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Abstract

Rat brain slices comprising the perirhinal cortex (PC) and a portion of the lateral nucleus of the 

amygdala (LA), in standard medium, can generate synchronous oscillatory activity that is 

associated with action potential discharge and reflects the activation of glutamatergic and 

GABAergic receptors. We report here that similar synchronous oscillatory events are recorded in 

the PC in response to single-shock, electrical stimuli delivered in LA. In addition, we found that 

the latency of these responses progressively increased when the stimulus interval was varied from 

10 to 1 s; for example, the response latency during stimuli delivered at 1 Hz was more than 

twofold longer than that seen during stimulation at 0.1 Hz. This prolongation in latency occurred 
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after approximately 5 stimuli, attained a steady value after 24–35 stimuli, and recovered to control 

values 30 s after stimulation arrest. These frequency-dependent changes in latency continued to 

occur during NMDA receptor antagonism but weakened following application of GABAA and/or 

GABAB receptor blockers. Our findings identify a new type of short-term plasticity that is 

mediated by GABA receptor function and may play a role in decreasing neuronal network 

synchronization during repeated activation. We propose that this frequency-dependent adaptive 

mechanism influences the excitability of limbic networks, thus potentially controlling epileptiform 

synchronization.
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Introduction

It is well established that amygdala and perirhinal cortex (PC) neuronal networks are 

interconnected both anatomically and functionally [23]. These limbic areas are characterized 

by synaptic plasticity and are intimately involved in learning and memory [9, 33, 42, 43, 49, 

56, 57, 64]. Rhinal cortices, which include entorhinal and perirhinal structures, are critical 

components of the declarative memory system [55]. In particular, in patients affected by 

temporal lobe epilepsy refractory to antiepileptic drug treatment, surgical resection of rhinal 

cortices and amygdala causes a marked postoperative impairment in the ability to learn 

unrelated word pairs [63]. Clinical and experimental evidence also indicates that both 

amygdala and PC play pivotal roles in the generation of epileptiform discharges and in 

epileptogenesis [7, 23, 34, 41].

We have previously reported that spontaneous, network-driven events associated with action 

potential discharge can be recorded in rat brain slices comprising the PC along with a 

portion of the lateral nucleus of the amygdala (LA) during incubation with standard medium 

[32]. These network oscillations reflect the activation of ionotropic glutamatergic and 

GABAergic receptors and are influenced by gap junction conductance. Interestingly, similar 

in vitro spontaneous activity occurs in brain slices obtained from amygdala-kindled rats [39, 

40] as well as in isolated rodent hippocampal slices obtained from “control” animals [37, 46, 

47].

In this study, we employed focal electrical stimulation of the LA under similar experimental 

conditions (i.e., standard medium) to further establish the functional characteristics of these 

neuronal network interactions in the rat limbic system. As expected, single-shock electrical 

stimuli in LA induced field potential and intracellular responses in the perirhinal cortex that 

were similar to those that occur spontaneously. However, we discovered that the latency of 

these oscillatory, network-driven responses increased when stimuli were delivered at higher 

stimulation frequencies (e.g., the response latency during stimulation at 1 Hz was more than 

twofold longer than during 0.1-Hz stimulation). In addition, we found that these frequency-

dependent changes in latency were unaffected by an NMDA receptor antagonist but became 

less marked during application of GABAA and/or GABAB receptor blockers.

Biagini et al. Page 2

Pflugers Arch. Author manuscript; available in PMC 2016 May 25.

P
M

C
 C

anada A
uthor M

anuscript
P

M
C

 C
anada A

uthor M
anuscript

P
M

C
 C

anada A
uthor M

anuscript



Methods

Brain slice preparation and maintenance

Male, young adult Sprague-Dawley rats (130–180 g; Charles River, St-Constant, QC, 

Canada) were decapitated under halothane anesthesia according to the procedures 

established by the Canadian Council on Animal Care. All efforts were made to minimize 

animal suffering and the number of animals used. Horizontal brain slices (450 μm) were 

prepared, as reported in previous studies from our laboratory [6, 32], and were transferred 

into a tissue chamber, where they laid at the interface between artificial cerebrospinal fluid 

(ACSF) and humidified gas (95 % O2, 5 % CO2) at a temperature of 34 °C and a pH of 7.4. 

