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Abstract

For a given graph G, the set of positive integers v for which a
G-design exists is usually called the ‘spectrum’ for G and the determi-
nation of the spectrum is sometimes called the ‘spectrum problem’.

We consider the spectrum problem for G-designs satisfying addi-
tional conditions of ‘balance’, in the case where G is a member of one
of the following infinite families of trees: caterpillars, stars, comets,
lobsters and trees of diameter at most 5. We determine the exis-
tence spectrum for balanced G-designs, degree-balanced and partially
degree-balanced G-designs, orbit-balanced G-designs.

We also address the existence question for non-balanced G-designs,
for G-designs which are either balanced or partially degree-balanced
but not degree-balanced, for G-designs which are degree-balanced but
not orbit-balanced.

Key words: graph-decomposition; G-design; replication number; balanced
G-design
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1 Introduction: balance in graph designs

Throughout the paper G denotes a simple graph with at least two vertices,
none of which is isolated. Our notation is G = (V (G), E(G)) and we set
k = |V (G)|, m = |E(G)|.

∗Research performed within the activity of INdAM–GNSAGA with the financial sup-
port of the Italian Ministry MIUR, project “Combinatorial Designs, Graphs and their
Applications”
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The question of ‘balance’ in graph-designs can be approximately de-
scribed as the additional assumption that some ‘local’ parameter is constant,
see [8]. So, for instance, if we assume that the replication number r(x) of
each point x in a G-design is equal to a constant r, then we get the notion
of a balanced G-design introduced in [11].

1.1 Orbit-balance and degree-balance

The following variations have been suggested.
Let V1, V2, . . . , Vh be the vertex-orbits of G under its automorphism

group. A G-design is said to be orbit-balanced if, for i = 1, 2,. . . , h, there
exists a constant Ri such that, for each point x, the number of blocks of the
G-design in which x occurs as an element in the orbit Vi is equal to Ri.

A G-design is said to be degree-balanced if, for each degree d occurring
in the graph G, there exists a constant rd such that, for each point x, the
number of blocks containing x as a vertex of degree d is equal to rd.

The notion of an orbit-balanced G-design was formulated in [12] (under
the name strongly balanced), while that of a degree-balanced G-design was
proposed in [3]. In the same paper [3] it was observed that the definitions
immediately imply that an orbit-balanced G-design is degree-balanced and
that a degree-balanced G-design is balanced.

1.2 Partial degree-balance

In this subsection we slightly generalize the notion of a degree-balanced
graph-design. Define D(G) to be the set of all degrees of the vertices of
G. We write D for D(G) if G is fixed once for all. Let D′ be a designated
subset of D. A G-design is said to be degree-balanced with respect to D′ if
for each degree d ∈ D′ there exists a constant rd such that, for each point
x, the number of blocks containing x as a vertex of degree d is equal to rd.
In case D′ coincides with the whole set D then we shall simply speak of a
degree-balanced G-design. In case D′ is a proper subset of D that we do not
want to mention explicitly, then we shall occasionally speak of a partially
degree-balanced G-design. In other words, a partially degree-balanced G-
design is a G-design which is balanced with respect to some – possibly not
all – of the degrees occurring in G.

A similar approach can naturally lead to an idea of partial balance with
respect to orbits rather than degrees: we shall omit any attempt in this
direction here.

While it is immediately clear that a degree-balanced graph-design is
necessarily balanced, partially degree-balanced graph-designs which are not
balanced do exist as the example in Figure 1 shows.

It is not hard to imagine that partial degree-balance may well imply
degree-balance in same circumstances, as we shall see in Section 5.
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Figure 1: A partially degree-balanced graph-design.

1.3 A social network problem

The description of round robin tournaments involving 2n teams in terms
of one-factorizations of the complete graph K2n is rather known, see [16,
Ch.5]. Similar scheduling problems in which participants play some special
role may well be modeled by graph-designs. Here is an example.

Tutor Dox of XY High School organizes support activities for freshmen
who revealed language difficulties during the Fall Term. Mr. Dox selects
seven students to form a self-study group. Each student is assigned a reading
on a different subject, which may be of potential interest to the whole group.
For each selected subject a discussion group is organized in which the student
who prepared the reading serves as a discussion leader. He/she is expected
to actually read a selection of the text that was assigned to him/her and to
introduce his/her point of view on the subject in a further talk of at most
ten minutes. The leader should then open and organize a discussion among
the participants of the forum on the given subject. As a final assignment,
the discussion leader should briefly summarize the main contents of the
discussion and present a written report to Mr. Dox in a week’s time. In
order to make people feel easier within each discussion group, the Tutor
decides that each such forum should be limited to four group members,
including the discussion leader.

