decreasgefitst machine is not allowed to resume pro-
duction but it is forced to remain idle, i.e. put in the “carited idle state”. Thus, as soon as the second
machine is repaired the switching transition from steedard operation partition to thebuffer drainage
partition occurs. This means that sté@N, 1,0) is the exit state of thetandard operation partition.
The arrival states of thieuffer drainage partition are states where the buffer level is reduced byatm
the amount processed by the second machidé and both machines up since the first machine cannot
fail (it is prevented from working) and the second maching I@en repaired. Thus, the arrival state of
the buffer drainage partition is statg1,x,1,1) with <N — 0t < x < N (note thatf is set now to 1),
whereu,dt is what the second machine processedtin

Since the switching transition occurs if the system is itest@, N, 1,0) and the second machine is
repaired, we have:

P, =r,5tp(0,N, 1,0). (10)

Once the system has entered tiaéfer drainage partition, it remains in this partition until the buffer
becomes empty. Note that the first machine is in the “corgdoillle state” so that it cannot work nor
fail and the buffer level can only decrease (if the secondhimacis up) or stay constant (if the second
machine is down).

Hence, the switching transition from tbeffer drainage partition to thestandard operation partition
occurs wherx reaches the physical limit at zero since the second macking i, = 1). Specifically,
we assume that the switching transition occurs betweea @tat 1,1) with 0 < x < ot of the buffer
drainage partition and stat€0,0,1,1) of the standard operation partition where stat€¢0,0,1,1) is a
mass point, similarly t¢0,N, 1,0).
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Since this switching transition occurs if the system is atesf1,x,1,1) with 0 < x < u»0t and the
second machine does not fail, we have:

“H20t
PS:(l—pcht)/o £(1,%,1,1)dx, (11)

or, ignoring second order terms,

Ps= 120t 1(1,0,1,1), (12)

Since the system is studied in steady state, Propositioidk Iso that we have:
r2p(0,N,1,0) = p2f(1,0,1,1), 13)

The above considerations have been done for the casqavithpiy, the exit and arrival states for
the case withy > p» are reported in Table 1.

[PUT TABLE 1 HERE]

Note that when the system is in internal states ofsthedard operation partition (i.e. with interme-
diate buffer levels) it can be seen as a simple 2M-1B line emeachines work, fail and are repaired
according to their own reliability parameters. This ocdara previous model presented by the literature
that is referred here as the Basic model (see Gershwin andk$d®80; Gershwin, 2002). Thus, we
recall the Basic model for what concerns state of dtamdard operation partition with intermediate
buffer level, but we extend it significantly by consideritg tswitching transitions to/from thauffer
drainage partition introduced by the restart policy.

3.3 Step 2: Partitions in isolation

In this section the two partitions are treated separatelyin isolation.

By applying Step 2 of the modeling approach, we isolate eactition by using a direct transition
from its own exit states and its own arrival states. Once ttjmar as been “isolated” it can be solve by
taking it as “standing alone”.

For convenience, we use a simplified notation for the parttiin isolation. Specifically, the system
state for thestandard operation partition in isolation is defined as”S = (x, al,az), for the buffer
drainage partition in isolation as?’® = (x, a,), beingx the buffer level andr = 0,1 the condition of
machinei = 1,2. .S = (x, al,az) corresponds to stat@, x, a1, a») of the original Markov process,
P = (x,ap) corresponds to statd, x, 1, a,) of the original Markov process. Note that states in the
buffer drainage partition in isolation do not depend @n since the first machine is in the controlled idle
state (it cannot work nor fail) and the second machine opsras it were isolated.

Let fS(x,a1,a2,t) andpS(x,ay, az,t) be the probability density function and the probability of
being in statéx, a1, a»,t) belonging to thestandard operation partition, f ° (x, a,t) be the probability
density function for thduffer drainage partition.
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3.3.1 Standard operation partition in isolation

This partition can be solved in isolation by consideringsitthe only one representing the system be-
havior. In words, transitions to/from thHiffer drainage partition (characterizing the original complex
behavior) are replaced with direct transitions fromeki¢ to thearrival states of thetandard operation
partition itself. Thus, thetandard operation partition in isolation can be thought of as modeling a sys-
tem where each time the buffer fills up, it empties instandasty as the second machine gets repaired
(or does not fail, in casgy > ).

Specifically, forp; < pp we have that

if the system is in statéN, 1,0), it can enter only stat€0,1,1), when the second machine is
repaired;

for py > Hp we have that

if the systemis statéN, 1,0) or if both machines are operational and the buffer level pgaach-
ing the maximum capacity (i.e., the system is in stétes, 1) with N — (3 — t2)0t < x < N)

it will pass to state(x,1,1) with 0 < x < (p1 — p2)dt if the second machine is repaired or no
failures occur, respectively.

