
06/10/2024 10:55

A generalized asymmetric exclusion process with Uq(sl2) stochastic duality / Carinci, Gioia; Giardina',
Cristian; Redig, Frank; Sasamoto, Tomohiro. - In: PROBABILITY THEORY AND RELATED FIELDS. - ISSN
0178-8051. - 166:3(2016), pp. 887-933. [10.1007/s00440-015-0674-0]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is a pre print version of the following article:



A generalized Asymmetric Exclusion Process

with Uq(sl2) stochastic duality

Gioia Carinci(a), Cristian Giardinà(a),
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Abstract

We study a new process, which we call ASEP(q, j), where particles move asymmet-
rically on a one-dimensional integer lattice with a bias determined by q ∈ (0, 1) and
where at most 2j ∈ N particles per site are allowed. The process is constructed from a
(2j+1)-dimensional representation of a quantum Hamiltonian with Uq(sl2) invariance by
applying a suitable ground-state transformation. After showing basic properties of the
process ASEP(q, j), we prove self-duality with several self-duality functions constructed
from the symmetries of the quantum Hamiltonian. By making use of the self-duality
property we compute the first q-exponential moment of the current for step initial con-
ditions (both a shock or a rarefaction fan) as well as when the process is started from an
homogeneous product measure.

1 Introduction

1.1 Motivation

The Asymmetric Simple Exclusion Process (ASEP) on Z is one of the most popular interacting
particle system. For each q ∈ (0, 1], the process is defined, up to an irrelevant time-scale
factor, by the following two rules: i) each site is vacant or occupied; ii) particles sitting
at occupied sites try to jump at rate q to the left and at rate q−1 to the right and they
succeed if the arrival site is empty. The ASEP plays a crucial role in the development of
the mathematical theory of non-equilibrium statistical mechanics, similar to the role of Ising
model for equilibrium statistical mechanics. However, whereas the Ising model – defined for
dichotomic spin variables – is easily generalizable to variables taking more than two values
(Potts model), there are a-priori different possibilities to define the ASEP process with more
than one particle per site and it is not clear what the best option is.

1

ar
X

iv
:1

40
7.

33
67

v1
  [

m
at

h.
PR

] 
 1

2 
Ju

l 2
01

4



In the analysis of the standard (i.e., maximum one particle per site) Exclusion Process
a very important property of the model is played by self-duality. First established in the
context of the Symmetric Simple Exclusion Process (SSEP) [13], self-duality is a key tool
that allows to study the process using only a finite number of dual particles. For instance,
using self-duality and coupling techniques Spitzer and Liggett were able to show that the
only extreme translation invariant measures for the SSEP on Zd are the Bernoulli product
measures and to identify the domain of attraction of them. The extension of duality to ASEP
is due to Schütz [20] and has played an important role in showing that ASEP is included
in the KPZ universality class, see e.g. [2, 7]. As a general rule, the extension of a duality
relation from a symmetric to an asymmetric process is far from trivial.

It is the aim of this paper to provide a generalization of the ASEP with multiple occupation
per site for which (self-)duality can be established. A guiding principle in the search of such
process will be the connection between Exclusion Processes and Quantum Spin Chains. The
duality property will then be used to study the statistics of the current of particles for the
process on the infinite lattice.

1.2 Previous extensions of the ASEP

Several extensions of the ASEP model allowing multiple occupancy at each site have been
provided and studied in the literature. Among them we mention the following.

a) It is well known that the XXX Heisenberg quantum spin chain with spin j = 1/2 is
related (by a change of basis) to the SSEP. In this mapping the spins are represented
by 2× 2 matrices satisfying the sl2 algebra. By considering higher values of the spins,
represented by (2j+ 1)-dimensional matrices with j ∈ N/2, one obtains the generalized
Symmetric Simple Exclusion Process with up to 2j particles per site (SSEP(2j) for
short), sometimes also called “partial exclusion” [4, 21, 9]. Namely, denoting by ηi ∈
{0, 1, . . . 2j} the number of particles at site i ∈ Z, the process that is obtained has
rates ηi(2j − ηi+1) for a particle jump from site i to site i + 1 and rate ηi+1(2j − ηi)
for the reversed jump. For such extension of the SSEP, duality can be formulated
and (extreme) translation invariant measures are provided by the Binomial product
measures with parameters 2j (the number of trials) and ρ (the success probability in
each trial).

The naive asymmetric version of this process, i.e., considering a rate q ni+1(2j − ni)
for the jump of a particle from site i + 1 to site i and a rate q−1ni(2j − ni+1) for the
jump of a particle from site i to site i + 1, with q ∈ (0, 1), loses the sl2 symmetry and
has no other symmetries from which duality functions can be obtained. In fact in this
model, there is no self-duality property expect in the case j = 1/2 where it coincides
with ASEP [20].

b) Another possibility is to consider the so-called K-exclusion process [17] that simply
gives rates 1 to particle jumps from occupied sites together with the exclusion rule
that prevents more than K particles to accumulate on each site (K ∈ N). Namely,
denoting by 1A the indicator function of the set A, the K-exclusion process on Z has
rates 1{ηi>1, ηi+1<K} for the jump from site i to site i + 1 and 1{ηi+1>1, ηi<K} for the
jump from site i + 1 to site i. For the symmetric version of this process it has been
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shown in [17] that extremal translation invariant measures are product measures (with
truncated-geometric marginals). The asymmetric version of this process obtained by
giving rate q to (say) the left jumps and rate q−1 for the right jumps, has been studied
by Seppäläinen (see [23] and references therein). For the asymmetric process, invariant
measures are unknown, and non-product, nevertheless many properties of this process
(e.g. hydrodynamic limit) could be established. For this process, both in the symmetric
and asymmetric case, there is no duality.