Improving acquaintanceship is another goal that Mr. Dox has in mind.
So any two group members should sit once together in a forum, with either
one as a discussion leader. On the other hand, in order to avoid work-load
complaints, each group member should attend the same number of forums.

Each forum can be modeled as the graph of Figure 2 – which is a star
S3 in our later notation– where the vertex w of degree 3 identifies the dis-
cussion leader, while the remaining three vertices x, y, z of degree 1 are the
participants with no special role. If 1, 2, 3, 4, 5, 6, 7 are the group members,
then an adequate schedule for the discussion groups can be obtained from
a degree-balanced S3-decomposition of K7, see Figure 3 (note that degree-
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Figure 2: A discussion-forum

balanced is equivalent to balanced in this case, since only two degrees occur
in S3).

Figure 3: A degree-balanced S3-decomposition of K7.

Consider now the following slight modification of the previous situation.
Suppose the support group consists of only six persons 1, 2, 3, 4, 5, 6.
Mr. Dox has noticed that person n.6 is extremely shy and is not in the
position to lead any forum, but would greatly benefit from attending as many
as possible as a simple participant. Mr. Dox comes up with the schedule
illustrated in Figure 4 which forms an S3-decomposition of K6.

The condition that member n.6 is not allowed to be a forum-leader im-
plies that he/she cannot occur as a vertex of degree 3 in any block. Hence the
decomposition cannot be degree-balanced and in fact the proposed scheme
is not.

A further slight modification shows an instance in which partial degree-
balance plays a role. Assume the support group consists of nine people. The
written report to be handed in to Mr. Dox, rather than being an assignment
of the discussion leader, is in charge of another participant, who is therefore
the secretary of the forum. The secretary is in turn supported by another
participant who records the forum on an MP3 recorder. Each forum is now
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Figure 4: A S3-decomposition of K6.

modeled as the graph of Figure 5 – T2(4) in our later notation – where the
vertex w of degree 3 identifies the discussion leader, the vertex s of degree
2 is the secretary, while the vertex r of degree 1, that is adjacent to the
secretary, is the recording person.

Figure 5: Another model for a discussion-forum.

Mr. Dox insists on having each one of the group members to serve once as
a discussion leader, while he is flexible on the other roles. Any two group
members should sit together in a forum, with either one as a discussion
leader or a secretary. Mr. Dox comes up with the schedule of Figure 1,
forming a graph-design which is balanced with respect to the degree 3, but
not with respect to the degrees 1 and 2.

1.4 Spectra of balanced-type

The spectrum problem for a given graph G consists in the determination of
the set of values v for which a G-design on v vertices exists. In the case where
G is a tree, full or partial solutions of the spectrum problem were generally
found assuming either that the number of vertices of G is small [14] or that
G belongs to some specified infinite family, such as that of caterpillars [15].

The spectrum problem for a given graphG, in particular for a tree, can be
formulated equally well with respect to G-designs satisfying some “balanced-
type” condition like the ones we just illustrated. The balanced spectrum for
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a graph G can thus be defined as the set of all values v for which a balanced
G-design on v vertices exists. The orbit-balanced spectrum is defined in
the same way, and so is the degree-balanced spectrum or, more generally,
the degree-balanced spectrum with respect to any designated subset D′ of
D(G).

The problem of determining the balanced-type spectra for trees with at
most six vertices has already been addressed in [2], [4], [5]. In subsequent
sections we assume G to be a member of one of the following infinite families
of trees: caterpillars, stars, comets, lobsters and trees of diameter at most
5. For each such choice of G, under additional assumptions involving, for
instance, the number of vertices of the graph, we determine the balanced
spectrum, the degree-balanced spectrum and the orbit-balanced spectrum.
Partially degree-balanced spectra are also determined in some cases.

As we shall see in Section 4, it may well happen that for some choice
of G the class of degree-balanced G-designs is strictly larger than the class
of orbit-balanced G-designs even though the corresponding spectra coincide.
In practice, such phenomena occur when it is possible to construct G-designs
satisfying the weaker balanced-type condition but not the stronger one.

2 Labelings and spectra

We begin this section with two simple necessary conditions for the existence
of either a degree-balanced G-design or a balanced G-design, respectively.

In our notation the number of blocks in a G-design on v vertices is
denoted by b and we have b = v(v − 1)/(2m), with m = |E(G)|. We also
recall that we denote by k the cardinality of the vertex-set V (G).

Proposition 2.1. Let G be a graph with a unique vertex of degree d. If
there exists a degree-balanced G-design on v vertices, then v ≡ 1 (mod 2m).

