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Abstract: In many applications of interest in industrial robotics, tasks are cyclic and must be
repeated over and over. In this context, it seems natural to exploit the intrinsic properties of
repetitive control schemes, where the cyclic nature of “disturbances” and/or unmodeled dynamic
effects can be exploited to reduce the tracking errors. In this paper, we propose a new repetitive
control scheme, where the main idea consists in the modification of the reference trajectory in
order to compensate for the periodic undesired effects. By exploiting the dynamic filters for the
B-spline generation, it is possible to integrate the trajectory planning within a repetitive control
scheme able to modify in real-time the reference signal with the aims of nullify interpolation
errors. By means of an extensive experimental activity on a servo mechanism pros and cons of
the proposed approach are analyzed.
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1. INTRODUCTION

Repetitive Control (RC) schemes, firstly proposed by In-
oue et al. (1981a,b), may represent a quite natural choice
in cases in which the task to be executed is periodic in
time. As a matter of fact, in these cases from a control
point of view it is required to track and/or reject periodic
exogenous signals, that can be considered known since
they refer to planned trajectories whose cycle time is
usually known in advance. In this context, RC represents
a relatively simple and effective approach, since it aims
at cancelling tracking errors over repetitions by learning
from previous iterations. Many surveys, see e.g. Cuiyan
et al. (2004), Wang et al. (2009), report the successful use
of RC in a number of applications, such as high accuracy
trajectory tracking of servomechanism, torque vibration
suppression in motors, noise cancellation in power supply,
industrial robotics, and so on.
In this paper, a novel repetitive control scheme is presented
and its performance are analyzed through an extensive ex-
perimental activity. The scheme is based on a proper mod-
ification of the reference trajectory for the plant, which is
supposed to be already controlled. A similar idea has been
already proposed in the continuous-time domain by Hara
et al. (1988), where a two-degree-of-freedom local control,
and a plug-in type RC is used to update the reference
trajectory. The novelty of this paper consists in assuming
that the reference trajectories are defined by spline func-
tions, which are de-facto the standard tool used in the
industrial field for planning complex motions interpolating
a set of given via-points, see Biagiotti and Melchiorri
(2008). Thanks to the possibility of generating B-spline
trajectories by means of dynamic filters as shown Biagiotti

⋆ This activity has been supported by the University of Bologna,
with the “FARB Linea 2” funding action.

and Melchiorri (2010), the trajectory planner has been
inserted in an external feedback control loop that modifies
in real-time the control points of the B-spline curve so
that the tracking error at the desired via-points converges
to zero. The proposed control scheme has been directly
developed in the discrete time-domain, and is character-
ized by a very low computational complexity. Moreover,
the application of this control scheme is independent by
the particular control law of the plant, which may be an
important feature when dealing with not accessible control
systems e.g. factory controllers of industrial robots. The
paper is organized as follows. In Sec. 2 a general overview
of the filters for B-spline generation is given both in the
continuous and in the discrete-time domain. Then in Sec. 3
the repetitive control scheme based on B-spline filters is
illustrated. The experimental results reported in Sec. 4
allow to highlight pro and cons of the proposed approach,
and the final remarks are discussed in Sec. 5.

2. SET-POINT GENERATION VIA B-SPLINE
FILTERS

As shown in Biagiotti and Melchiorri (2010) a B-spline
trajectory of degree p can be generated by means of a
chain of p dynamic filters defined as

M(s) =
1− e−sT

Ts
fed by the staircase signal p(t) obtained by maintaining
the value of each control point pi defining the curve for
the entire period iT ≤ t < (i + 1)T , by means of a
zero-order hold H0(s). For computer controlled systems
equipped with digital controllers with sampling period Ts,
the B-spline reference trajectory can be computed at time-
instants kTs by Z-transforming the chain of p filters M(s)
with zero-order hold. In this way the system of Fig. 1 is
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Table 1. Expression of the filter Fp(z
−1) for

different values of p.

obtained, where Fp(z
−1) is a FIR filter whose expression

is reported in Tab. 1 for the most common values of the B-
spline degree p In this case, the sequence pi of the control
points is transformed in the staircase sequence pk, with
sampling time Ts, by means of an up-sampling operation
with replication

pk = pi, k = iN, iN + 1, . . . , (i + 1)N − 1 (1)

where N denotes the ratio, supposed to be an integer,
between T and Ts. The samples of the B-spline sequence
are then generated by the filter denoted by Mp(z) and
coincide with the value of the continuous-time trajectory
at time instants kT , i.e qk = q(kT ), see Fig. 2.