ACSF composition was (in mM) NaCl 124, KCl 2, KH2PO4 1.25, MgSO4 2, CaCl2 2, 

NaHCO3 26, and D-glucose 10. 3-N[1-(S)-(3,4-dichlorophenyl)ethyl]amino-2-(S)-

hydroxypropyl-P-benzyl-phosphinic acid (CGP 55845, 4 μM), 3,3-(2-carboxypiperazin-4-

yl)-propyl-1-phosphonate (CPP, 10 μM), and picrotoxin (PTX, 50 μM) were bath-applied in 

some experiments. Chemicals were acquired from Sigma (St. Louis, MO, USA) with the 

exception of CPP and CGP 55845, which were obtained from Tocris Cookson (Langford, 

UK). Surgical separation of the parahippocampal areas from the hippocampus proper was 

performed with a razor blade mounted on a micromanipulator at the beginning of the 

experiment to minimize the possible influence exerted by CA3-driven activity [6, 32] (Fig. 

1A).

Electrophysiological recordings

Field potential recordings were made with ACSF-filled glass pipettes (resistance 1.2–10 

MΩ) that were connected to high-impedance amplifiers. Sharp-electrode, intracellular 

recordings were performed in the PC with pipettes that were filled with 3 M K-acetate (tip 

resistance 70–120 MΩ). Intracellular signals were fed to a high-impedance amplifier with 

internal bridge circuit for intracellular current injection. The resistance compensation was 

monitored throughout the experiment and adjusted as required. Microelectrodes recording 

extracellular and intracellular signals were placed closely (~500 μm) in the deep layers of 

the PC (i.e., 600–800 μm from the pia) (Fig. 1A).

The fundamental electrophysiological parameters of the neurons included in this study were 

measured as follows: (i) resting membrane potential (RMP) after cell withdrawal, (ii) 

apparent input resistance (Ri) and membrane time constant (τ) from the voltage change in 

response to a hyperpolarizing current pulse (100–200 ms, <−0.5 nA), and (iii) action 

potential amplitude and duration from the baseline and at half-width, respectively. These 

characteristics were similar to those previously reported by D’Antuono et al. [16] and Kano 

et al. [32] (see Table 1). All PC cells could be identified as regularly firing neurons when 

injected with pulses of intracellular depolarizing current [16]. Field potential and 

intracellular signals were fed to a computer interface (Digidata 1200B, Axon Instruments, 

Union City, CA, USA) and were acquired and stored by using the pClamp 8 software (Axon 

Instruments). Subsequent data analysis was made with the Clampfit 8 software (Axon 

Instruments).
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Stimulation protocols and data analysis

Single-shock stimuli (0.1–0.3 mA, 50–100 μs) were delivered through a tungsten electrode 

that was positioned in the LA (Fig. 1A). These stimuli were delivered at 0.1, 0.2, 0.5, and 1 

Hz for periods of up to 300 s while keeping the stimulus strength constant throughout the 

session. Threshold stimulation strength was established in each experiment as that capable 

of consistently eliciting an oscillatory network-driven response following stimuli delivered 

at 0.1 Hz; stimulation protocols were then performed at different frequencies in a random 

fashion by employing such stimulation strength. Each series of stimuli was followed by a 

period of “no stimulation” lasting at least 180 s.

The latency of these stimulus-induced responses was measured from the stimulus artifact to 

the rising phase of the first action potential associated with the stimulus-induced response 

(see Fig. 1C, inset b). Unless specified, values under each experimental condition were 

obtained by averaging the latency of the intracellular responses that were generated 

following the last 20 to 30 stimuli delivered during a series. As illustrated in Fig. 2B, these 

“late” stimulus-induced responses were characterized by latencies that displayed minimal 

variability (i.e., the latency appeared to have reached a nominal steady state). The duration 

of the stimulus-induced responses was obtained from the intracellular recording trace by 

measuring the time between the first action potential and the full membrane repolarization 

(Fig. 1D); duration values in each experimental session were also obtained by averaging the 

responses recorded following the last 20 to 30 stimuli delivered during each series.

Measurements in the text are expressed as mean ± SEM and n indicates the number of 

neurons studied under each specific protocol. Data were statistically compared with one-way 

or two-way analysis of variance (ANOVA) for repeated measures as appropriate, followed 

by the Fisher’s least significant difference (LSD) post hoc test, and were considered 

significantly different if p<0.05.