Proof. Given a degree-balanced G-design on v vertices, define Λ to be
the set of all point-block pairs (x,B) such that x occurs in B as a vertex of
degree d. Since G has precisely one vertex of degree d, we have |Λ| = b · 1.
On the other hand, for each vertex x of Kv we have rd(x) = rd, yielding
|Λ| = v · rd. We obtain v(v − 1)/(2m) = v · rd, whence the assertion.

Proposition 2.2. Assume k is odd and |m − k| = 1. If there exists a
balanced G-design on v vertices, then v ≡ 1 (mod 2m).

Proof. In a balanced G-design on v vertices the replication number
r = k · (v − 1)/2m is an integer. Since gcd(k,m) = gcd(k, 2) = 1, the
statement follows.

Note that the condition |m−k| = 1 holds for all trees and all cycles with
a chord (the latter ones are generally known as the Theta graphs Θ(1, b, c)
[1]).
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In the remainder of this section we shall encounter various types of graph
labelings. Generally speaking, a labeling of a graph G is an assignment of
integers to the vertices of G subject to certain conditions. In particular, we
refer to [6] for the definition of an α-labeling and of a ρ+-labeling, and to
[9] for the definition of a near α-labeling.

We recall that a G-design is said to be cyclic if it admits a cyclic au-
tomorphism group acting transitively on vertices, see for instance [6, Def.
24.4].

Proposition 2.3. Assume k is odd and |m−k| = 1. If G has an α-labeling,
then the set {v : v ≡ 1 (mod 2m), v > 1} is simultaneously the balanced, the
degree-balanced and the orbit-balanced spectrum for G. The same conclusion
holds if G is assumed to be a bipartite graph with either a ρ+-labeling or a
near α-labeling.

Proof. If G has an α-labeling then Theorem 8 in [15] shows that a cyclic
G-design on v vertexes exists for all values of v under consideration. The
same conclusion is obtained from either [10, Thm.5] or [9, Thm.5] for bipar-
tite graph with either ρ+-labeling or near-α-labeling. Each cyclic G-design is
orbit-balanced [3, Prop.3]. Each orbit-balanced G-design is degree-balanced
and each degree-balanced G-design is balanced. Hence the assertion follows
from Proposition 2.2.

The following result does not depend on the parity of k.

Proposition 2.4. Let G be a graph with a unique vertex of degree d. If G
has an α-labeling, then the set {v : v ≡ 1 (mod 2m), v > 1} is the degree-
balanced spectrum for G. The same conclusion holds if G is assumed to be
a bipartite graph with either a ρ+-labeling or a near α-labeling.

Proof. Each cyclic G-design is degree-balanced. Again one of [15,
Thm.8], [10, Thm.5] and [9, Thm.5] together with Proposition 2.1 imply
the assertion.

3 Balanced-type spectra for certain trees

In this section we apply the above results on graph labelings to the determi-
nation of the the balanced-type spectra for a tree G in case G is a member
of one of the following infinite families of graphs: certain caterpillars in
particular stars, comets, lobsters, trees of diameter at most 5.

If G is a tree with at least three vertices, then the graph obtained from
G by removing all of its end-vertices (which are the vertices of degree 1) is
still a tree and is called the base of G. A path is a tree with exactly two
end-vertices or the trivial tree with a unique vertex. A tree is said to be a
caterpillar if its base is a path. A m-star, m ≥ 2, denoted by Sm, is the
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complete bipartite graph K1,m. A comet St,s, with t ≥ 3 and s ≥ 2, is a
tree obtained from a star of t edges by replacing each edge with a path of
length s. A lobster G is a tree whose base is a caterpillar.

Proposition 3.1. Assume k is odd and G is a caterpillar. Then the set
{v : v ≡ 1 (mod 2(k − 1)), v > 1} is simultaneously the balanced, the degree-
balanced and the orbit-balanced spectrum for G. The same conclusion holds
if G is a lobster or a tree of diameter at most 5 or a comet.

Proof. If G is a caterpillar, then it has a α-labeling, see [15, Thm.2]. If
G is a comet or a lobster or a tree of diameter at most 5, then it has a ρ+-
labeling, see [10, Thm.6]. Therefore, the statement follows from Proposition
2.3. For a lobster G the assertion can alternatively be obtained from [14,
Lemma 2.7] and Proposition 2.3.

Proposition 3.2. Let G be a graph with a unique vertex of degree d. If G
is a caterpillar , then the degree-balanced spectrum for G is the set {v : v ≡
1 (mod 2m), v > 1}. The same conclusion holds if G is a comet or a lobster
or a tree of diameter at most 5.