2.1 Control points computation

We assume here that the tasks to be performed are
cyclic, and therefore that the trajectories to be tracked
are repetitive. Accordingly, in order to define the ideal
spline trajectory passing through the via-points q⋆i at
time instants ti = iT , the so-called periodic B-splines
are adopted, that is B-spline functions defined by control
points periodic with period n:

pj = pj+n, j = 0, . . . , n− 1 (2)

︸ ︷︷ ︸

p filters

up-sampler

1 : N

pi pk qk−mN1−z−N
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1
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−1)

T Ts
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Fig. 1. Filter for the generation of discrete-time B-spline
trajectories of degree p.
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Fig. 2. Control points sequence pi defining a cubic B-spline
and related reference trajectory qk−mN with m = 2
obtained with the dynamic filter of Fig. 1.
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Fig. 3. Impulse response h(n) of the filter (4) (a) and of
the filter (5) (b).

By imposing the interpolation conditions q(iT ) = q⋆i , i =
0, . . . , n− 1, a system composed by n algebraic equations
in the unknowns p⋆i is obtained, i.e.

Ap p
⋆ = q⋆ (3)

where

p⋆ = [p⋆0, p⋆1, p⋆2, . . . , p⋆n−3, p⋆n−2, p⋆n−1]
T

q⋆ = [q⋆0 , q⋆1 , q⋆2 , . . . , q⋆n−3, q⋆n−2, q⋆n−1]
T

and the expression of Ap is reported in Appendix A as a
function of p. System (3) can be efficiently solved being Ap

a band matrix, see Yamamoto (1979). However, it is worth
noticing that the control points p⋆i can be calculated only
when the overall set of via-points is given and therefore
this procedure is suitable only for off-line computation. If
it is necessary to calculate online the control points as soon
as new via-points are provided, it is possible to observe
that equation (3) can be seen as a dynamic relationship
between via-points and control points (for more details see
Biagiotti and Melchiorri (2013)), that in the domain of the
Z-transform can be expressed as

P (z)

Q(z)
=

6

z + 4 + z−1
(4)

for cubic B-splines, and

P (z)

Q(z)
=

120

z2 + 26z + 66 + 26z−1 + z−2
(5)

for quintic B-splines. Unfortunately, both filters (4) and
(5) are unstable system and consequently they cannot
be used for computing the sequence p⋆i from q⋆i . This is
a direct consequence of the fact that the interpolation
procedure is a global problem that involves all the points
q⋆i . However, it is possible to approximate the interpolation
process by taking into account only a small set of points
q⋆i . This approach leads to a FIR filter defined by

H(z) =

r∑

n=−r

h(n) z−n (6)

that approximates the impulse response of (4) and (5)
within a prescribed tolerance according to the value of r.
The sequences h(n) for p = 3 and p = 5 are reported
in Fig. 3, while their analytical expression is given in
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Fig. 5. Discrete-time repetitive control scheme based on discrete-time B-spline filter.
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Fig. 4. Set-point generation by means of a B-spline filter
for a (controlled) discrete-time system G(z).

Appendix B. Note that in both cases the value of h(n)
becomes extremely small as |n| grows. The quality of the
approximation depends on the order 2r+1 of the filter, but
it is worth noticing that the choice r = 4 guarantees an
approximation error with respect to the exact solution of
(3) smaller than 0.5%. Moreover, sinceH(z) is not a causal
filter, in order to practically implement the transformation
between via points and control points it is necessary to
introduce a delay equal to r which makes the filter feasible,
that is

H ′(z) = z−r H(z) =
2r∑

n=0

h(n− r) z−n. (7)

3. IMPROVING B-SPLINES TRACKING VIA
CONTROL POINTS MODIFICATION

In standard digital control applications, the reference
trajectory generated by the discrete B-spline filter of
previous section is provided to a dynamic system G(z),
as illustrated in Fig. 4. The control points p⋆i are usually
computed off-line by solving (3).
Since the scheme of Fig. 4 has a standard cascade structure
without control actions but with the only purpose of
generating arbitrarily complex trajectories for the plant
G(z), the capabilities of G(z) to track such a kind of
signals are implicitly assumed. Therefore, the system G(z)
is assumed to be a controlled plant, with a standard closed-
loop structure, whose frequency response is characterized
by a typical low-pass behavior with a static gain as close
as possible to the unity. As explained in control textbooks
(see for instance Ogata (1997) among many others), in
order to follow the input signal accurately the bandwidth
of system G(z) must be large enough, and in particular
larger than the maximum frequency of the input signal,
that in the case of the B-splines introduced in previous
section can be assumed to be ω0. Therefore, a cutoff
frequency of the plant ωc ≫ ω0 guarantee a good tracking
performance. However perfect tracking (with zero tracking
error e = q−qr) is generally not achieved because G(ejωT )
is equal to one only approximatively and may be affected