Results

PC network responses to single-shock stimuli delivered in LA

Figure 1B shows spontaneous field potential activity recorded in PC and LA in two different 

brain slices incubated in standard medium. As reported by Kano et al. [32], these 

spontaneous events were characterized by a series of field oscillations at 5–11 Hz, with 

durations ranging between 0.2 and 1.4 s and intervals of occurrence between 7 and 22 s. 

Field events occurring more frequently (Fig. 1B, inset a) had shorter durations than events 

occurring at longer intervals (Fig. 1B, inset b).

Intracellular recordings from PC neurons demonstrated that in most cases (25 out of 31 

neurons recorded from 16 slices) single-shock stimulation of the LA at 0.1 Hz evoked all-or-

none sequences of action potential bursts that rode over rhythmic depolarizing oscillations of 

the membrane potential (Fig. 1C, inset a). In the remaining six neurons, low strength LA 

stimuli induced a postsynaptic response that could contain both excitatory postsynaptic 

potential (EPSP) and inhibitory postsynaptic potential (IPSP) components depending on the 

neuron resting membrane potential (not shown); in these experiments, only stronger 

electrical stimulation of the LA produced action potential discharges associated with 

Biagini et al. Page 4

Pflugers Arch. Author manuscript; available in PMC 2016 May 25.

P
M

C
 C

anada A
uthor M

anuscript
P

M
C

 C
anada A

uthor M
anuscript

P
M

C
 C

anada A
uthor M

anuscript



rhythmic membrane oscillations (Fig. 1C, inset b). As shown in Fig. 1D, simultaneous 

intracellular and extracellular recordings revealed that the stimulus-induced intracellular 

oscillatory responses were mirrored by field oscillations that were similar to those reported 

to occur spontaneously [32].

On average, the latency of the oscillatory network-driven responses generated by PC neurons 

following LA stimuli at 0.1 Hz was 28.1±1.1 ms (n=31 neurons). The distributions of the 

latencies and of the durations of the responses generated by these PC neurons following LA 

stimulation at 0.1 Hz are summarized in the frequency histograms shown in Fig. 1E. When 

stimuli were applied at 0.1 Hz, the mean latencies were fairly constant from one pulse to the 

next (Fig. 2B, top panel). Co-application of the NMDA receptor antagonist CPP and the 

non-NMDA glutamatergic receptor antagonist CNQX (10 μM; n=3 neurons) or CNQX only 

(n=3 neurons) abolished these stimulus-induced responses, revealing a hyperpolarizing IPSP 

when the membrane potential was depolarized to values less negative than −70 mV (not 

illustrated).

Stimulus-induced oscillatory network-driven responses increase in latency when stimuli 
are delivered at short intervals

When LA stimuli were delivered at 0.5 Hz, the latencies of the oscillatory network-driven 

responses were initially similar to those found at 0.1 Hz but then progressively increased 

after approximately 5 successive stimuli, peaking at 90 ms at around 10 stimuli, and 

attaining a relatively steady value of 55 ms after approximately 25 stimuli (Fig. 2A). This 

finding is quantified in the plots shown in Fig. 2B, which show the latency of the oscillatory 

network-driven responses induced by successive stimuli delivered at 0.1, 0.5, and 1 Hz in a 

PC neuron that was tested four times at these three different rates of stimulation. The 

“steady” latency of the responses induced by stimuli delivered at 0.5 Hz in this experiment 

was 1.5-fold longer than that observed during 0.1-Hz stimulation (Fig. 2B, middle panel). 

Moreover, an even larger latency prolongation emerged when stimuli were delivered at 1 Hz 

(Fig. 2B, bottom panel). These data indicate that the latency of the oscillatory network-

driven responses measured during the steady state in the PC augments progressively as the 

rate of stimulation in LA is increased.

To further assess this phenomenon, we analyzed the latency of the responses generated by 

PC neurons (n=31) over the course of repetitive stimulation of the LA at 0.1, 0.2, 0.5, and 1 

Hz. Figure 3C shows that the steady state latencies of these responses increased as a direct 

function of the stimulation rate. Thus, mean steady state latencies obtained during stimuli 

delivered at 0.5 Hz (47.3±2.8 ms) were significantly longer that those observed at 0.1 Hz 

(28.1±1.1 ms; p<0.01, Fisher’s LSD test). Latencies further increased during 1-Hz 

stimulation trials (60.8±2.6 ms, p<0.01) (Fig. 3C). The intracellular recordings illustrated in 

Fig. 3A, B also show that PC responses were consistently induced by stimuli at threshold 

strength when delivered at 0.1 Hz but failed to be generated in response to every second 

stimulus when the rate was increased to 1 Hz. These failures were abolished by increasing 

the stimulus strength.