Proof. If G is a caterpillar the assertion follows from [15, Thm.2] and
Proposition 2.4. If G is a comet or a lobster or a tree of diameter at most 5
the statement is obtained from [10, Thm.6] and Proposition 2.4.

Since a star Sm is a caterpillar admitting a unique vertex of degree m
we have the following.

Corollary 3.3. The set {v : v ≡ 1 (mod 2m), v > 1} is the degree-balanced
spectrum for the star Sm.

Proposition 3.4. The following statements are equivalent.

(1) an Sm-design is balanced;

(2) an Sm-design is degree-balanced;

(3) an Sm-design is orbit-balanced.

Proof. In the graph Sm only two distinct degrees occur and the number
of vertex-orbits is also two. It follows thus from [3, Prop.1] that a balanced
Sm-design is also orbit-balanced, hence degree-balanced as well.

Corollary 3.5. The set {v : v ≡ 1 (mod 2m), v > 1} is simultaneously the
balanced, the degree-balanced and the orbit-balanced spectrum for the star
Sm.
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Note that the balanced spectrum for Sm was already known from [13,
Thm.3.5]

Given a value v in the balanced spectrum of Sm, does there exist a non
balanced Sm-design on v vertices? The next statement answers this question
affirmatively.

Proposition 3.6. For every v ≡ 1 (mod 2m), v > 1, there exists

(1) a balanced Sm-design on v vertices;

(2) a non-balanced Sm-design on v vertices.

Proof. (1) The first statement follows from Corollary 3.5.
(2) For h ≥ 1 an Sm-design on 2mh + 1 vertices is constructed in Lemma
5 of [7]. We recall the construction here, so as to emphasize the fact that
this Sm-design is not degree-balanced. The complete graph K2mh+1 is the
join graph K2mh+K1 of the complete graph on 2mh vertices and the trivial
tree K1. There exists an Sm-design D on 2mh vertices, see [7, Lemma
2] and [7, Thm.1]. The relation 2mh ≡ 0 (mod 2m) implies that D is
not balanced, and so it is not degree-balanced either. In other words, if
rd(x) denotes the number of blocks containing x as a vertex of degree d,
with d ∈ D(Sm) = {1,m}, there exist two vertices x1, x2 in D such that
either r1(x1) = a1 and r1(x2) = a2 with a1 ̸= a2, or rm(x1) = b1 and
rm(x2) = b2 with b1 ̸= b2. The graph (K2mh + K1) r K2mh is the star
K1,2mh which admits a Sm-decomposition, say D′, with 2h blocks. The Sm-
design D∪D′ has 2mh+1 vertices, among which x1, x2 are such that either
r1(x1) = a1 + 1 ̸= a2 + 1 = r1(x2), or rm(x1) = b1 ̸= b2 = rm(x2). We
conclude that the constructed Sm-design is not degree-balanced and so it is
not balanced either.

We conclude this section with some notes on comet-designs. Let us consider
the comet St,2, t ≥ 3 (see Figure 6 where m = 2t). The balanced-type
spectra for St,2 are determined in Proposition 3.1 and they all coincide with
the set {v : v ≡ 1 (mod 4t), v > 1}.

Corollary 3.7. The class of degree-balanced St,2-designs, t ≥ 3, coincides
with the class of orbit-balanced St,2-designs.

Proof. Assume v ≡ 1 (mod 4t), v > 1. Since exactly three degrees
and three vertex-orbits occur in the comet St,2, then each St,2-design on v
vertices is degree-balanced if and only if it is orbit-balanced.

Denote the comet St,2 of Figure 6 by [x0;x1, x2;x3, x4; . . . ;xm−1, xm],
with m = 2t. A degree-balanced St,2-design on v vertices, v = 4th+ 1, can
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Figure 6: The tree [x0;x1, x2;x3, x4; . . . ;xm−1, xm]

be obtained from [14, Lemma 2.7]: the vertex-set is Z4th+1 and the block-set
is

{B(p) + i : i = 0, 1, . . . , 4th, p = 1, 2, . . . , h},

where B(p) is the base block

[(t+ 2)p− 1; 0, (t+ 2)p; 1, 2 + (t+ 2)h+ (p− 1)(t− 2); . . .

. . . ; j, 2j + (t+ 2)h+ (p− 1)(t− 2); . . .

. . . ; t− 2, 2(t− 2) + (t+ 2)h+ (p− 1)(t− 2); t− 1, (t+ 2)p− 2].

Furthermore, a degree-balanced St,2-design on v vertices with v ≡ 1
(mod 4t) can also be obtained from a near α-labeling of St,2 and the orbit-
balanced St,2-design arising from it, according to [9, Theorems 5, 8].