1.3 Informal description of the results

The fact that self-duality is known for the Symmetric Exclusion Process for any j ∈ N/2 [9]
and it is unknown in all the other cases (except ASEP with j = 1/2) can be traced back to
the link that it exists between self-duality and the algebraic structure of interacting particle
systems. Such underlying structure is usually provided by a Lie algebra naturally associated
to the generator of the process. The first result in this direction was given in [21] for the
symmetric process, while a systematic and general approach has been described in [9], [5].
When passing from symmetric to asymmetric processes, one has to change from the original
Lie algebra to the corresponding deformed quantum Lie algebra, where the deformation pa-
rameter is related to the asymmetry. This was noticed in [20] for the standard ASEP, which
corresponds to a representation of the Uq(sl2) algebra with spin j = 1/2.

In this paper we fully unveil the relation between the deformed Uq(sl2) algebra and a
suitable generalization of the Asymmetric Simple Exclusion Process. For a given q ∈ (0, 1)
and j ∈ N/2, we construct a new process, that we name ASEP(q, j), which provides an
extension of the standard ASEP process to a situation where sites can accommodate more
than one (namely 2j) particles. The construction is based on a quantum Hamiltonian [3],
which up to a constant can be obtained from the Casimir operator and a suitable co-product
structure of the quantum Lie algebra Uq(sl2). For this Hamiltonian we construct a ground-
state which is a tensor product over lattice sites. This ground-state is used to transform
the Hamiltonian into the generator of the Markov process ASEP(q, j) via a ground-state
transformation. As a result of the symmetries of the Hamiltonian, we obtain several self-
duality functions of the associated ASEP(q, j). Those functions are then used in the study
of the statistics of the current that flows through the system for different initial conditions.

For j = 1/2 the ASEP(q, j) reduces to the standard ASEP. For j → ∞, after a proper
time-rescaling, ASEP(q, j) converges to the so-called q-TAZRP (Totally Asymmetric Zero
Range process), see Remark 3.3 below and [2] for more datails.

We mention also [16] and [15] for other processes with Uq(sl2) symmetry. In particular the
process in [15] is a (2j + 1) state partial exclusion process constructed using the Temperley-
Lieb algebra, in which multiple jumps of particles between neighboring sites are allowed. We
remark that for j = 1 the process depends on a parameter β and for the special value β = 0
it reduces to ASEP(q, 1).

1.4 From quantum Lie algebras to self-dual Markov processes

By analyzing in full details the case of the Uq(sl2) we will elucidate a general scheme that
can be applied to other algebras, thus providing asymmetric version of other interacting
particle systems (e.g. independent random walkers, zero-range process, inclusion process).

3



We highlight below the main steps of the scheme (at the end of each step we point to the
section where such step is made for Uq(sl2)).

i) (Quantum Lie Algebra): Start from the quantization Uq(g) of the enveloping algebra
U(g) of a Lie algebra g (Sect. 4.1).

ii) (Co-product): Consider a co-product ∆ : Uq(g)→ Uq(g)⊗ Uq(g) making the quantized
enveloping algebra a bialgebra (Sect. 4.2).

iii) (Quantum Hamiltonian): For a given representation of the quantum Lie algebra Uq(g)
compute the co-product ∆(C) of a Casimir element C (or an element in the centre of
the algebra). For a one-dimensional chain of size L construct the quantum Hamiltonian
H(L) by summing up copies of ∆(C) over nearest neighbor edges. (Sect. 4.3).

iv) (Symmetries): Basic symmetries (i.e. commuting operators) of the quantum Hamilto-
nian are constructed by applying the co-product to the generators of the quantum Lie
algebra. (Sect. 4.4).

v) (Ground state transformation): Apply a ground state transformation to the quantum
Hamiltonian H(L) to turn it into the generator L (L) of a Markov stochastic process
(Sect. 5).

vi) (Self-duality): Self-duality functions of the Markov process are obtained by acting with
(a function) of the basic symmetries on the reversible measure of the process. (Sect.
6).

Whereas steps i)–iv) depend on the specific choice of the quantum Lie algebra, the last
two steps are independent of the particular choice but require additional hypotheses. In
particular whether step v) is possible depends on the specific properties of the Hamiltonian
and its ground state. They are further discussed in Section 2.

1.5 Organization of the paper

The rest of the paper is organized as follows. In Section 2 we give the general strategy to
construct a self-dual Markov process from a quantum Hamiltonian, a positive ground state
and a symmetry. In the case where the quantum Hamiltonian is given by a finite dimensional
matrix the strategy actually amounts to a similarity transformation with the diagonal matrix
constructed from the ground state components.

In Section 3 we start by defining the ASEP(q, j) process. After proving some of its
basic properties in theorem 3.1 (e.g. existence of non-homogenous product measure and
absence of translation invariant product measure), we enunciate our main results. They
include: the self-duality property of the (finite or infinite) ASEP(q, j) (theorem 3.2) and its
use in the computation of some exponential moments of the total integrated current via a
single dual asymmetric walker (lemma 3.1). The explicit computation are shown for the step
initial conditions (theorem 3.3) and when the process is started from an homogenous product
measure (theorem 3.4).

The remaining Sections contain the algebraic construction of the ASEP(q, j) process by
the implementation of the steps described in the above scheme for the case of the quantum
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Lie algebra Uq(g). In particular, in Section 4 we introduce the quantum Hamiltonian and
its basic symmetries on which we base our construction of the ASEP(q, j). In Section 5 we
exhibit a non trivial q-exponential symmetry and a positive ground state of the quantum
Hamiltonian that allows to define a Markov process. In Section 6 we prove the main self-
duality result for the ASEP(q, j). In Section 7 we explore other choices for the symmetries of
the Hamiltonian and, as a consequence, prove the existence of an alternative duality function
that reduces to the Schütz duality function for the case j = 1/2.

2 Ground state transformation and self-duality

In this section we describe a general strategy to construct a Markov process from a quantum
Hamiltonian. Furthermore we illustrate how to derive self-duality functions for that Markov
process from symmetries of the Hamiltonian. The construction of a Markov process from a
Hamiltonian and a positive ground state has been used at several places, e.g. the Ornstein-
Uhlenbeck process is constructed in this way from the harmonic oscillator Hamiltonian, see
e.g. [22]. In lemma 2.1 below we recall the procedure, and how to recover symmetries of the
Markov process from symmetries of the Hamiltonian. In general this procedure to be applied
requires some condition on the Hamiltonian. In the discrete setting this condition boils down
to non-negative out-of-diagonal elements and the existence of a positive ground state. In the
more general setting the Hamiltonian has to be a Markov generator up to mass conservation
(cfr. (1)).