The increases in latency were paralleled by decreases in the duration of the oscillatory 

responses generated by PC neurons (Fig. 3A, inset b, and Fig. 3B, inset b). As summarized 
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in the histograms in Fig. 3D, the responses obtained at 0.5- and 1-Hz protocols were 

significantly (p<0.01) shorter than those recorded when stimulation was delivered at 0.1 Hz. 

A significant (p<0.05) difference was also found between 0.2- and 1-Hz protocols (Fig. 3D).

The latency increase elicited by repetitive stimulation of LA at frequencies higher than 0.2 

Hz recovered within a few tens of seconds upon termination of the stimulation procedure. 

This feature was analyzed in detail in 11 PC cells that were tested for stimuli delivered at 0.1 

Hz (control), then stimulated for 100 s at 1 Hz, and then further analyzed upon termination 

of the 1-Hz train. Representative samples of the stimulus-induced responses obtained in one 

of these experiments are illustrated in Fig. 4A. Data obtained from all experiments (n= 11 

neurons) are summarized in the plot of Fig. 4B, which shows that the response latency 

gradually decreased and achieved a steady value similar to control (i.e., 0.1-Hz stimulation) 

approximately 30 s after termination of stimulation at 1 Hz.

Effects induced by concomitant application of GABAA and GABAB antagonists

Next, we tested the hypothesis that GABA receptor signaling contributed to the latency 

prolongation of oscillatory network-driven responses in PC neurons (n=17), using the 

GABAA and GABAB receptor blockers PTX (50 μM) and CGP 55845 (4 μM), respectively. 

Co-application of these drugs increased the excitability of PC networks as indicated by the 

consistent ability of threshold stimuli to induce oscillatory network-driven responses during 

any of the frequencies tested (Fig. 5A–C). In addition, the latencies of the responses 

obtained during 1-Hz stimulation were significantly shorter (p<0.05) with PTX+CGP 55845 

than in control conditions (Fig. 5D and Table 2; note that differences among frequencies of 

stimulations are shown in Fig. 5, whereas differences between groups of treatment are 

indicated in Table 2), suggesting that activation of GABA receptors contributed to the 

increase in latency observed with increasing stimulus frequency.

GABA receptor blockers also caused alterations in the duration of neuronal responses as a 

function of stimulus frequency (Fig. 5E). At 0.1-Hz stimulation, the duration was 

significantly (p<0.05) higher in the PTX+CGP 55845 group compared with control values 

(Table 2). In addition, a frequency-dependent decrease (p<0.05; two-way ANOVA for 

repeated measures) in average values of duration was observed during application of 

medium containing PTX+ CGP 55845 (Fig. 5E). Specifically, the response duration was 

significantly (p<0.05) shorter at 0.5 Hz (442.5± 59.9 ms) and at 1 Hz (312.4±28.1 ms) than 

at 0.1 Hz (766.5 ±187.1 ms), so that duration values were not significantly different from 

control values at frequencies higher than 0.1 Hz (Table 2).

Effects induced by pharmacological blockade of GABAA receptors

Experiments with just the GABAA blocker PTX demonstrated that frequency-dependent 

changes in the latency of the stimulus-induced responses were partially dependent on 

GABAA receptors. Specifically, the increase in latency observed under PTX treatment at 1 

Hz was significantly (p<0.05) less pronounced than that under control conditions (Fig. 6A, B 

and Table 2). No differences were found at the other frequencies of stimulation.

PTX also prolonged the effect exerted by stimulus frequency on the duration of the 

responses. Thus, durations were significantly (p<0.01) shorter in control conditions than 
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under PTX at 0.1 and 0.5 Hz (Fig. 6B and Table 2). No statistical difference was observed at 

1-Hz stimulation (Fig. 6B and Table 2).