4 Some caterpillar-designs

In this section an infinite family of caterpillars is studied. For the remainder
of this section, G will denote the tree in Figure 7 which is also described by
the short notation [x1

x2
x3, x4, . . . , xm, xm+1]. It is a caterpillar with m edges,

m > 4, which is denoted by T2(m) in [14], where the complete spectrum is
determined for m < 10. The balanced-type spectra for T2(5) are studied
in [4]. The tree G possesses a unique vertex of degree 3, consequently the
degree-balanced spectrum for G is determined by Proposition 3.2. If m is
even, then the three balanced-type spectra coincide, see Proposition 3.1.

The next construction shows that for all m the orbit-balanced spectrum
for G coincides with its degree-balanced spectrum.

Proposition 4.1. For every v ≡ 1 (mod 2m), v > 1, there exists an orbit-
balanced G-design on v vertices.
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Figure 7: The tree [x1
x2

x3, x4, . . . , xm, xm+1]

Proof. A cyclic G-design, which is thus orbit-balanced by [3, Prop.3],
can be obtained from Theorems 2 and 8 of [15] with vertex-set Z2mh+1 and
with block-set

Bm
h = {G(p) + i : i = 0, 1, . . . , 2mh, p = 1, 2, . . . , h},

where G(p) is the base-block

[mp
(m−1)+m(p−1) 0, (m−2)+m(p−1), 1, (m−3)+m(p−1), 2, . . .

. . . ,m′ − 2, (m′ + 1) +m(p− 1),m′ − 1,m′ +m(p− 1)]

in case m = 2m′ + 1 (odd), while G(p) is the base-block

[mp
(m−1)+m(p−1) 0, (m−2)+m(p−1), 1, (m−3)+m(p−1), . . .

. . . ,m′−3, (m′+1)+m(p−1),m′−2,m′+m(p−1),m′−1]

in case m = 2m′ (even).
The next three constructions follow basically the same idea. The G-

design of the previous proposition is orbit-balanced because it has enough
symmetry, namely the symmetry provided by an automorphism group acting
vertex-transitively. We destroy this symmetry to some extent, so as to come
just one step down in the hierarchy of balance.

In the notation of Figure 7, we denote by Xm+1 the orbit of the vertex
xm+1 under Aut(G).

Proposition 4.2. For every v ≡ 1 (mod 2m), v > 1, there exists a degree-
balanced G-design on v vertices which is not orbit-balanced.

Proof. Let us consider the orbit-balancedG-design with vertex-set Z2mh+1

and block-set Bm
h occurring in the proof of Proposition 4.1.

The idea of the first two cases below is to find three vertices a, b, c and
two G-blocks

[z1z2 z3, z4, . . . , zm, zm+1], [y1y2 y3, y4, . . . , ym, ym+1]
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where a = z1 does not occur in the second block, while b = z3 = ym and
c = ym+1 do not occur in the first block.

We exchange the edges [a, b] and [c, b]. The vertices involved in this ex-
change of edges maintain their degree in the new blocks, while, for instance,
the vertex a occurs in a different orbit in the new block.

In the third case below the idea is similar: we find four vertices a, b, c,
d and four G-blocks

[aq2 b, q4, . . . , qm, qm+1], [dy2 c, y4, . . . , ym, ym+1],

[bz2 d, z4, . . . , zm, zm+1], [w1
w2

w3, w4, . . . , wm−1, b, c]

where d does not occur in the first block, b does not occur in the second
block, c does not occur in the third block and a does not occur in the fourth
block. We substitute the above four blocks with the following once:

[dq2 b, q4, . . . , qm, qm+1], [by2 c, y4, . . . , ym, ym+1],

[cz2 d, z4, . . . , zm, zm+1], [w1
w2

w3, w4, . . . , wm−1, b, a]

Also in this case the involved vertices maintain their degree in the new
blocks, while rXm+1

(a) = rXm+1
(qm+1) + 1.

Case m = 2m′. The G-design with vertex-set Z2mh+1 and block-set

(Bm
h r{G(1), G(1)+m′})∪

{[m(m−1) 0,m−2, 1,m−3, 2,m−4, 3, . . .

. . . ,m′ − 3,m′ + 1,m′ − 2,m′,m+m′],

[m
′−1

m+m′−1m
′,m+m′−2,m′+1,m+m′−3,m′+2, . . . ,

. . . ,m+ 2,m− 3,m+ 1,m− 2,m,m− 1]}

is such that rXm+1
(m +m′) = h + 1 while rXm+1

(m′ − 1) = h − 1; hence it
is not orbit-balanced but it remains degree-balanced.
Case m = 2m′ + 1 and h ≥ 2. The G-design with vertex-set Z2mh+1 and
block-set

(Bm
h r{G(1)+(m′−1), G(2)})∪

{[m+m′

m+m′−2m
′−1,m+m′−3,m′,m+m′−4,m′+1, . . .