2.1 Ground state transformation and symmetries

LEMMA 2.1. Let h be a bounded continuous function and let L be the generator of a Markov
process on a metric space Ω. Let A be an operator of the form

Af = Lf − hf (1)

Suppose that there exists ψ such that eψ is in the domain of A, and

Aeψ = 0. (2)

Then the following holds:

a) The operator defined by
Lψf = e−ψA(eψf) (3)

is a Markov generator.

b) There is a one-to-one correspondence between symmetries (commuting operators) of
A and symmetries of Lψ: [S,A] = SA − AS = 0 if and only if [Lψ, Sψ] = 0 with
Sψ = e−ψSeψ.

c) If A is self-adjoint on the space L2(Ω, dα) for some σ-finite measure α on Ω, then Lψ is
self-adjoint on L2(Ω, dµ) with µ(dx) = e2ψ(x)α(dx). In particular, if

´
e2ψ(x)α(dx) = 1

then µ is a reversible probability measure for the Markov process with generator Lψ.
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PROOF. For item a): for every ϕ such that eϕ is in the domain of L, the operator

Lϕf = e−ϕL(eϕf)− (e−ϕL(eϕ))f (4)

defines a Markov generator, see e.g. [8] section 1.2.2, and [18]. Now choosing ϕ = ψ, we
obtain from the assumption (2) that

e−ψLeψ = h

Hence,

Lψf = e−ψL(eψf)− (e−ψL(eψ))f

= e−ψL(eψf)− hf = e−ψ(L− h)(eψf)

= e−ψA(eψf)

For item b) suppose that S commutes with A, then

LψSψ = e−ψAeψe−ψSeψ

= e−ψASeψ = e−ψSAeψ

= SψLψ

For item c), we compute

ˆ
gLψ(f)dµ =

ˆ
g(e−ψA(eψf))e2ψdα

=

ˆ
eψgA(eψf)dα

=

ˆ
A(eψg)(eψf)dα =

ˆ
(Lψg)fdµ

where in the third equality we used A = A∗ in L2(Ω, dα).
The following is a restatement of lemma 2.1 in the context of a finite state space Ω with
cardinality |Ω| < ∞. In this case the condition A = L − h just means that A has non-
negative off diagonal elements.

COROLLARY 2.1. Let A be a |Ω| × |Ω| matrix with non-negative off diagonal elements.
Suppose there exists a column vector eψ := g ∈ R|Ω| with strictly positive entries and such
that Ag = 0. Let us denote by G the diagonal matrix with entries G(x, x) = g(x) for x ∈ Ω.
Then we have the following

a) The matrix
L = G−1AG

with entries

L (x, y) =
A(x, y)g(y)

g(x)
, x, y ∈ Ω× Ω (5)

is the generator of a Markov process {Xt : t ≥ 0} taking values on Ω.
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b) S commutes with A if and only if G−1SG commutes with L .

c) If A = A∗, where ∗ denotes transposition, then the probability measure µ on Ω

µ(x) =
(g(x))2∑
x∈Ω(g(x))2

(6)

is reversible for the process with generator L .

PROOF. The proof of the corollary is obtained by specializing the statements of the lemma
2.1 to the finite dimensional setting. In particular for item a), the operator Lϕ in (4) reads

(Lϕf)(x) =
∑
y∈Ω

L(x, y)eϕ(y)−ϕ(x)(f(y)− f(x)) .

Putting ϕ(x) = ψ(x) and using the condition
∑

y∈Ω L(x, y)eψ(y) = h(x)eψ(x) one finds

(Lψf)(x) =
∑
y∈Ω

A(x, y)eψ(y)−ψ(x)f(y)

from which (5) follows.

REMARK 2.1. Notice that for every column vector f we have that if Af = 0 then for any
S commuting with A (symmetry of A) we have ASf = SAf = 0. This will be useful later
on (see section 5.3) when starting from a vector f with some entries equal to zero, we can
produce, by acting with a symmetry S, a vector g = Sh which has all entries strictly positive.

2.2 Self-duality and symmetries

For the discussion of self-duality, we restrict to the case of a finite state space Ω.

DEFINITION 2.1 (Self-duality). We say that a Markov process X := {Xt : t ≥ 0} on Ω is
self-dual with self-duality function D : Ω× Ω→ R if for all x, y ∈ Ω and for all t > 0

ExD(Xt, y) = EyD(x, Yt) . (7)

Here Ex(·) denotes expectation with respect to the process X initialed at x at time t = 0 and
Y denotes a copy of the process started at y.

This is equivalent to its infinitesimal reformulation, i.e., if the Markov process X has generator
L then (7) holds if and only if

LD = DL ∗ (8)

where D is the |Ω| × |Ω| matrix with entries D(x, y) for x, y ∈ Ω. We recall two general
results on self-duality from [9].

a) Trivial duality function from a reversible measure.

If the process {Xt : t ≥ 0} has a reversible measure µ(x) > 0, then by the detailed
balance condition, it is easy to check that the diagonal matrix

D(x, y) =
1

µ(x)
δx,y (9)

is a self-duality function.
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b) New duality functions via symmetries.

If D is a self-duality function and S is a symmetry of L , then SD is a self-duality
function.

We can then combine corollary 2.1 with these results to obtain the following.

PROPOSITION 2.1. Let A = A∗ be a matrix with non-negative off-diagonal elements, and
g an eigenvector of A with eigenvalue zero, with strictly positive entries. Let L = G−1AG
be the corresponding Markov generator. Let S be a symmetry of A, then G−1SG−1 is a
self-duality function for the process with generator L .

PROOF. By item c) of the corollary 2.1 combined with item a) of the general facts on self-
duality we conclude that G−2 is a self-duality function. By item b) of corollary 2.1 we
conclude that if S is a symmetry of A then G−1SG is a symmetry of L . Then, using item b)
of the general facts on self-duality we conclude that G−1SGG−2 = G−1SG−1 is a self-duality
function for the process with generator L .