Effects induced by pharmacological blockade of GABAB receptors

Similar effects were also seen during the sole application of the GABAB receptor blocker 

CGP 55845. When treatment groups were compared at the same frequency of stimulation, 

latencies were significantly longer in control conditions than in the presence of the GABAB 

blocker at 0.5 Hz (p<0.05) and 1 Hz (p<0.01), whereas no difference was found at 0.1 Hz 

(p=0.27) (Fig. 6D and Table 2). At all the different frequencies of stimulation that were 

tested, mean values for the durations of the responses were similar in control slices and 

under CGP 55845 exposure (Fig. 6D and Table 2).

NMDA receptors do not contribute to the stimulus-rate-dependent changes in latency

Finally, we examined whether frequency-dependent effects on latency and/or duration were 

dependent on NMDA receptor function, using the NMDA receptor antagonist CCP. 

Blocking NMDA receptors did not significantly affect response latency (p=0.29) (Fig. 7 and 

Table 3); however, it did significantly (p<0.05) reduce response duration compared to 

control at 0.1 Hz, but not at 1 Hz (Fig. 7C and Table 3).

Discussion

The main novel finding obtained in this study is that the latency of the responses generated 

by PC networks following single-shock stimuli delivered in the LA progressively increases 

when the stimulus frequency is varied from 0.1 to 1 Hz. We have also found that the 

frequency-dependent changes in latency recover to control values shortly after stimulation 

arrest and are not dependent on NMDA receptor signaling, suggesting that they do not 

reflect long-term depression (LTD) of synaptic transmission. Finally, we have found specific 

changes in duration and latency of these responses during pharmacological blockade of 

GABAA or GABAB receptors and changes in response duration with inhibition of NMDA 

receptors.

PC networks generate oscillatory network-driven events in response to LA inputs

Reciprocal innervation between principal cells of LA and PC [49, 54, 61] constitutes the 

basis for the highly correlated neuronal activity observed in these two limbic areas. This 

evidence is in line with the reported ability of LA and PC networks maintained in vitro 

under control conditions to generate spontaneous and synchronous oscillatory network-

driven events [32] as well as with the data obtained here by recording the responses 

generated by PC neurons following single-shock electrical stimuli delivered in LA. We have 

found that the activation of inputs originating from LA in these brain slices causes robust 

discharges of action potential firing in the PC; these responses are characterized by a 

sustained depolarization that is mirrored by field potential activity similar to that observed 

spontaneously.

These stimulus-induced responses, like those occurring spontaneously [32], are mediated by 

ionotropic glutamatergic receptors as indicated by the ability of an AMPA receptor 
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antagonist to abolish them, whereas NMDA receptor antagonism did not eliminate the 

responses but reduced their duration. Several studies have identified a primary role played 

by non-NMDA receptors in sustaining synchronous activity, including epileptiform 

discharges in cortical structures such as the PC [6, 10, 15, 19, 29, 58].

Mechanisms involved in the frequency-dependent prolongation in latency

The principle new finding of these experiments is that when the stimulation rate in LA is 

increased stepwise from 0.1 to 1 Hz, the latency of the responses generated by PC networks 

increases. Although we did not systematically analyzed the effects induced by different 

stimulus strengths on such latency prolongation, similar frequency-dependent increases 

could be observed with both low-intensity (i.e., threshold stimuli that were capable of 

consistently inducing responses at 0.1 Hz) and high-intensity stimuli. Several mechanisms 

can contribute to this phenomenon. One obvious candidate is LTD of glutamatergic synaptic 

transmission, which is known to be induced by 1-Hz stimulation [5, 12, 28, 38, 48, 62]. 

However, our data demonstrate that the latency prolongation recovered to prestimulation, 

“control” values with a few tens of seconds, suggesting that mechanisms underlying LTD are 

not contributing to these changes. Furthermore, NMDA receptors, which are known to play a 

role in synaptic plasticity, including LTD [5, 12, 45], are not participating to the latency 

prolongation of these stimulus-induced responses since these dynamic changes persisted 

during application of an NMDA receptor antagonist.

We have, however, obtained evidence for a partial role of both GABAA and GABAB 

receptors in latency prolongation. Specifically, either GABAA or GABAB antagonism 

reduced significantly the frequency-dependent differences in latency prolongation. 