· · · , 2m′+1, 2m′− 3, 2m′, 2m′− 2, 2m′− 1],

[2m2m−1 0, 2m− 2, 1, 2m− 3, . . . ,m′ − 2,m′ +m+ 1,m′ − 1,m+m′ − 1]}

has rXm+1
(m +m′ − 1) = h + 1 while rXm+1

(m′ +m) = h − 1; hence, it is
not orbit-balanced but it is degree-balanced.
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Case m = 2m′ + 1 and h = 1. The G-design with vertex-set Z2m+1 and
block-set

(Bm
h r{G(1)+1, G(1)+2, G(1)+(m+2), G(1)+(2m−m′+3)})∪

{[m+2
m 1,m− 1, 2,m− 2, 3, . . . ,m′ − 2,m′ +3,m′ − 1,m′ +2,m′,m′ +1],

[1m+1 2,m, 3,m− 1, 4, . . . ,m′ − 1,m′ +4,m′,m′ +3,m′ +1,m′ +2],

[20m+2, 2m,m+3, 2m−1,m+4, . . .

. . . ,m+m′−1,m+m′+4,m+m′,m+m′+3,m+m′+1,m+m′+2],

[m−m′+2
m−m′+1 2m−m′+3,m−m′, 2m−m′+4,m−m′−1, 2m−m′+5, . . .

. . . , 2m, 4, 0, 3, 1,m+ 1]}

has rXm+1
(m + 1) = 2 while rXm+1

(m′ + 1) = 1, hence the design is not
orbit-balanced but it is degree-balanced.

Corollary 4.3. For m ≥ 5 the set {v : v ≡ 1 (mod 2m), v > 1} is the
degree-balanced spectrum as well as the orbit-balanced spectrum for the graph
G. However, the class of degree-balanced G-designs is strictly larger than the
class of orbit-balanced G-designs.

Proof. The statement follows from Propositions 4.1, 2.1 and 4.2.

Proposition 4.4. Assume m is odd. For every v ≡ 1 (mod 2m), v > 1,
there exists a balanced G-design on v vertices which is not degree-balanced.

Proof. In this case we still start from a cyclic G-design and the idea is
to find six vertices a, b, c, d, e, f , and two G-blocks

[z1z2 z3, z4, . . . , zm, zm+1], [y1y2 y3, y4, . . . , ym, ym+1]

with a = z1 = ym−1, b = z2 = ym+1, c = z4 = ym, d = z3, e = zm+1 = y3,
f = y1.

We break the symmetry of the G-design substituting the above two G-
blocks with the following G-blocks:

[ba c, z5, z6, . . . , zm, e, f ], [cb d, a, ym−2, ym−3, . . . , y4, e, y2].

The replication number of each vertex does not change. On the other hand,
the vertex e appears one time less than the vertex d as a vertex of degree 3
in the blocks of the new design.

Let us consider the orbit-balanced G-design with vertex-set Z2mh+1 and
block-set Bm

h occurring in the proof of Proposition 4.1. Assume m = 2m′+1.
The G-design with vertex-set Z2mh+1 and block-set

(Bm
h r{G(1), G(1)+(2mh+1−m′), })∪
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{[m′+1
m′ m′ − 1, 2mh+ 2−m′,m′ − 2, . . . , 2mh− 2, 2, 2mh− 1, 1, 2mh, 0,m]

[m
′

m′−1 2hm+1−m′,m′+1,m′−2,m′+2,m′−3, . . . ,m−3, 1,m−2, 0,m−1]}.

is not degree-balanced but it is balanced. In fact the vertex 0 appears one
time less than the vertex 2hm+ 1−m′ as a vertex of degree 3.

Proposition 4.5. Assume m is even. For every v ≡ 1 (mod 2m), v > 1,
there exists a non-balanced G-design on v vertices.

Proof. Again we start from the cyclic G-design with vertex-set Z2mh+1

and block-set Bm
h occurring in the proof of Proposition 4.1. We find five

vertices a, b, c, d, e, and two G-blocks

[z1z2 z3, z4, . . . , zm, zm+1], [y1y2 y3, y4, . . . , ym, ym+1]

with a = z3 = ym, b = z2, c = zm = y1, d = zm+1, e = y3 and e does not
occur in the first G-block.

We break the symmetry of the G-design substituting the above two G-
blocks with the following G-blocks:

[de c, zm−1, zm−2, . . . , z4, a, z1], [
ym+1

b a, ym−1, ym−2, . . . , y4, e, y2].