3 The asymmetric exclusion process with parameters (q, j)
(ASEP(q, j))

NOTATION. For q ∈ (0, 1) and n ∈ N0 we introduce the q-number

[n]q =
qn − q−n

q − q−1
(10)

satisfying the property limq→1[n]q = n. The first q-number’s are thus given by

[0]q = 0, [1]q = 1, [2]q = q + q−1, [3]q = q2 + 1 + q−2, . . .

We also introduce the q-factorial

[n]q! := [n]q · [n− 1]q · · · · · [1]q ,

and the q-binomial coefficient (
n

k

)
q

:=
[n]q!

[k]q![n− k]q!
.

3.1 Process definition

We start with the definition of a novel interacting particle systems.

DEFINITION 3.1 (ASEP(q, j) process). Let q ∈ (0, 1) and j ∈ N/2. For a given vertex set
V , denote by η = (ηi)i∈V a particle configuration belonging to the state space {0, 1, . . . , 2j}V
so that ηi is interpreted as the number of particles at site i ∈ V . Let ηi,k denotes the particle
configuration that is obtained from η by moving a particle from site i to site k.
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a) The Markov process ASEP(q, j) on [1, L]∩Z with closed boundary conditions is defined
by the generator

(L (L)f)(η) =
L−1∑
i=1

(Li,i+1f)(η) with

(Li,i+1f)(η) = qηi−ηi+1−(2j+1)[ηi]q[2j − ηi+1]q(f(ηi,i+1)− f(η))

+ qηi−ηi+1+(2j+1)[2j − ηi]q[ηi+1]q(f(ηi+1,i)− f(η)) (11)

b) We call the infinite-volume ASEP(q, j) on Z the process whose generator is given by

(L (Z)f)(η) =
∑
i∈Z

(Li,i+1f)(η) (12)

c) The ASEP(q, j) on the torus TL := Z/LZ with periodic boundary conditions is defined
as the Markov process with generator

(L (TL)f)(η) =
∑
i∈TL

(Li,i+1f)(η) (13)

Figure 1: Schematic description of the ASEP((q, j)). The arrows represent the possible tran-
sitions and the corresponding rates cq(η, ξ) are given in (14) below. Each site can accomodate
at most 2j particles.

cq(η, ξ) =


qηi−ηi+1−(2j+1)[ηi]q[2j − ηi+1]q if ξ = ηi,i+1

qηi−1−ηi+(2j+1)[2j − ηi−1]q[ηi]q if ξ = ηi,i−1

0 otherwise

(14)

REMARK 3.1 (The standard ASEP). In the case j = 1/2 each site can accommodate at most
one particle and the ASEP(q, j) reduces to the standard ASEP with jump rate to the left equal
to q and jump rate to the right equal to q−1.

REMARK 3.2 (The symmetric process). In the limit q → 1 the ASEP(q, j) reduces to the
SSEP(2j), i.e. the generalized simple symmetric exclusion process with up to 2j particles per
site (also called partial exclusion) (see [4, 21, 9, 10]). All the results of the present paper
apply also to this symmetric case. In particular, for q → 1, the duality functions that will be
given in theorem 3.2 below reduce to the duality functions of the SSEP.
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REMARK 3.3 (Connection with the q-TAZRP). Consider the process y
(j)
t := {y(j)

i (t)}i∈Z
obtained from the ASEP(q, j) after the time scale transfomation t → (1 − q2)q4j−1t (i.e.

y
(j)
i (t) := ηi((1 − q2)q4j−1t)) then, in the limit j → ∞, y

(j)
t converges to the q-TAZRP

(Totally Asymmetric Zero Range process) in Z whose generator is given by:

(L (q−TAZRP)f)(y) =
∑
i∈Z

1− q2yi

1− q2
[f(yi,i+1)− f(y)], f : NZ → R (15)

see e.g. [2] for more details on this process.

3.2 Basic properties of the ASEP(q, j)

We summarize basic properties of the ASEP(q, j) in the following theorem. We recall that a
function f is said to be monotonous if f(η) ≤ f(η′) whenever η ≤ η′ (in the sense of partial
order) and a Markov process with semigroup S(t) is said to be monotonous if, for every
time t ≥ 0, S(t)f is monotonous function if f is a monotonous function. In this paper we
do not investigate the consequence of monotonicity which is for instance very useful for the
hydrodynamic limit (see [1]).

THEOREM 3.1 (Properties of ASEP(q, j) process).

a) For all L ∈ N, the ASEP(q, j) on [1, L] ∩ Z with closed boundary conditions admits a
family (labeled by α > 0) of reversible product measures with marginals given by

P(α)(ηi = n) =
αn

Z
(α)
i

(
2j

n

)
q

· q2n(1+j−2ji) n = 0, 1, . . . , 2j (16)

for i ∈ {1, . . . , L} and

Z
(α)
i =

2j∑
n=0

(
2j

n

)
q

· αnq2n(1+j−2ji) (17)

b) The infinite volume ASEP(q, j) is well-defined and admits the reversible product mea-
sures with marginals given by (16)-(17).

c) Both the ASEP(q, j) on [1, L]∩Z with closed boundary conditions and its infinite volume
version are monotone processes.

d) For L ≥ 3, the ASEP(q, j) on the Torus TL with periodic boundary conditions does not
have translation invariant stationary product measures for j 6= 1/2.

e) The infinite volume ASEP(q, j) does not have translation invariant stationary product
measures for j 6= 1/2.

REMARK 3.4. Notice that of course we could have absorbed the factor q2(1+j) into α in (16).
However in remark 5.2 below we will see that the case α = 1 exactly corresponds to a natural
ground state.