As introduced above, th&andard operation partition in isolation can be modeled by means of the
Basic model without restart policy (see Gershwin and Sghi®80; Gershwin, 2002) except for the
boundary equations that represent how the system leates¢heexit/arrival states.

For the sake of clarity, the most significant equations niodehis partition are discussed in the
sequel by treating the three cagas< L, U1 = Uz andpy > U separately.

All equations for this partition are listed in Appendix A.

Finally, the following normalization equation expressthgt the sum of all probabilities must equall
1 is needed to solve the partition in isolation:

1 1 N
> 3 [[ focasazax+pS0,a1,a2) + PN, a1, 0)| = 1. (14)
a1=002=0 0

The technique used to determine the solution todthadard operation partition in isolation is
explained in detail in Section 5.

Case g < 2

As regards the lower boundarny £ 0), it is necessary to describe how the system arrives atthala
state(0,1,1).
Sincep; < Wy, itis possible to get t¢0,1,1) from

— (0,1,1) if no failures occur;

- EO, 0, 1; if the first machine is repaired;
- (x1,1), with 0 < x < (uz — p1) ot (for the case

muy < Mp), if no failures occur;

- (N,1,0) if the second machine is repaired;
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where the latter is the exit state introduced by the restdityp
Symbolically, ignoring the second order terms,

pS(0,1,1,t+ 8t) =(1— (py+ p3)St)pS(0, 1, 1,t) +r18tpS(0,0,1,t)+

(H2—pa) ot s s
+/ £5(%,0,1,1,t)dx+ r28tpS(N, 1,0,t).
JO

Letting ot — 0, the equation becomes

E S _ by ~S S
aiP (0,1,1) =— (p1+ p2)p7(0,1,1) +r1p>(0,0,1)+ (15)

+ (2 — 1) £3(0,1,1) +12p%(N, 1,0).

As regards the upper boundary-€ N), the introduction of the restart policy prevents the syste
from reaching any internal stat(azg o1, az) from the upper boundary.

Thus, states(x, 0, 1), with N — 0t < x < N, cannot be reached from the boundary (because
of the restart policy) or from any intermediate-bufferdésgtate (they cannot be reached from states
(x’,al,az) in dt, if x’ <x anddt is small, because when the second machine is working therbuff
level decreases).

Symbolically, if the second order terms are ignored, weiabta

N
/ £S(x,0,1,t+ 8t)dx =0,
N*[.lzat
or,
fS(N,0,1) =0, (16)

If Uy < up, we notice that also state(sx, 1, 1), with N — (uz — p1)0t < x < N, cannot be reached
from the boundary since the restart policy forces the systeemter the arrival stat@, 1,1). Thus,

fS(N,1,1) =0. (17)

Similarly, if 3 = muy state(N, 1, 1) can be reached only from itself &t, if no failures occur. As a
consequence,

pS(N,1,1) = 0. (18)

Case 1 >

It is convenient to start by discussing the upper boundaggaR that, thestandard operation partition
in isolation with i, > o can be seen as representative of a fictitious system wheomass the buffer
gets full with the second machine operational, it falls ddamero (note that reaching states with N
is possible only if the first machine is operational). Thisame that stateéN,l, 1) is transient. Thus,
the system passes directly from stafesl, 1) with N— (i1 — )3t < X < N to states(x,1,1) with
0 < x< (U1 — H2)0t). Note state(O, 1, 1) is also transient since the system cannot persists in thtat st
if 1 > o
Therefore,
pS(N,1,1) = 0. (19)
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Another effect of the restart policy is that also sta(be@, 1) with N — 8t < x < N can be reached
from the boundary. Thus, to the first order,

fS(N,0,1) =0. (20)

As regards the lower boundary £ 0), to arrive at stateéx, 1, 1) with 0 < x < (g — U2)ot at time
t 4 ot, the system may have been in one of three sets of states at.tineould have been in state
(O, 0, 1) with a repair of the first machine. It could have been in s(zNeLO) with a repair of the
second machine. It could have been in any s(ate., 1) with N — (3 — p2)0t < x < N if no failures
occur. The latter two transitions are not feasible in thei@a®del since they are related to the restart
policy introduced in this work. Note that, singg > Lo, it is not possible to reach sta(el, 1, 1) with
0 < x< (U1 — HU2)0t from any intermediate-buffer-level staﬁje’, ai, az) with x’ > x.

Symbolically, ignoring the second order terms,

(U —H2) Ot t+0t 140t
/ £S(x,1,1,t + St)dx =ry / p5(0,0,1,9)ds+ > / pS(N, 1,0,5)ds+
0 JO JO

N
+/ FS(x,1, 1.t + 3t)dx.
N—(p1—H2)t

Letting ot — 0, the equation becomes

(p1 — p2) £5(0,1,1) = r1pS(0,0,1) + ropS(N,1,0) + (p1 — p2) FS(N, 1,1). (21)

3.3.2 Buffer drainage partition in isolation

In the buffer drainage partition the first machine is operational but in the comblidle state, thus it
does not process material and, as a consequence, failumesteecur. Hence, the system state for this
partition does not depend on the state of the first machineamte represented simply @sa,), with
a, =0,1.