The replication number of e increases by 1 while the replication number of
a remains unaltered.

Assume m = 2m′. The G-design with vertex-set Z2mh+1 and block-set

(Bm
h r{G(1), G(1)+(2mh+1−m′)})∪

{[m′−1
2mh+1−m′ m

′,m′ − 2,m′ + 1,m′ − 3, . . . ,m− 4, 2,m− 3, 1,m− 2, 0,m]

[2mh
m−1 0, 2hm−1, 1, 2mh−2, 2, . . .

. . . ,m′−3, 2mh+2−m′,m′−2, 2mh+1−m′,m′−1]},

is not balanced since r(2mh+1−m′) = (m+1)h+1 while r(0) = (m+1)h.

Remark 4.6. If m is even, m > 4, then G1 = [x1
x2

x3, x4, . . . , xm, xm+1]
and G2 = Sm are non-isomorphic trees with equally many vertices. Despite
the fact that for each one of G1, G2 the three spectra of balanced-type
coincide (and are actually the same for the two graphs) the situation for the
corresponding designs is quite different. As a matter of fact, the three classes
of G2-designs of balanced-type coincide, while the class of orbit-balanced
G1-designs is strictly contained in the class of degree-balanced G1-designs.
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5 Some partially degree-balanced spectra

In this section some properties related to partially degree-balancedG-designs
are outlined and finally some partially degree-balanced spectra are also de-
termined for the caterpillar T2(m) (see Section 4).

Proposition 5.1. Assume |D(G)| = j with j ≥ 3. If a balanced G-design
is degree-balanced with respect to a subset D′ of D(G) of cardinality j − 2,
then it is degree-balanced.

Proof. Set D(G) = {d1, d2, . . . , dj} and D′ = {d1, d2, . . . , dj−2}. For each
point x we have{

rd1(x) d1 + . . .+ rdj−2
(x) dj−2 + rdj−1

(x) dj−1 + rdj (x) dj = v − 1

rd1(x) + . . .+ rdj−2
(x) + rdj−1

(x) + rdj (x) = r

Since there exist integers c1, c2 satisfying the relations

j−2∑
i=1

rdi(x) = c1,

j−2∑
i=1

rdi(x) di = c2,

the linear system is equivalent to{
rdj−1

(x) dj−1 + rdj (x) dj = v

rdj−1
(x) + rdj (x) = r

where v = v − 1− c2 and r = r − c1. The above linear system has a unique
solution for

(
rdj−1

(x), rdj (x)
)
given by

rdj−1
(x) =

rdj − v

dj − dj−1
, rdj (x) =

v − rdj−1

dj − dj−1
,

showing that both rdj−1
(x) and rdj (x) are also constant.

We shall call a graph G a j-degree graph if |D(G)| = j. We shall call G a
j-orbit graph if it has exactly j vertex-orbits under its automorphism group.
It is an immediate consequence of these definitions that if G is a j-degree
graph which is also a j-orbit graph then a G-design is degree-balanced if
and only if it is orbit-balanced. Hence the following properties hold.

Proposition 5.2. Let G be a j-degree graph which is also a j-orbit graph,
j > 2. Then each balanced G-design which is degree-balanced with respect to
a subset D′ of D(G) of cardinality j − 2 is also orbit-balanced.

Proposition 5.3. Let G be a j-degree graph which is also a j-orbit graph,
j > 2. Each G-design which is degree-balanced with respect to a subset D′

of D(G) of cardinality j − 1 is also orbit-balanced.

15



In analogy with Propositions 2.1 and 2.4 we get the following:

Proposition 5.4. Assume G is a graph with a unique vertex of degree d.
If there exists a G-design on v vertices which is degree-balanced with respect
to {d}, then v ≡ 1 (mod 2m).

Proposition 5.5. Let G be a graph with a unique vertex of degree d. If G
has an α-labeling, then the set {v : v ≡ 1 (mod 2m), v > 1} is the degree-
balanced spectrum with respect to {d} for G. The same conclusion holds
if G is assumed to be a bipartite graph with either a ρ+-labeling or a near
α-labeling.

Corollary 5.6. The set {v : v ≡ 1 (mod 2m), v > 1} is the degree-balanced
spectrum with respect to {3} for T2(m).

Proposition 5.7. Let G be the caterpillar T2(5). For each v ≡ 1 (mod 10)
there exists a G-design on v vertices, which is degree-balanced with respect
to {3} but is not degree-balanced.