by external disturbances.
If the tasks to be performed are cyclic, and also “external”
disturbances share the same property, it is possible to
implement a procedure for modifying the reference signal
in order to guarantee that the interpolation error at the
given via-points q⋆i asymptotically vanishes. Since a B-
spline curve is completely determined by the position of
its control points, the modification of the trajectory can
be obtained by directly acting on them, by means of
the scheme of Fig. 5 based on the RC approach. In this
scheme, both the trajectory generator and the plant G(z)
are inserted in a discrete-time control loop that, on the
basis of the interpolation error q̃i = q⋆i − qi, modifies in
real-time the control points sequence (denoted by pri ) from
the initial value p⋆i . In the scheme of Fig. 5, the filter H(z)
is used to transform in run time the interpolation error q̃i
in an error in the control points position p̃i. The sequence
p̃i multiplied by the constant Kp ≤ 1 (usually Kp = 1)
and properly delayed in time is provided to the filter

1

1− z−n
(8)

used to compute the reference sequence of points pri for
the discrete-time interpolator based on B-splines and the
controlled plant. Note that the initial value of the output
of filter in (8) has been set to p⋆i , that is the sequence of
the control points defining the ideal trajectory.
According to the theory of discrete-time repetitive control,
see Tsai et al. (1988), that exploits the internal model
principle of Francis and Wonham (1975), the presence
in the control loop of the transfer function (8) assures
asymptotic perfect tracking of a periodic signal with
period n (in this case the number of the desired via points
q⋆i ) provided that the whole system is stable. In Biagiotti
et al. (2015) it has been found that the asymptotic stability
of the RC scheme is guaranteed by the condition

||Kp Gwc − 1|| < 1. (9)

where the constant (complex) number

Gwc = max
ω≤ω0

|G(ejωTs)| e
j min

ω≤ω0

{argG(ejωTs )}

takes into account the maximum gain variation and the
maximum (negative) phase displacement caused by G(z).
The use of the B-spline filter allows to restrict the range
of variation of ω to the interval [0, ω0] because, as already
noted, the spectrum of the reference signal can be ne-
glected outside this interval. If the condition mentioned
at the beginning of this section about the tracking capa-
bilities of G(z) is met, i.e. G(ejωTs) ≈ 1 for 0 ≤ ω ≤ ωc,
and being ω0 ≪ ωc the condition (9) always holds true.
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Fig. 6. Reference trajectory and actual position of the motor A and related interpolation error q̃i without and with RC
mechanism as a function of p (T = 0.25 s).

4. EXPERIMENTAL VALIDATION

In order to experimentally test the proposed method
the setup of Fig. 7 has been arranged. This system is
characterized by two linear motors, LinMot PS01-37x120,
rigidly connected along the axis of motion. Linear motor
A is controlled by means of a position controller properly
set up 1 to track a desired periodic motion defined by a
uniform B-spline trajectory. On the other side, the linear
motor B, equipped with a force/current controller, is used

1 In order to better highlight the behavior of the RC mechanism, the
integral control term which is present in the position control loop of
the actuator has been disabled.

PC + I/O board

servo controller

current

control

motor

position

control

motor

force

control

linear motor A linear motor Brigid junction

qm Fdist

Fig. 7. Experimental setup.

to generate an external periodic disturbance that emulates
a mechanical load connected to the actuator A or the
inertial coupling that exists among different axes of a robot
manipulator. In particular, in the experiments the simple
relation

Fdist = −k qm(t)− c q̇m(t)

that reproduces a spring-damper system has been as-
sumed, with the parameters k = 500 [Nm] and c = 100
[Nm s−1]. The control system is based on the servo con-
troller LinMot E2010-VF that performs the basic current
control, while the position control (based on a standard
velocity/position cascade control scheme) and the force
control have been implemented on a standard PC with a
Pentium IV 3 GHz processor and 1 GB of RAM equipped
with a Sensoray 626 data acquisition board, used to com-
municate with the servo controller. The position of the
motor is measured by an incremental encoder with a
resolution of 1µm integrated in the stator. The real-time
operating system RTAI-Linux on a Debian SID distri-
bution with Linux kernel 2.6.17.11 and RTAI 3.4 allows
the position controller to run with a sampling period
Ts = 500µs. For the design of the control scheme and
of trajectory generator, the MatLab/Simulink/RealTime
Workshop environment has been used.
In order to test the performances of the system with the
RC scheme, a trajectory passing through n = 20 via-
points is considered. Once that the shape of the B-spline
trajectory and its control-points, which depend only on
the given via-points, have been fixed, the only parameters
of the trajectory generator that can be changed are the
knot span T (and accordingly the total duration of the
trajectory) and the order p of the spline. In Fig. 6, the
behavior of the system with and without RC modification
of the trajectory is shown, along with the interpolation
errors q̃i, for different values of the degree p. When the
RC is not activated the tracking error, intentionally quite
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Fig. 8. Interpolation error q̃i at sampling instants iT as a function of p and T . On the x-axis, t/TTOT , being TTOT = nT
the total duration of the desired spline trajectory, represents the number of iterations.