Moreover, states belonging to theffer drainage partition are characterized by a buffer lexetith
0 < x < N and, consequently, only states with intermediate buffezlgeare involved.

This leads to the following equations for theffer drainage partition in isolation:

ofb afb

7(X7 1? 1) = _piD(X7 17 1)+r2fD(Xa 110) +IJZW(X1 11 1)7 (22)
D
‘%(x,l,O) =—1217(x 1,0+ pf°(x, 1, 1), (23)

where thet argument is suppressed ahtd(x, a,) represents the probability density function of state
(x,a2)

Since the steady state versions of equations (22) and (28)tb#&e simultaneously satisfied, it leads
to the following:

ot°

(1) =0. (24)



14 Elisa Gebennini et al.

ThereforefP(x, a,) is constant.

Thebuffer drainage partition in isolation can be thought of as describing thdurion of the buffer
level according to the production, failure and repair ratethe second machine only. Thus, the prob-
ability density function describing the system behaviothis case depends only ar» and it can be
indicated simply as follows:

fP(x, a2) = P (az). (25)

Equations related to this partition are listed in Appendix A

Similarly as in the previous case, the isolation procedeqgeires the following normalization equa-
tion in order to find the partition solution:

1 ,N 1
> / P(a)dx=N 5 *2(az) = 1. (26)
apx=0" 0 apx=0

This makes it possible to obtain the solution to buéfer drainage partition in isolation, as detailed
in Section 5.

3.4 Step 3: Partition probabilities

Once the solutions to both the isolated partitions have lhe@nd, it is necessary to consider that the
system can be in exactly one of the two partitions at a tireewe have to compute the probability of
being either in thetandard operation partition or in thebuffer drainage partition.

Let T be the mean time between the occurrences of the same switichimsition in steady state.
The following equation holds:

T=T5+TP, (27)
whereT S is the mean time spent in states of #tandard operation partition duringT, andTP is the
mean time spent in states of theffer drainage partition duringT.

Thus, the probability of being in each partition can be esgeel in terms of, TSandTP as follows:

S

=L (28)
D

P = TT . (29)

SinceTS can be seen as the mean time between two switching trarssftiom thestandard opera-
tion partition to thebuffer drainage partition, we have:
1
TS= 5. (30)
@SP
where@SP is the frequency of the switch from tiseandard operation partition to thebuffer drainage
partition, being the system in states of 8t@ndard operation partition.
In other words, given that the system is into tendard operation partition, SP is the probability
of entering (and not persisting) std, 1,0) or, if i1 > wy, the probability of being in statef, 1,1),
with N — (tp — p2)dt < x < N, and no failures occur. Thus,

0SP — p1f3(N,1,0), if py < o, (31)
prfS(N,1,0) + (i — p2) F3(N,1,2), if py > o
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By similar reasoningT P is defined as the mean time between two switching transifiams the
buffer drainage partition to thestandard operation partition. Thus,

mo_ 1 (32)

- @DS’
where@P-S is the frequency of the switch from thweffer drainage partition to thestandard operation
partition, being the system in states of thdfer drainage partition. Recall that in théuffer drainage

partition we consider internal states only and the proligtof entering any of them is constant, inde-
pendent on the buffer level So,

@°° = f*P(1). (33)
Finally, the expressions afS and® become:
p2f*P(1) -
; if p1 < Lo,
R wf"0(1) + pufS(N,1,0) H =t
= ¢D,S+ Q)SD = ¢ D(l) ’ (34)
o f* :
, if >
Mo O(L) + i fSIN, L) + (r— p) SN, LTy T H2
IJlf S(N7 1, 0) B
; if p1 < o,
o Haf P(1) + [T SN, 1,0) H=He
QPSSP < <
ulf (N7170)+(u1_u2)f (Nalal) |f Il1>l12

p2f*P (1) + pa fS(N,1,0) + (k1 — p2) FS(N, 1, 1)’

3.5 Step 4: System solution

In the case of interest, the system behavior is represenptedter thestandard operation partition or
thebuffer drainage partition according to the buffer level. Specifically, tiandard operation partition
works until the buffer gets full and a blocking event occUiise buffer drainage partition represent the
system behavior if a blocking event has occurred, until thféeb becomes empty again.

As explained in Step 4 of the modeling approach describedatiéh 2.1, the solution to the original
system is a combination of the solutions found for the twditdans in isolation.

Given that the system state is defined as in Section 3.2, we hav

f(B,X, alaGZ) - (1_ B)]‘[Sf S(Xv a17a2) +Ban*D(GZ)7 (36)

whererS is the partition probability of being in tha&andard operation partition andr® = 1 — 5
is the partition probability of being in thieuffer drainage partition as defined in Section 3.4.