Proof. Again the idea of the proof is to start from a cyclic G-design
with vertex-set Z10h+1. Firstly, we find six vertices a, b, c, d, e, f and four
G-blocks

[z1z2 a, b, c, z6], [
w1
w2

w3, w4, d, b], [
y1
y2 y3, a, e, f ], [

b
d e, c, f, a]

where the vertex f does not appear in the first block, the vertex e does not
appear in the second block and the vertex b does not appear in the third
block.

Secondly, we break the symmetry of the G-design substituting the above
four G-blocks with the following G-blocks:

[z1z2 a, f, c, z6], [
w1
w2

w3, w4, d, e], [
y1
y2 y3, a, b, e], [

f
a e, c, b, d].

In this new design the number of blocks containing a point as a vertex of
degree 3 is unaltered, while the number of blocks containing the point e as
a vertex of degree 1 increases.

Explicitly, let us consider the cyclic G-design with vertex-set Z2mh+1

and block-set Bm
h with m = 5 occurring in the proof of Proposition 4.1. The

G-design with vertex-set Z10h+1 and block-set

(B5
h r {G(1), G(1) + 1, G(1) + (10h− 2), G(1) + (10h− 1)}) ∪ {[54 0, 10h, 1, 2],

[65 1, 4, 2, 10h− 1], [21 10h− 2, 0, 3, 10h− 1], [10h0 10h− 1, 1, 3, 2]}
is such that each point occurs exactly h times as a vertex of degree 3. It is
not degree-balanced: the point 1 appears 3h times as a vertex of degree 1
while the point 10h− 1 appears 3h+2 times as a vertex of degree 1. Hence
it is partially degree-balanced. Note that this design is not balanced since
the replication number of the point 10h− 1 is 6h+ 1, while the replication
number of the point 10h− 2 is 6h.
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Proposition 5.8. Let G be the caterpillar T2(7). For each v ≡ 1 (mod 14)
there exists a G-design on v vertices which is degree-balanced with respect to
{3} but is not degree-balanced.

Proof. Again, we start from a cyclic G-design with vertex-set Z14h+1.
Firstly, we find sixteen points a, b, c, d, e, f, g, , i, l, o, p, q, s, t, u, z and seven
G-blocks

[ac b, d, e, f, g, z], [
i
a e, c, g, d, z, f ], [

s
i g, a, z, c, f, d], [

z
g p, e, q, b, o, l],

[eb t, l, u, o, p, q], [
c
d l, f, b, z, e, g], [

f
z q, g, o, e, l, b].

Secondly, we break the symmetry of the G-design substituting the above
G-blocks with the following G-blocks:

[qc b, o, l, d, e, i], [
l
q e, c, g, d, z, f ], [

s
i g, a, z, c, f, e], [

e
q p, z, g, f, d, b]

[eb t, l, u, o, p, g], [
c
f l, b, z, e, g, o], [

g
z q, f, b, a, e, o].

We obtain a design in which the number of blocks passing through each point
as a vertex of maximum degree is the same for all points, while the number
of blocks passing through the point z as a vertex of degree 1 decreases by
two with respect to the original design. On the other hand, the number of
blocks passing through the point b as a vertex of degree 1 in this new design
coincides with the same parameter in the original design.

Now we describe the construction in detail. We consider the cyclic G-
design with point-set Z14h+1 and block-set Bm

h with m = 7 occurring in the
proof of Proposition 4.1. The G-design with vertex-set Z14h+1 and block-set

(B7
h r {G(1), G(1) +1, G(1) +2, G(1) + (14h− 3), G(1) + (14h− 5), G(1) +14h,

G(1) + (14h− 2)}) ∪ {[14h−2
6 0, 14h− 1, 14h, 5, 1, 8], [14h14h−2 1, 6, 2, 5, 3, 4],

[98 2, 7, 3, 6, 4, 1], [
1
14h−2 14h−3, 3, 2, 4, 5, 0], [10 14h−5, 14h, 14h−4, 14h−1, 14h−3, 2],

[64 14h, 0, 3, 1, 2, 14h− 1], [23 14h− 2, 4, 0, 7, 1, 14h− 1].}
is such that each point appears exactly h times as a vertex of degree 3. It is
not degree-balanced: the point 3 appears 3h− 2 times as a vertex of degree
1, while the point 0 appears 3h times as a vertex of degree 1. Hence it is
partially degree-balanced.

From the above two propositions we get the following:

Corollary 5.9. Let G be T2(m) with m = 5, 7. The set {v : v ≡ 1
(mod 2m), v > 1} is simultaneously the degree-balanced spectrum and the
degree-balanced spectrum with respect to {3} for the graph G. However, the
class of G-designs which are degree-balanced with respect to {3} is strictly
larger than the class of degree-balanced G-designs.
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