PROOF.
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a) Let µ be a reversible measure, then, from detailed balance we have

µ(η)cq(η, η
i,i+1) = µ(ηi,i+1)cq(η

i,i+1, η) (18)

where cq(η, ξ) are the hopping rates from η to ξ given in (14). Suppose now that µ is
a product measure of the form µ = ⊗Li=1µi then (18) holds if and only if

µi(ηi−1)µi+1(ηi+1 +1)q2j [2j−ηi+1]q[ηi+1 +1]q = µi(ηi)µi+1(ηi+1)q−2j [ηi]q[2j−ηi+1]q
(19)

which implies that there exists β ∈ R so that for all i = 1, . . . , L

µi(n)

µi(n− 1)
= βq−4ji [2j − n+ 1]q

[n]q
(20)

then (16) follows from (20) after using an induction argument on n and choosing β =
αq2(j+1).

b) The fact that the process is well-defined follows from standard existence criteria of [13],
chapter 1, while the proof of the statement on the reversible product measure is the
same as in item a).

c) This follows from the fact that the rate to go from η to ηi,i+1 is of the form b(ηi, ηi+1)
where k, l 7→ b(k, l) is increasing in k and decreasing in l, and the same holds for the
rate to go from η to ηi,i−1, and the general results in [6].

d) We will prove the absence of homogeneous product measures for j = 1, the proof
for larger j is similar. Suppose that there exists an homogeneous stationary product
measure µ̄(η) =

∏L
i=1 µ(ηi), then, for any function f : {0, . . . , 2j}Z → R

0 =
∑
η

[L (TL)f ](η)µ̄(η) =
∑
η

f(η)[L (TL)∗µ̄](η) (21)

where
[L (TL)∗µ̄](η) =

∑
i∈TL

F (ηi, ηi+1)µ̄(η) (22)

with

F (ξ1, ξ2) = qξ1−ξ2−2j+1[ξ1 + 1]q[2j − ξ2 + 1]q
µ(ξ1 + 1)µ(ξ2 − 1)

µ(ξ1)µ(ξ2)

+ qξ1−ξ2+2j−1[ξ2 + 1]q[2j − ξ1 + 1]q
µ(ξ2 + 1)µ(ξ1 − 1)

µ(ξ1)µ(ξ2)

− qξ1−ξ2
(
q−(2j+1) + q2j+1

)
[ξ1]q[2j − ξ2]q (23)

Then, from (21) and (22) we have that µ̄ is an homogeneous product measure if and
only if, for all f , ∑

η

f(η)µ̄(η)

∑
i∈TL

F (ηi, ηi+1)

 = 0 (24)
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which is true if and only if

G(η) :=
∑
i∈TL

F (ηi, ηi+1) ≡ 0 (25)

Let ∆i be the discrete derivative with respect to the i-th coordinate, i.e. let f :
{0, . . . , 2j}N → R, for some N ∈ N, then ∆if(n) := f(n+ δi)− f(n), n = (n1, . . . , nN ).
From (25) it follows that, for any i ∈ {1, . . . , L},

0 = ∆iG(η) = ∆2F (ηi−1, ηi) + ∆1F (ηi, ηi+1) for any ηi−1, ηi, ηi+1 (26)

this implies in particular that ∆2F (ξ1, ξ2) does not depend on ξ1 and that ∆1F (ξ1, ξ2)
does not depend on ξ2. Therefore, necessarily F (ξ1, ξ2) is of the form

F (ξ1, ξ2) = g(ξ1) + h(ξ2) (27)

for some functions g, h : {0, . . . , 2j} → R. By using again (25) it follows in particular
that F (ξ1, ξ1) = 0, then, from this fact and (27) we deduce that h(ξ1) = −g(ξ1). As a
consequence (25) holds if and only if there exists a function g as above such that, for
each i ∈ TL,

F (ηi, ηi+1) = g(ηi)− g(ηi+1) (28)

(the opposite implication following from the fact that the sum
(∑

i∈TL F (ηi, ηi+1)
)

is

now telescopic and hence zero because of periodicity).

We are going to prove now that (28) cannot hold for the function F given in (23).
Denote by

γ :=
µ(1)2

µ(2)µ(0)
and α := q3 + q − q−1 − q−3 , (29)

fix i and define η̄ := (ηi, ηi+1); then, for j = 1 the expression in (23) becomes

α(1η̄=(1,0) − 1η̄=(0,1)) + α(1η̄=(2,1) − 1η̄=(1,2))

+
[
γq3 − q − 2q−1 − q−3

]
1η̄=(2,0) −

[
q3 + 2q + q−1 − γq−3

]
1η̄=(0,2)

+
[
γ−1(q3 + 3q + 3q−1 + q−3)− q3 − q−3

]
1η̄=(1,1)

= g(ηi)− g(ηi+1) (30)

The condition (30) for η̄ = (1, 1) yields that the coefficient in front of 1η̄=(1,1) has to be
zero, which gives

γ =
q3 + 3q + 3q−1 + q−3

q3 + q−3
(31)

with this choice of γ (30) gives

α(1η̄=(1,0) − 1η̄=(0,1)) + α(1η̄=(2,1) − 1η̄=(1,2)) + δ(1η̄=(2,0) − 1η̄=(0,2))

= g(ηi)− g(ηi+1) (32)

with
δ := γq3 − q − 2q−1 − q−3. (33)

This yields g(1) − g(0) = g(2) − g(1) = α, g(2) − g(0) = δ from which we conclude
δ = 2α which is in contradiction with (29), (31) and (33).
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e) The proof is analogous to the proof of item d), but it requires an extra limiting argu-
ment. Namely, we want to show that the assumption of the existence of a translation
invariant product measure µ̄ implies that

´
L (Z)fdµ̄ = 0 for every local function f .

This leads to ∑
i∈Z

ˆ
f(η)F (ηi, ηi+1)dµ̄(η) = 0

for every local function f and where F (ηi, ηi+1) is defined in (23). In the same spirit of
point d), the proof in [19] implies that F (ηi, ηi+1) has to be of the form g(ηi)− g(ηi+1)
which leads to the same contradiction as in item d).

3.3 Self-duality properties of the ASEP(q, j)

The following self-duality theorem, together with the subsequent corollary, is the main result
of the paper.