Recall that the first machine cannot fail during théfer drainage partition since it is in the con-
trolled idle state. Thus,

f(1,%,0,a7) = 0. (37)

In order to complete the solution, boundary probabilitieshibe considered. Since states with 0
or x = N belong to thestandard operation partition only, we have:



16 Elisa Gebennini et al.

| m®p3(0,01,a2) if B=0
p(BaOa 01102) - {0 |f B _ 17 (38)
and
_Jm%pS(N,ag,a2) if =0
p(BaNaalaGZ)_{O |fB:1 (39)

The solution to the 2M-1BRP model described in this paper can be obtained in closed farm a
reported in Section 5.

4 Blocking frequency, production rate and conservation of fbw

Since the aim of the restart policy is to reduce the stoppafjiie first machine due to blocking events,
the blocking frequency® is a fundamental performance measure.

Recall that the first machine gets blocked when the systeohesastaté0,N,1,0), i.e. when the
buffer is full, the second machine is down and the first maghéwen if still operational, cannot release
material. Therefore, the blocking frequenty can be determined as the probability of entering (or,
equally, of exiting) that state. So,

f=rzp(0.N,1,0), (40)

where, for the sake of simplicity, the blocking frequencexpressed as the probability of exiting state
(O,N,1,0).

Another important performance measure is the line prodoatate. The production rate of each
machinei (with i = 1,2), i.e. the rate at which material leaves the machine, islequits capacity
multiplied by its efficiencyE;. Specifically, the speed at which machinean operate ig; if machine
i is not limited by the other one (e.g., jifi < L2, when the buffer is empty and the first machine is
operational, the second machine cannot be faster than sheffie).

Consequently, considering non-zero probabilities on/have

Pr=p [/(;N(f(o,x, 1,0) + f(0,x,1,1))dx+p(0,0,1, 1)] , (41)

for the first machine, and
N N
o=t [ (10X0.0)+ 10X L D)t [ f(1x 1,00+ p(0.0.0.3), (@2
0 0

for the second one. Note thatif > u, the termp(0,0,1,1) is equal to zero.
Since the first machine is in the controlled idle state duthmgbuffer drainage partition, states
belonging to this partition influences the production rdtthe second machine only.
For the system to be in the steady state, the following eguétionservation of flow equation) must
be verified:
PL=P. (43)

The proof is reported in Appendix B.
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5 Solution technique

In this section the solution technique adopted to solve W dartitions in isolation is explained in
detailed. Given the isolated solutioi$(x, a1, a,) and fP(x, ay), the partition probabilities can be
easily determined according to equations (34) and (35) famally, the system solution according to
equation (36).

5.1 Standard operation partition in isolation

It is natural to assume the following exponential form fog #olution to the steady state density equa-
tions of thestandard operation partition in isolation:

fS(x, a1, az) = CSMY, 1Y, 2. (44)

By substituting (44) in the internal equations belonginghis partition (equations (92)-(95) in
Appendix A) we obtain the three following parametric eqoas:

2

(piYi—ri) =0, (45)
I; 11 |
Yo+1
Atz = (p2Y2—T2) 2Y ; (46)
2
Yi+1
—-A H1 = (plYl - I’1) 1Y . (47)
1
If uyp # o, equations (45)-(47) can be reduced to a single quadratiatieop inY;:
— (M2 — p) PrY? + [(p2 — H1) (r1+T2) — (H2p1+ H1P2)] Yo + ta(r1+12) = 0. (48)
Equation (48) has the two following solutions:
Vi (M2 — p1)(r1+4r2) — (H2P1+ H1p2)]
11= =+
2(p2 — H1) p1
. (49)
\/[(Hz — H1)(r1+12) — (H2p1+ H1p2)] "+ 4z(pt2 — H1)P1(r1+T2)
2(p2 — H1) p1 ’
Yoy (M2 — p1)(r1+4r2) — (H2P1+ H1p2)]
12= +
2(p2 = H1)p1
. (50)
N \/[(Hz — p1)(re+12) = (H2P1+ H1p2) | ” + 4pta (k2 — pa) pa(ri+r2)

22 — p1)p1

By substituting (49) and (50) in (45) and (46) it is possilddind out the expression for the remain-
ing parameterss, Yoo, A1, Az,
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Moreover, another feasible solution is the following:

r
Yiz= —, 51
8= (51)
2
Yoz = =, 52
= (52)
A3=0. (53)

Consequently, the solution for internal states can be sgprktas
3
fS(x, a1, a2) = Zlcjsef\JXYl‘}l Y,2, (54)
=

where, from equation (53), the third component of the soiuts constant.
If up = U = W, equation (48) reduces to a linear equation whose soludion i

ri—+rz
Yii=—=. 55
H P14+ p2 (59)

From the parametric equations (46) and (47) we obtain:

ri+rz
Yo1= =Y11, 56
21 011 P2 11 (56)

1 1 1
A= —(ripo—r + . 57
1 u( 1P2 2I01)(pl+p2 r1+r2) (57)

Itis convenient to treat separately the three cases refafed= o, p1 < 2 andpg > .