large due to the noticeable external disturbance, seems to
be not influenced by p. On the contrary, when the RC
is activated (after 15 cycles), even if the interpolation
error q̃i at sampling time iT is negligible, during the
inter-samples the tracking error is strongly affected by p.

The same conclusions can be deduced from the results
illustrated in Fig. 8, where the tracking errors obtained
with the RC for different values of T and p are shown. The
stability of the overall control system only depends on T ,
as stated in Sec. 3. As a matter of fact the system is stable



until ω0 is smaller than the cutoff frequency of the plant
(ωc ≈ 63 rad/s). But when T = 0.05 s and accordingly
ω0 = 125.6637 rad/s overcomes ωc the control system
becomes unstable, independently of p. By analyzing Fig. 8,
it is clear that the amplitude of the inter-sample oscillation
depends on p, and in particular it decreases as p grows.
This appear reasonable, since practical experience suggests
that smoother reference signals, represented by B-spline
of higher degree p, are usually better tracked by physical
plants.
Finally, the role played by the gain Kp usually assumed
equal to one has been investigated (in this case the plots
are not reported because of space limits). Values of Kp

smaller than one reduce the rate of convergency of the
error qi but they do not influence the stability of the
system or the magnitude of the inter-sample error.

5. CONCLUSIONS

In this paper, motion planning and reactive control have
been integrated in order to obtain a perfect tracking of a
desired set of via-points. By considering tasks performed
cyclically, which are quite common in the industrial and
robotics field, a trajectory generation based on B-spline
has been enhanced with a RC-type mechanism that mod-
ifies in real-time the control points defining the spline in
order to nullify the tracking error at the desired points.
The effectiveness and the robustness of the proposed ap-
proach has been demonstrated by implementing the con-
trol scheme on a test bed composed by two actuators: a
position servo system and a source of load/disturbances.
The role played by the free parameters of the controller
(degree p of the trajectory and knot span T ) have been
investigated. If the controlled plant is able to track a
given B-spline trajectory it is possible to implement the
proposed mechanism without care about the stability of
the overall system, which is always guaranteed. The use
of of higher values of p allows to reduce inter-sample
oscillations, which are a well-known side effect of RC.
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Appendix A. MATRICES OF THE SYSTEM FOR
CONTROL-POINTS COMPUTATION

If p = 1, A1 = In, being In the n× n identity matrix.
If p = 3,

A3 =
1

6









4 1 0 · · · 0 1
1 4 1 0 · · · 0
...

. . .
...

0 · · · 0 1 4 1
1 0 · · · 0 1 4









.

If p = 5,

A5 =
1

120













66 26 1 0 · · · 0 1 26
26 66 26 1 0 · · · 0 1
1 26 66 26 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 26 66 26 1
1 0 · · · 0 1 26 66 26
26 1 0 · · · 0 1 26 66













.

Appendix B. COEFFICIENTS OF THE FIR FILTER
FOR CONTROL-POINTS COMPUTATION

The coefficients h(n) of the FIR filter H(z) in (6) for p = 3
can be computed as

h(n) =
1− α

1 + α
α|n|

where α = −2 +
√
3 is the stable pole of (4), see Biagiotti

and Melchiorri (2013).
For p = 5 the coefficients of the approximating FIR filter
are

h(n) = c1 α
|n|
1 + c2 α

|n|
2

where α1 and α2 are the unstable poles of (5) defined by

αi =
1

2
(2 + ui +

√

4 ui + u2
i ), i = 1, 2

with ui = −15±
√
105, and the coefficients ci are

c1 =
α1(−1 + α1)(−1 + α2)

2

(α1 − α2)(−1 + α1α2)(1 + α1)

c2 =
α2(−1 + α2)(−1 + α1)

2

(α2 − α1)(−1 + α1α2)(1 + α2)
.