THEOREM 3.2 (Self-duality of the finite ASEP(q, j)). The ASEP(q, j) on [1, L] ∩ Z with
closed boundary conditions is self-dual with the following self-duality functions

D(L)(η, ξ) =
L∏
i=1

(
ηi
ξi

)
q(

2j
ξi

)
q

· q(ηi−ξi)[2
∑i−1
k=1 ξk+ξi]+4jiξi · 1ξi≤ηi (34)

and

D′(L)(η, ξ) =
L∏
i=1

(
ηi
ξi

)
q(

2j
ξi

)
q

· q(ηi−ξi)[2
∑i−1
k=1 ηk−ηi]+4jiξi · 1ξi≤ηi (35)

COROLLARY 3.1 (Self-duality of the infinite ASEP(q, j)). The ASEP(q, j) on Z is self-dual
with the following self-duality functions

D(η, ξ) =
∏
i∈Z

(
ηi
ξi

)
q(

2j
ξi

)
q

· q(ηi−ξi)[2
∑i−1
k=1 ξk+ξi]+4jiξi · 1ξi≤ηi (36)

and

D′(η, ξ) =
∏
i∈Z

(
ηi
ξi

)
q(

2j
ξi

)
q

· q(ηi−ξi)[2
∑i−1
k=1 ηk−ηi]+4jiξi · 1ξi≤ηi (37)

where the configurations η and ξ are such that the exponents in (36) and (37) are finite.

The following rewriting of the duality function in (36) will be useful in the analysis of the
current statistics.

REMARK 3.5. For l ∈ N, let ξ(i1,...,i`) be the configurations such that

ξ(i1,...,i`)
m =

{
1 if m ∈ {i1, . . . , i`}
0 otherwise.

(38)
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Define

Ni(η) :=
∑
k≥i

ηk , (39)

then

D(η, ξ(i)) =
q4ji−1

q2j − q−2j
· (q2Ni(η) − q2Ni+1(η)) (40)

and more generally

D(η, ξ(i1,...,i`)) =
q4j

∑`
k=1 ik−`2

(q2j − q−2j)`
·
∏̀
k=1

(q2Nik (η) − q2Nik+1(η))

3.4 Computation of the first q-exponential moment of the current for the
infinite volume ASEP(q, j)

We start by defining the current for the ASEP(q, j) process on Z.

DEFINITION 3.2 (Current). The total integrated current Ji(t) in the time interval [0, t] is
defined as the net number of particles crossing the bond (i−1, i) in the right direction. Namely,
let (ti)i∈N be sequence of the process jump times. Then

Ji(t) =
∑

k:tk∈[0,t]

(1{η(tk)=η(t−k )i−1,i} − 1{η(tk)=η(t−k )i,i−1}) (41)

LEMMA 3.1 (Current q-exponential moment via a dual walker). The total integrated current
of a trajectory (η(s))0≤s≤t is given by

Ji(t) := Ni(η(t))−Ni(η(0)) (42)

where Ni(η) is defined in (39). The first q-exponential moment of the current when the
process is started from a configuration η at time t = 0 is given by

Eη
[
q2Ji(t)

]
= q2(N(η)−Ni(η)) −

i−1∑
k=−∞

q−4jk Ek

[
q4jx(t)

(
1− q−2ηx(t)

)
q2(Nx(t)(η)−Ni(η))

]
(43)

where N(η) :=
∑

i∈Z ηi denotes the total number of particle (that is conserved by the dynam-
ics), x(t) denotes a continuous time asymmetric random walker on Z jumping left at rate
q2j [2j]q and jumping right at rate q−2j [2j]q and Ek denotes the expectation with respect to
the law of x(t) started at site k ∈ Z at time t = 0. Furthermore N(η)−Ni(η) =

∑
k<i ηk and

the first term on the right hand side of (43) is zero when there are infinitely many particles
to the left of i ∈ Z in the configuration η.

PROOF. (42) immediately follows from the definition of Ji(t). To prove (43) we start from
the duality relation

Eη
[
D(η(t), ξ(i))

]
= Eξ(i)

[
D(η, ξ(x(t)))

]
(44)

where ξ(i) is the configuration with a single dual particle at site i (cfr. (38)). Since the
ASEP(q, j) is self-dual the dynamics of the single dual particle is given an asymmetric random
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walk x(t) whose rates are computed from the process definition and coincides with those in
the statement of the lemma. By (40) the left-hand side of (44) is equal to

Eη
[
D(η(t), ξ(i))

]
=

q4ji−1

q2j − q−2j
Eη
[
q2Ni(t) − q2Ni+1(t)

]
whereas the right-hand side gives

Eξ(i)
[
D(η, ξ(x(t)))

]
=

q−1

q2j − q−2j
Ei

[
q4jx(t)(q2Nx(t)(η) − q2Nx(t)+1(η))

]
As a consequence, for any i ∈ Z

Eη
[
q2Ni(η(t))

]
= Eη

[
q2Ni+1(η(t))

]
+ q−4ji Ei

[
q4jx(t)(q2Nx(t)(η) − q2Nx(t)+1(η))

]
(45)

In the case of the infinite-volume ASEP(q, j) the duality relation (45) is significant only for
configurations such that Ni(η(t)) is finite for all t. For this reason it is convenient to divide
both sides of (45) by q2Ni(η) in order to obtain a recursive relation for the current. Then we
get from (42)

Eη
[
q2Ji(t)

]
= q−2ηi Eη

[
q2Ji+1(t)

]
+ q−4ji Ei

[
q4jx(t)(q2(Nx(t)(η)−Ni(η)) − q2(Nx(t)+1(η)−Ni(η)))

]
(46)

Notice that both Ji(t) and Nx(t)(η)−Ni(η) are finite quantities, for all i and t. By iterating
the relation in (46) and using the fact that limi→−∞Ni(η(t)) = N(η(t)) = N(η) we obtain
(43).

Notice that all the quantities in (43) are finite for finite t, since N(η)−Ni(η) > 0 and q ≤ 1.