Case g < [z

The boundary conditions yield

p(0,0,0) =0, (58)
p(0,1,0) =0, (59)
_ H2 P1 P1 P1
p(O, 0, 1) = E [C]_S(EYll‘i‘YZl) +C28(EY12+Y22) +C38(EY13+Y23)] , (60)
p(0,1,1) = % (C]_SY11+CZSY12+C3$Y13) , (61)
p(N,0,0) =0, (62)
p(N, 1, 0) = r—; (Clse’\l NYll—i-CZSe(\zNle—‘r%sYlg) R (63)
p(N,0,1) =0, (64)
p(N,1,1) =0 (65)

Itis possible to express the constaBfsandC$ in term ofC; by equation (16) and (17). Specifically,

N Yo1(Y11—Y13) g

S_ —
< e2N Y5 (Y12 — Yi3) v

(66)
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and

cs= ef‘lNE; (Y“_Yl?’ - 1) cs. (67)

Therefore, the only unknown parameter in shendard operation partition model iglls. The value of
ClS can be found by means of the normalization equation fostdrelard operation partition in isolation,
i.e. equation (14). Note that the Basic model without régialicy presents only two constants while
C3S # 0 in theRP model as a consequence of the restart policy.

Case 1 >

The boundary probabilities are the following:

p(0,0,0) =0, (68)
p(0,1,0) =0, (69)

p(O, 0, 1) = (IJZr;llJl) (C]_SY11Y21(1 — e/‘lN) =+ CZSY12Y22(1 — GAZN)) +

_ &(Clse/\lNYl L+ CSe2NY;, 4 CSYsg) | (70)

p(0,1,1) =0, (71)
p(N,0,0) =0, (72)
p(N,1,0) = “—21 (CoeM N1 +CPe2NY1, +CHVg) (73)
p(N,0,1) =0, (74)
p(N,1,1) =0. (75)

The constant@zS andC3S can be expressed in terms onﬁ3 by equation (101), reported in Appendix
A, evaluated at the steady state, and by equation (20).

Thus,
s €Ny Y3 Yoavyy
G = ~ N (76)
25213 — Yo3Y12
and
Yi1 Yio [ €1NYo1Y5— YogY.
cs— |- 12( ; 21Y13 — Y23 11) cs. 77)
Yz Y3\ e2NYoY15— YosYio

Even in this case, the only unknown parametérﬁsrvhose value can be obtain by the normalization
equation for thestandard operation partition in isolation (equation 14).
Casepi1 = o= H

In this caser;1o = 0 and, consequentlyp, = 0 andA, = 0. Nevertheless, it is still necessary to consider
the parameterg; 3 andY,3 given by equations (51) and (52)1= 0 from equation 53).
Consequently, the solution for internal states can be siexpressed as

fS(x, a1, 02) = CPE Y12 + CHYIY,2, (78)
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where, for the sake of clarity, the same notation used foptheious cases has been maintained.
The boundary conditions yield

p(0,0,0) =0, (79)
p(0,1,0) =0, (80)
p(0,0,1) ﬂvl (Sl +1)cs+E (Elvlngg)q (81)
p(0,1,1) = <CE’Y11+ C5V1a). (82)
p(N,0,0) :o, (83)
P(N,1,0) = rﬂ[clseAlNYll-i- CVial, (84)
p(N,0,1) =0, (85)
p(N,1,1) =0 (86)

Recall that in the Basic model without restart policy thes'.IantC3S in equation (78) is zero. On the
contrary, here the relation betwe@ﬁ andC3S can be found by considering equation (16) leading to the
following:

X
=— Co. (87)

The normalization equation (14) allows us to find the valuél%hnd complete the solution.

5.2 Buffer drainage partition in isolation

As regards théuffer drainage partition in isolation, a solution satisfying equationg)2nd (23) is the
following:

£D(ay) :cD(%)az. 88)

The value ofCP can be obtained by the normalization equation forthier drainage partition in
isolation (equation 26) as follows:

D 2y _
NC (1+ pz)_l, (89)
SO, D
cb—-_ % 90
N(p2+r2) (%0)

5.3 System solution

Once the solutions have been determined for both the pasith isolation, we can derive the probabil-
ities of the system being in each partition from equatior) € (35).
Finally, the solution to the original system can be expréss=follows:

Sehxy a1y @2 p__ P2 (12\%
F(B.x, a1, 02) = <ZC€/\JY Y2 )+Brr N(p2+r2)<p2> 7 ®1)
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where the constant paramet€ls Y;j, A; withi =1,2 andj = 1,2,3 are computed according to
Section 5.