GABAergic transmission plays an important role in modulating oscillatory activity of 

neuronal networks [8, 14, 35, 44, 50, 52, 53], which depends on the interplay between 

postsynaptic inhibition, mediated by GABAA and GABAB heteroreceptors, and presynaptic 

inhibition due for instance to the activation of GABAB autoreceptors [51]. Interestingly, a 

differential modulation of GABAB-dependent versus GABAA-mediated contribution to 

oscillatory activity has been proposed in the case of γ oscillations in the auditory cortex [44]. 

Possible explanations for the different contributions of GABA receptors could include (i) 

agonist-induced co-internalization of GABAB receptors associated with GABAA receptors at 

hyperactive synapses [3]; (ii) phosphorylation or dephosphorylation of GABAB receptors 

caused by postsynaptic activation [22]; (iii) decreased expression of GABAB receptors due 

to glutamate spillover [60]; and (iv) altered GABA transporter activity, affecting the 

availability of GABA to perisynaptic GABAB receptors [24]. These phenomena may be 

involved in the slightly different effects produced by GABAA or GABAB agonist exposure 

during network stimulation, as found on latency (more affected by CGP 55845) and duration 

(affected only by PTX, whose power was decreased in presence of CGP 55845) of neuronal 

responses.

Our data suggest that stimulus-induced oscillations generated by PC neuronal networks are 

associated with GABA release that in turn inhibits neuronal activity and thus attenuates the 

ability of the network to generate synchronous firing. In line with this view, a powerful feed-

forward inhibitory network could be activated in the PC following electrical stimuli 
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delivered in the LA, and this mechanism might become more and more pronounced as the 

stimulation frequency is increased, thus delaying the responses generated by PC neurons; the 

presence of such potent feed-forward inhibition has been indeed demonstrated in the PC 

following stimulation of both entorhinal cortex and neocortex [18].

These effects were however partial, indicating that additional mechanisms contribute to the 

frequency-dependent increase in response latency. In addition to neuromodulators such as 

adenosine, 5-hydroxytriptamine, or acetylcholine—which are presumably released during 

stimulation and are known to reduce neurotransmitter release [21, 26, 30]—an important 

role in augmenting the latency during repetitive stimulation at rates higher than 0.5 Hz may 

also be played by the transient elevations in extracellular [K+] that occur during intense 

neuronal activity and result from synaptic and non-synaptic mechanisms [1, 25, 27, 31, 36]. 

Several studies suggest that an increase in extracellular [K+] can paradoxically decrease the 

propagation of neural activity in axonal pathways along with the presynaptic release of 

neurotransmitters [20]. Finally, extracellular alkalinization—which occurs during 

synchronous neuronal activity [11, 17]—is known to reduce gap junction coupling [13, 59], 

thus decreasing excitability and prolonging the time required for the neuronal recruitment 

associated with the stimulus-induced response.

Relevance of the frequency-dependent increase in latency

We have presented here evidence for a new type of frequency-dependent adaptive feature 

that is characterized by latency prolongation of the oscillatory responses generated by PC 

neurons during repetitive stimulation of the LA. For example, the latency more than doubled 

when the stimulus frequency was increased from 0.1 to 1 Hz. The increases in latencies were 

reduced, but not eliminated, by antagonism of GABAA and GABAB receptors, indicating 

that GABAergic transmission is partly, but not solely, responsible for this phenomenon. The 

increase in latency demonstrated in our study may be relevant for explaining the ability of 

low-frequency stimulation to reduce the duration of seizure-like events as previously 

reported in both 4-aminopyridine and low Mg2+ in vitro models of epileptiform 

synchronization [2, 4, 6], in which stimulation of parahippocampal cortices at 1 Hz appeared 

to be an effective procedure.
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Fig. 1. 
Field and intracellular responses recorded from the PC following LA stimulation at 0.1 Hz. 

A Schematic drawing of the combined slice used in our study and position of the recording 

electrodes; abbreviations in this and the following figures are as follows: LA, lateral 

amygdala; PC, perirhinal cortex. B Spontaneous field events recorded simultaneously from 

PC and LA in two different experiments are shown in insets a and b [32]; note that these 

oscillations, when occurring more frequently, have shorter duration than those occurring at 

longer intervals. C, D Oscillatory responses recorded with intracellular electrodes from PC 

neurons in three different brain slices following single-shock stimulation of the LA at 0.1 