3.5 Step initial condition

THEOREM 3.3 (q-moment for step initial condition). Consider the step configurations η± ∈
{0, . . . , 2j}Z defined as follows

η+
i :=

{
0 for i < 0
2j for i ≥ 0

η−i :=

{
2j for i < 0
0 for i ≥ 0

(47)

then, for the infinite volume ASEP(q, j) we have

Eη+
[
q2Ji(t)

]
= q4jmax{0,i}

{
1 + q−4ji Ei

[(
1− q4jx(t)

)
1x(t)≥1

]}
(48)

and
Eη−

[
q2Ji(t)

]
= q−4jmax{0,i}

{
1−Ei

[(
1− q4jx(t)

)
1x(t)≥1

]}
(49)

In the formulas above x(t) denotes the random walk of Lemma 3.1 and

Ei(f(x(t)) =
∑
x∈Z

f(x) ·Pi(x(t) = x)
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with

Pi(x(t) = x) = P(x(t) = x | x(0) = i)

= e−[4j]qtq−2j(x−i)Ix−i(2[2j]qt) (50)

and In(t) denotes the modified Bessel function.

PROOF. We prove only (48) since the proof of (49) is analogous. From the definition of η+

and (43), we have

Eη+
[
q2Ji(t)

]
= q2(N(η+)−Ni(η+))−(1−q−4j)

i−1∑
k=−∞

q−4jk
∑
x≥0

q4jx q2(Nx(η+)−Ni(η+)) Pk (x(t) = x)

where N(η+) − N i(η+) = 2jmax{0, i} and Nx(η+) − Ni(η
+) = 2j(max{0, i} − x) for any

x ≥ 0. Then we have

Eη+
[
q2Ji(t)

]
= q4jmax{0,i} {1 + (q−4j − 1)Fi(t)

}
with

Fi(t) :=
i−1∑

k=−∞
q−4jk Pk (x(t) ≥ 0) =

i−1∑
k=−∞

q−4jk P0 (x(t) ≥ −k)

=

+∞∑
r=−i+1

+∞∑
`=r

q4jr P0 (x(t) = −`) =

+∞∑
`=−i+1

∑̀
r=−i+1

q4jr P0 (x(t) = −`)

=
q−4j(i−1)

1− q4j

+∞∑
`=−i+1

(
1− q4j(`+i)

)
P0 (x(t) = `)

=
q−4j(i−1)

1− q4j
Ei

[(
1− q4jx(t)

)
1x(t)≥1

]
.

Thus (48) is proved.

REMARK 3.6. Since for q ∈ (0, 1)

lim
t→∞

Ei

[(
1− q4jx(t)

)
1x(t)≥1

]
= 1 (51)

from (48) and (49) we have that

lim
t→∞

Eη+
[
q2Ji(t)

]
= q4jmax{0,i} (1 + q−4ji

)
(52)

and
lim
t→∞

Eη−
[
q2Ji(t)

]
= 0 (53)

The limits in (52) and (53) are consistent with a scenario of a shock, respectively, rarefaction
fan. Namely, in the case of shock for a fixed location i, the current Ji(t) in (52) remains
bounded as t → ∞ because particles for large times can jump and produce a current only at
the location of the moving shock. On the contrary, in (53) the current Ji(t) goes to ∞ as
t→∞, i.e. the average current Ji(t)/t converges to its stationary value.
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It is possible to rewrite (48), (49) as contour integral. We do this in the following corollary
in order to recover in the case j = 1/2 the results of [2].

COROLLARY 3.2. The explicit expression of the q-moment in terms of contour integral reads

Eη+
[
q2Jk(t)

]
=
q4jmax{0,k}

2πi

‰
e
−
q2j [2j]3q(q

−1−q)2 z
(1+q4jz)(1+z)

t
(

1 + z

1 + q4jz

)k dz

z
(54)

where the integration contour includes 0 and −q−4j but does not include −1, and

Eη−
[
q2Jk(t)

]
=
q−4jmax{0,k}

2πi

‰
e
−
q−2j [2j]3q(q

−1−q)2 z
(1+q−4jz)(1+z)

t
(

1 + z

1 + q−4jz

)k dz

z
(55)

where the integration contour includes 0 and −q4j but does not include −1.

PROOF. In order to get (54) and (55) it is sufficient to exploit the contour integral formulation
of the modified Bessel function appearing in (50), i.e.

In(x) :=
1

2πi

‰
e(ξ+ξ−1)x

2 ξ−n−1 dξ (56)

where the integration contour includes the origin. From (50) and (56) we have

Ek

[(
1− q4jx(t)

)
1x(t)≥1

]
=
∑
x≥1

(1− q4jx)e−[4j]qtq−2j(x−k) Ix−k (2[2j]qt)

=
q2jk

2πi
e−[4j]qt

‰
e[2j]q(ξ+ξ−1)t ξk−1

∑
x≥1

(
1− q4jx

) 1

(ξq2j)x
dξ (57)

In order to have the convergence of the series in (57) it is necessary to assume |ξ| ≥ q−2j .
Under such assumption we have∑

x≥1

(
1− q4jx

) 1

(ξq2j)x
=

(
1− q4j

)
ξ

(q2jξ − 1) (ξ − q2j)
(58)

and therefore

Ek

[(
1− q4jx(t)

)
1x(t)≥1

]
=
q2jk

2πi

‰
γ
fk(ξ) dξ, (59)

with fk(ξ) := e{[2j]q(ξ+ξ
−1)−[4j]q}t

(
1− q4j

)
ξk

(q2jξ − 1) (ξ − q2j)
(60)

where, from the assumption above, the integration contour γ includes 0, q2j and q−2j . From
(48), (49) and (59) we have

Eη±
[
q2Jk(t)

]
= q±4jmax{0,k}

{
1± q∓2jk

2πi

‰
γ
fk(ξ) dξ

}
(61)

It is easy to verify that q±2j are two simple poles for fk(ξ) such that

Resq±2j (fk) = ∓q±2jk (62)
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then

Eη±
[
q2Jk(t)

]
= ±q±4jmax{0,k} 1

2πi

‰
γ±

q∓2jkfk(ξ) dξ (63)

where γ± are now two different contours which include 0 and q∓2j and do not include q±2j .
In order to get the results in (54) it is sufficient to perform the change of variable

ξ :=
1 + z

1 + q4jz
q2j (64)

to get

Eη+
[
q2Jk(t)

]
= −q

4jmax{0,k}

2πi

fi
γ̃+

e
−
q2j [2j]3q(q

−1−q)2 z
(1+q4jz)(1+z)

t
(

1 + z

1 + q4jz

)k dz

z
(65)

where now the integral is done clockwise over the contour γ̃+ which includes 0 and q−4j but
does not include −1. This yields (54) after changing the integration sense. (55) is obtained
similarly from (63) after performing tha change of variables ξ := 1+z

1+q−4jz
q−2j .