6 Numerical results

In the following some interesting numerical examples a@ppsed where thBP model described in
this paper is compared with the Basic model without restality (see Gershwin and Schick, 1980;
Gershwin, 2002). In this way it is possible to discuss theefienthat may derive from the adoption of
the restart policy.

In particular, scenarios witpye; > e and with uie; < poey are investigated. Configurations in
which uy < o, U1 = Ho, andpy > o are evaluated as well.

Figure 2 depicts the blocking frequency of Example 1a, whopat data are reported in Table 2.
In this example the isolated productivity of the first ma&hine; is greater than that of the second
machinepey, while pp < . Light lines represent thBP model and bold lines represent the Basic
model. Same line type means same input data. As can be easily when the restart policy is not
adopted, the blocking frequency approaches a limit greéhtar zero as the buffer capacity increases.

Thus, wheruie; > ey,

— if the restart policy is not adopted, there is a nonzero podibaof the buffer filling up even if large
buffer capacities are involved;

— the introduction of the restart policy makes it possiblégmgicantly reduce the blocking frequency,
allowing it to tend to zero when the buffer capacity is largeegh.

Therefore, ifuie1 > poe; and the outage costs on the first machine are critical (sdtikdilocking
frequency results to be a key performance measure thatdheuhken as low as possible), the adoption
of the restart policy results to be convenient. This sitiraticcur, e.g., in automated packaging lines of
the food and beverage sector.

[PUT TABLE 2 HERE]
[PUT FIGURE 2 HERE]

The same result is obtained in Figure 3 reporting Exampledfler(to Table 3). Whilgn e is still
greater thanpey, now Ly > L.

[PUT TABLE 3 HERE]
[PUT FIGURE 3 HERE]

Finally, Figure 4 reports the results of Example 2 represgrcenarios withu,e; < o€, (refer to
Table 4). As in previous figures, light lines represent®Pemodel and bold lines the Basic model, and
same line type means same input data. In such situationb|dbking frequency naturally approaches
the limit zero as the buffer capacity increases. This isfiouboth models, with or without restart policy.
What can be noted is that the restart policy affects the iigpid the convergence. This is especially
evident for the casg; > |2 (see Table 4 and the dashed line in Figure 4) where the rest@oy makes
it possible to reduce the blocking frequency even when soudiérs are adopted.

[PUT TABLE 4 HERE]
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[PUT FIGURE 4 HERE]

Thus, if y1e1 < ey it is possible to reduce the blocking frequency by eithengis large buffer
or adopting the restart policy. Moreover, it is importantcnsider that if, on one hand, the restart
policy has a beneficial effect on the blocking frequency;tandther hand, the probability of starvation
increases. Figure 5 shows the starvation probability foarfple 2. Since the adoption of the restart
policy implies an higher starvation probability, it may beneenient only if outage costs on the first
machine are highly critical and there exist constraintshenuffer capacity.

[PUT FIGURE 5 HERE]

In general, the decision whether or not to adopt the restditypwould be based on a carefully
considered evaluation of other constraints that are out@ftope of this work (e.g., buffer capacity
constraints and costs). This is especially trugié; < Li>€e.

7 Conclusions

The work addresses the performance estimation of a 2M-18ygtn line in which a control policy

is adopted to control the machines’ behavior according feegific event happening in the line, i.e. the
buffer filling up. Since the introduction of such a controlipgincreases the complexity of the problem,
a modeling approach based on the partitioning of the stateespas been developed so as to facilitate
mathematical tractability.

The production line under study consists of two machinesdgled with a finite buffer where a
restart control policyRP) is introduced on the first machine. The aim is to prevent #éry ynachine
from producing parts each time the buffer gets full until mies again. This policy is frequently
adopted in industrial installations where outage costs (@oduction of a certain amount of waste) are
generated during the restart phase of the machines.

The RP model is developed as a continuous time Markov process so @fotv the consideration
of machines having different capacities and working in amakronous manner. The exact analytical
solution of the model is provided and the conservation of fiewroved. Moreover, the expression of
the most important performance measures is derived.

Numerical examples prove the ability of tR® model to represent the effects of the adopted restart
policy on the blocking frequency (and, as a consequenceh®liirte efficiency), as a function of the
buffer capacity and the machines’ parameters. The reguttiodel represents an important tool able to
point out the convenience of adopting a restart policy inapction line and to measure its effects as a
function of the line characteristics.
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A Partitions in isolation: Model Equations
A.1 Standard Operation Partition in Isolation

Intermediate Buffer Levels

The internal equations are the same as the Basic model (ssbv@e and Schick, 1980; Gershwin, 2002).

ofs ofs

W(& 1,1) =— (p1+p2) FS(x, 1, 1) + (o — “1)W(X7 1,1)+r1 £5(x,0,1) +r2£5(x,1,0), (92)
S

%o@ 0,0) = — (r1+r2) £5(x,0,0) + p1 F 5(x,1,0) + p2  5(x,0,1), (93)

afS afS s s s

W(X,O,l):uzﬁ(x,o,l)*(rlﬂ* pz)f (X,O,l)+plf (X7171)+r2f (X7070)7 (94)

ofs ofS s s s

5 %10 =—p—7-(%1,0) = (pr +712) (% 1,0) +-p2 F2(x. 1, 1) 4711 %(x,0,0). (95)

Lower Boundary —x =0

The equations modified to include the restart policy are ggu£100) and equation (102).