Hz. Note in C inset a the all-or-none action potential bursts riding over rhythmic 

depolarizations while in C inset b the oscillatory response emerges only when strong 

electrical stimuli are delivered. Note also in D that stimulus-induced bursting discharges are 

mirrored by field oscillations similar to those reported to occur spontaneously in B. E Plot 

histograms of the latency and of the duration of the responses generated by PC neurons 

following LA stimulation at 0.1 Hz. Measurements were obtained from intracellular 

recordings as shown in C inset b and D
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Fig. 2. 
PC oscillatory network-driven responses increase in latency during continuous LA 

stimulation at 0.5 and 1 Hz. A Intracellular and field recordings obtained from the PC during 

repetitive stimuli delivered at 0.5 Hz; responses are superimposed and some of them are 

numbered according to the stimulation sequence order. Note that the latency progressively 

increases approximately after the first 5 successive stimuli and attains a relatively steady 

value after approximately 20 stimuli. B Plots of the latency of the oscillatory network-driven 

responses induced by stimuli delivered in LA at 0.1, 0.5, and 1 Hz in the experiment shown 

in A; these data are the average of the results observed during four successive trials. Note 
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that the “steady” latency of the responses induced by stimuli at 0.5 Hz is longer than that 

observed during 0.1-Hz stimulation, that the latency further increases when stimuli are 

delivered at 1 Hz, and that, in the latter case, the latency prolongation develops over time
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Fig. 3. 
Latency and duration of the oscillatory network-driven responses recorded in the PC during 

continuous LA stimulation at different frequencies. A, B Intracellular (upper trace, −74 mV) 

and field (lower trace, Field) recordings obtained in the PC during continuous stimulation at 

0.1 and 1 Hz. Samples were obtained once the responses had attained a “steady” latency. 

Note that in both inset a’s of A and B, at threshold strength, PC responses were consistently 

induced by stimuli delivered at 0.1 Hz, but not when the stimulus rate was increased to 1 Hz. 

Inset b’s of A and B illustrate in detail the prolongation of the response latencies. C, D Plots 

of the latency and of the duration of the responses induced by LA stimuli delivered at 0.1, 

0.2, 0.5, and 1 Hz during the “steady” state in 31 neurons. Note in C that the latency values 

progressively increase when the stimulation rate is brought to values larger than 0.2 Hz 

while there is no significant difference between 0.1- and 0.2-Hz protocols. Note also in D 
that the duration of the oscillatory responses decreases by increasing the stimulation rate and 

that statistical differences (one-way ANOVA for repeated measures followed by post hoc 

Fisher’s LSD test; single asterisk denotes significance at p<0.05; double asterisks denote 

significance at p<0.01) similar to those seen for the changes in latency characterize these 

measures

Biagini et al. Page 16

Pflugers Arch. Author manuscript; available in PMC 2016 May 25.

P
M

C
 C

anada A
uthor M

anuscript
P

M
C

 C
anada A

uthor M
anuscript

P
M

C
 C

anada A
uthor M

anuscript



Fig. 4. 
Latency prolongation returns to prestimulus conditions shortly after termination of repetitive 

stimulation. A Intracellular recording from a PC neuron during stimulation delivered at 0.1 

Hz (Control), during continuous stimulation at 1 Hz (1 Hz) for approximately 100 s, and 

after termination (Recovery). Expanded recordings shown below are representative samples 

of the responses shown in on top. B Plots of the latency values obtained from 11 neurons in 

which the protocol shown in A was employed. Note that the response latency gradually 

decreased upon termination of the 1-Hz stimulation and returned to values similar to those 

seen under control conditions within 30 s (one-way ANOVA for repeated measures followed 

by post hoc Fisher’s LSD test; single asterisk denotes significance at p<0.05; double 
asterisks denote significance at p<0.01)
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Fig. 5. 
Effects induced by GABAA and GABAB receptor antagonists on latency prolongation and 

duration decrease occurring during LA stimulation at different frequencies. A Intracellular 

(upper trace, −80 mV) and field (lower trace, Field) recordings obtained in the PC during 

continuous stimulation at 0.1, 0.5, and 1 Hz; samples were obtained once the responses had 

attained a “steady” latency. Note the inset a’s of A and B, at threshold strength, PC 

responses were consistently induced only by stimuli delivered at 0.1 Hz, but not when the 

stimulus rate was increased to 0.5 or 1 Hz; in contrast, responses are always seen during 

application of picrotoxin (PTX, 50 μM)+CGP 55845 (4 μM). B illustrates in detail the 

prolongation of the response latencies under control conditions and during application of 

these GABA receptor antagonists. C Histogram illustrating the probability of occurrence of 

responses to stimuli delivered at 0.1, 0.,5 and 1.0 Hz under control conditions and in the 

presence of PTX+CGP 55845. D, E Plots of the latency and of the duration of the responses 

induced by LA stimuli delivered at 0.1, 0.5, and 1 Hz during the “steady” state condition in 