— Boundary-to-Boundary Equations

950,00 = ~(11 +12)p%0,0,0) + p1p%(0,1,0). (96)
pS(0,1,0) = 0. (97)
— Interior-to-Boundary Equations
%ps(o, 0,1) =r2p%(0,0,0) ~r1p%(0,0,1) + p1p%(0,1,1) + 2 £ 5(0,0,1), (98)
%pS(O, 1,1) = — (pr+ P3)p5(0,1,1) +11p5(0,0,1) + (k2 — 1) 5(0,1, 1)+
+12p%(N,1,0) if 1 < piz, (99)
pS(0,1,1) =0 if g > py. (100)
— Boundary-to-Interior Equations
u1f5(0,1,0) =r1pS(0,0,0) + pipS(0,1,1), (101)
(1 — o) £5(0,1,1) =r1pS(0,0,1) +ropS(N,1,0) + (g — p2) £S(N, 1, 1) if g > o (102)

Upper Boundary —x =N

The equations modified to include the restart policy are gou107) and equation (108). Moreover, if a restart pol&cgipplied,
equation (105) holds in all the cases of interest fige< Lo, p1 = Uz and g > o).

— Boundary-to-Boundary Equations

d
apS(N7O7O) = _(r1+r2)pS(N7070)' (103)
— Interior-to-Boundary Equations
9 58(N,1,0) = r1pS(N,0,0) — r2pS(N, ,0) + popS(N, 1,1) + s fS(N, 1,0), (104)

dt
pS(N,1,1) =0. (105)



26 Elisa Gebennini et al.

— Boundary-to-Interior Equations

pS(N,0,1) =0, (106)
£S5(N,0,1) =0. (107)
fS(N,1,1) =0 if uy < pa. (108)
Normalization
1 1 N
[ / £5(x, ay, a)dx+ ps(o7a17az>+pS<N7aLaz>] =1 (109)
a1=002=0"" 0

A.2 Buffer Drainage Partition in Isolation

Intermediate Buffer Levels

() = —pot*O(1) 4121 P(0). (110)
00 = —pof (1) 1121 0(0). (111)

Normalization

/ONf*D(az)dx: 1. (112)

B Conservation of flow: Proof

For the system to be in the steady state, the following egu#tionservation of flow equation) must be verified:
PL=P,. (113)

Proof: For the sake of clarity, the expression of the total systelntisn can be split into the components related to the two
partitions as follows:

N
P = o [ / (15(x,1,0) + £ 5(x,1,1)) dx+pS(0, 1, 1)} , (114)
Jo
N N
P, — ITS{[JZ/ (F5(x,0,1) + £ S(x,1,1)) dx+ p1pS(0,1, 1)} + U f*D(l)dx} (115)
Jo Jo
By adding the steady state versions of the internal difféabaquations (92)-(95) in Appendix A, we obtain
d
g (2 = 1) TS 11 + 12 F5(x.0,1) — pf 5(x. 1,0)] =0. (116)
Therefore,
(M2 — k) F(x,1,1) + 2 5(x,0,1) — uS(x, 1,0) =K, (117)
whereK is a constant that can be found by evaluating (117) for pdaicvalues ofx and distinguishing betweem < u, and
Hi > Ho.

Consider first the case; < u, andx = 0, by adding equations (98), (99) and (101), in Appendix Aleated at steady state
and considering non-zero probabilities only, we obtain

(2 — p1)£5(0,1,1) + p2 £ 5(0,0,1) — u£5(0,1,0) = —r2pS(N,1,0). (118)
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On the other hand, ifi; > p2 and we add equations (98), (100) and (101) reported in Apgpekdt results

(M2 — ) £5(0,1,1) + 2 5(0,0,1) — p£5(0,1,0) = —r2pS(N, 1,0) — (i — pi2) F5(N, 1, 1). (119)
Thus,
—r-nS i <
_ erS(N717 0)7 S lf H1 =< M2, ) (120)
—r2p>(N,1,0) — (u1 — p2) F3(N,1,1), if g > po

Moreover, from the steady state version of equation (104ppendix A, we have:
r2p%(N,1,0) = p1f3(N,1,0),

and consequently,

_ S i <
K — I'llf S(N7170)7 S lf H1 =< M2, ) (121)
—p1f3(N,1,0) — (u1 — p2) F5(N,1L,1), if pig > pio
The same value fak can be found at = N considering the equations related to the upper boundary.
Subtracting (114) from (115) yields
N N
PPy — rrs/ (42— 1) 86 1,1) + 2 £5(x,0,1) — iy £ S(x,1,0) dx-+ nDuz/ £D(1)dx, (122)
o 0

where equation (122) is valid for boly < pp andpy > po.
Finally, considering equations (117) and (121) and reuglthe expressions farS and i° (equations (34) and (35)), we
obtain

Py — Py = 5[~ FS(N,1,0)|N+ 1P i f*P(1)N =

U £*P(1) s 1 FS(N,1,0) b

— * - 123
H21*P(1) + p SN, 1,0) t (N’l’o)N+ulf*D(l)+usz(N,1,o) Het (N (123)
=0, ifp<ph,

and

P~ PL= 15[~ (p FS(N,1,0) + (1 — pi2) FS(N,1,2)) N+ 1t® i £ *P ()N =
-~ p2f*P(1)
T Kf P+ fS(N,1,0)+ (i — H2) FS(N,1,1)
n pa SN, 1,0) + (1 — p2) FS(N, 1,1)
2 f*P (1) + pr FS(N,1,0) + (k2 — pi2) FS(N, 1, 1))
=0, if uyp> .

(l‘llf S(N7170) + (l‘ll - “2)fS(N’l’ l))N+
(124)

Haf (N =

Therefore, equation (113) is proved.
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Fig. 1 Step 1 and Step 2 of the modeling approach.



30

FIGURES

Blocking frequency

0.14r
0.12F "' P
0.1r
~ -~
oot 000 CoTT T -
> ~
0.06F "~ o _ -
0.04
0.02
0 I I I 1 = = = = ==
5 10 15 20 25 30 35 40 45 50

Fig. 2 Blocking

Buffer size

frequency for Example 1a: bolt lines for the Basiodal; light lines for theRP model.



FIGURES 31

Blocking frequency
0.14r

,
0.12f .

[
"
~, g,

Ty
[
) I

N
0.1
0.08

0.06

0.04F
0.02P\ N
O 1 1 1 1 |_ — ——I_. __=—|__-‘_——’—| e ]
5 10 15 20 25 30 35 40 45 50

Buffer size

Fig. 3 Blocking frequency for Example 1b: bolt lines for the Basiodel; light lines for theRP model.



32 FIGURES

Blocking frequency
0.01-

0.009k
0.008-"

0.007-

T
-

0.006

0.005

T
-

30 35 40 45 50
Buffer size

Fig. 4 Blocking frequency for Example 2: bolt lines for the Basicdsg light lines for theRP model.



FIGURES

33

Starvation probability

L L
O'0‘5 10 15 20 25 30 35 40 45 50
Buffer size

Fig. 5 Starvation probability for Example 2: bolt lines for the Basodel; light lines for théRP model.



34 FIGURES
List of Tables
1 Exit and arrival states of theéandard operation andbuffer drainage partition. . . . . . 35
2 Input data for Example laufe; > poeo with g < ). . . . . . o . oL 36
3 Inputdata for Example 1kuge; > toeo with pg > o). . . . o o o o oo 37
4 Input data for Example 24 e; < [2€2). . . . . . . . .o 38



TABLES 35

H1 < M2 H1 > H2
standard op. buffer drain. standard op. buffer drain.
Exit States (O,N,1,0) (1,x,1,1), 0 < x < a0t (O,N,1,0) (1,x,1,1), 0 < x < a0t
(0,x,1,1), N— (ug — p2)ot <x <N
Arrival States  (0,0,1,1) (1,x,1,1), N— oot <x <N (0,x,1,1), 0 < x < (1 — H2)Ot (1,x,1,1), N— oot <x <N

Table 1 Exit and arrival states of thatandard operation andbuffer drainage partition.
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TABLES

n_ n [ P2 W1 | @ &  [he1  |be | typeofcurve
02 03 002 025 1 1|091 055 091 055 solid
02 03 002 025 1 12091 055 091 065  dashed
02 03 002 025 1 14091 055 091 0.76 dotted-dashed
02 03 002 025 1 14091 055 091 087 dotted

Table 2 Input data for Example 1aufe; > poex with py < o).
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n_ n [ P2l 2| @ &  [he1  |be | typeofcurve
01 04 005 025 1 1| 067 062 067 062 solid
01 04 005 025 12 1|/ 067 062 0.80 062 dashed
01 04 005 025 14 1067 062 093 062 dotted-dashed
01 04 005 025 16 1| 067 062 107 0.62 dotted

Table 3 Input data for Example 1hge; > e with pg > o).
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TABLES

R P1 P2 M1 | & & e e | type of curve
04 02 003 00I 1 11 093 095 093 1.05 solid
01 04 005 0.02 12 1| 067 095 080 095 dashed

Table 4 Input data for Example 2uje; < H2€2).