17 neurons. Note that GABA receptor antagonists did not prevent but lessened the changes 

of latency in response to increased frequency of stimulation. Less marked changes were 

instead observed for the duration of neuronal response. Single asterisks denote significance 

at p<0.05; double asterisks denote significance at p<0.01; two-way ANOVA for repeated 

measures followed by post hoc Fisher’s LSD test. Only differences among the different 

frequencies of stimulation are shown; refer to Table 2 for differences between groups of 

treatment
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Fig. 6. 
Effects induced by antagonizing the GABAA or the GABAB receptor on the latency 

prolongation and duration decrease occurring during LA stimulation at different frequencies. 
A Samples of superimposed intracellular recordings obtained during LA stimuli delivered at 

0.1 and 1 Hz under control conditions and during application of the GABAA receptor 

antagonist picrotoxin (PTX). B Histograms illustrating the characteristics of the responses to 

stimuli delivered at 0.1, 0.5, and 1.0 Hz under control conditions and in the presence of 

PTX: note that changes in latency are less marked in presence of PTX. The duration of the 

responses induced by LA stimuli was also affected by changing the frequency of stimulation 

from 0.1 to 0.5 and 1 Hz, as shown by histograms of average values measured during the 

“steady” state condition. C Samples of superimposed intracellular recordings under 

treatment with the GABAB receptor antagonist CGP 55845 are shown. d Histograms of 

latency and duration of responses to stimuli delivered at 0.1, 0.5, and 1.0 Hz under control 

conditions and in the presence of CGP 55845 illustrate major effects on latencies. Changes 

in the duration of the responses induced by LA stimuli were similar both in control and in 

drug treatment conditions. Single asterisk denotes significance at p<0.05; double asterisks 
denote significance at p<0.01; two-way ANOVA for repeated measures followed by post hoc 

Fisher’s LSD test. Only differences among the different frequencies of stimulation are 

shown; refer to Table 2 for differences between groups of treatment
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Fig. 7. 
Effects induced by the NMDA receptor antagonist CPP on latency prolongation and duration 

decrease occurring during LA stimulation at 0.1 and 1 Hz. A Samples of superimposed 

intracellular recordings obtained during LA stimuli delivered at 0.1 and 1 Hz under control 

conditions and during application of the NMDA receptor antagonist CPP. B Histograms 

illustrating the characteristics of the responses to stimuli delivered at 0.1 and 1.0 Hz under 

control conditions and in the presence of CPP: note that no effects of drug treatment are 

present on latency. The duration of the responses induced by LA stimuli varied in control 

medium by changing the frequency of stimulation from 0.1 to 1 Hz. Single asterisk denotes 

significance at p<0.05; double asterisks denote significance at p<0.01; two-way ANOVA for 

repeated measures followed by post hoc Fisher’s LSD test. Only differences between the 

two frequencies of stimulation are shown; refer to Table 3 for comparisons within groups of 

treatment
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Table 1

Fundamental electrophysiological properties of the PC neurons recorded intracellularly in the deep layers

RMP −70±1.0 mV (n=25)

Ri 38.7±1.6 MΩ (n=20)

τ 15.2±0.8 ms (n=10)

APA 86.1±1.5 mV (n=22)

APD 1.4±0.1 ms (n=21)

Values are expressed as mean±SEM.

RMP resting membrane potential, Ri input resistance, τ time constant, APA action potential amplitude, APD action potential duration
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Table 3

Changes in latency and duration with CPP

Latency Duration

Treatments 0.1 Hz 1 Hz 0.1 Hz 1 Hz

ACSF 29.4±3.1 63.7±4.2 755.1±219.5 365.3±99.2

p=0.82 p=0.55 p<0.05 p=0.28

CPP 30.4±3.0 66.5±2.5 366.0±67.7 208.9±14.2

Values are expressed as mean±SEM. Significant p values are indicated in bold. Fisher’s LSD test
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