REMARK 3.7. In the case j = 1/2 formula (54) coincides with the expression in Theorem
1.2 of Borodin, Corwin, Sasamoto [2] for n = 1. Indeed defineing

Jk(t) = −NBCS
k−1 (η(t)) +NBCS

k−1 (η(0)), NBCS
k (η) :=

∑
i≤k

ηi (66)

then, if η(0) = η+ it holds Jk(t) = −NBCS
k−1 (η(t)) + 2jmax{0, k}. As a consequence, from

(54), for j = 1/2 we have

Eη+
[
q−2NBCS

k−1 (t)
]

=
1

2πi

‰
e
− (q−1−q)2 z

(q−1+qz)(1+z)
t
(

1 + z

1 + q2z

)k dz

z
(67)

where the integration contour includes 0 and −q−2 but does not include -1. Notice that (67)
recovers the expression in Theorem 1.2 of [2] for τ = q−2, p = q−1 (up to a shift k → k − 1
which comes from the fact that in η+ the first occupied site is 0 in our case while is it choosen
to be 1 in [2]).

3.6 Product initial condition

We start with a lemma that is useful in the following.

LEMMA 3.2. Let x(t) be the random walk defined in Lemma 3.1, a ∈ R and A ⊆ R then

lim
t→∞

1

t
log E0

[
ax(t) | x(t) ∈ A

]
= sup

x∈A
{x log a−I (x)} − inf

x∈A
I (x) (68)

with

I (x) = [4j]q − x+ x log

q2j

 x

2[2j]q
+

√(
x

2[2j]q

)2

+ 1

 (69)
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PROOF. From large deviations theory [12] we know that x(t)/t, conditional on x(t)/t ∈ A,
satisfies a large deviation principle with rate function I (x) − infx∈A I (x) where I (x) is
given by

I (x) := sup
z
{zx− Λ(z)} (70)

with

Λ(z) := lim
t→∞

1

t
logE

[
ezx(t)

]
= [2j]q

(
(ez − 1) q−2j +

(
e−z − 1

)
q2j
)

(71)

from which it easily follows (69). The application of Varadhan’s lemma yields (68).

We denote by E⊗µ the expectation of the ASEP(q, j) process on Z initialized with the omo-
geneous product measure on {0, 1, . . . 2j}Z with marginals µ at time 0, i.e. E⊗µ[f(η(t))] =∑

η (⊗i∈Zµ(ηi))Eη[f(η(t))].

THEOREM 3.4 (q-moment for product initial condition). Consider a probability measure µ
on {0, 1, . . . 2j}. Then, for the infinite volume ASEP(q, j), we have

E⊗µ
[
q2Ji(t)

]
= E0

[(
q4j

λq

)x(t)

1x(t)≤0

]
+ E0

[
q4jx(t)

(
λ
x(t)
1/q − λ1/q + λ−1

q

)
1x(t)≥1

]
(72)

where λy :=
∑2j

n=0 y
nµ(n) and x(t) is the random walk defined in Lemma 3.1. In particular

we have

lim
t→∞

1

t
logE⊗µ[q2Ji(t)] = sup

x≥0
{x logMq −I (x)} − inf

x≥0
I (x) (73)

with Mq := max{λq, q4jλ1/q} and I (x) given by (69).

PROOF. From (43) we have

E⊗µ
[
q2Ji(t)

]
=

ˆ
⊗µ(dη)Eη

[
q2Ji(t)

]
=

ˆ
⊗µ(dη)q2(N(η)−Ni(η)) +

i−1∑
k=−∞

q−4jk

ˆ
⊗µ(dη)Ek

[
q4jx(t)

(
q−2ηx(t) − 1

)
q2(Nx(t)(η)−Ni(η))

]
.

Since ˆ
⊗µ(dη)q2(Nx(η)−Ni(η)) = λi−xq 1{x≤i} + λx−i1/q 1{x>i} (74)

then, in particular,
´
⊗µ(dη)q2(N(η)−Ni(η)) = 0 since λq < 1, where we recall the interpretation

of N(η)−Ni(η) from lemma 3.1. Hence

E⊗µ
[
q2Ji(t)

]
=

i−1∑
k=−∞

q−4jk
∑
x∈Z

Pk (x(t) = x) q4jx

ˆ
⊗µ(dη)

[
q2(Nx+1(η)−Ni(η)) − q2(Nx(η)−Ni(η))

]
=

(
λ−1
q − 1

)
A(t) +

(
λ1/q − 1

)
B(t) (75)

with
A(t) :=

∑
k≤i−1

q−4jk
∑
x≤i

Pk (x(t) = x) q4jxλi−xq (76)
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and
B(t) :=

∑
k≤i−1

q−4jk
∑
x≥i+1

Pk (x(t) = x) q4jxλx−i1/q (77)

Now, let α := q4jλ−1
q , then

A(t) =
∑
k≤i−1

q−4jkλiq
∑
x≤i

Pk (x(t) = x)αx

=
∑
n≥1

λnq
∑
m≤n

P0 (x(t) = m)αm

=
∑
m≤0

αmP0 (x(t) = m)
∑
n≥1

λnq +
∑
m≥1

αmP0 (x(t) = m)
∑
n≥m

λnq

=
1

1− λq

{
λq E0

[
αx(t) 1x(t)≤0

]
+ E0

[
q4jx(t) 1x(t)≥1

]}
(78)

Analogously one can prove that

B(t) =
1

λ1/q − 1

{
E0

[
βx(t) 1x(t)≥2

]
− λ1/qE0

[
q4jx(t) 1x(t)≥2

]}
(79)

with β = q4jλ1/q then (72) follows by combining (75), (78) and (79).

In order to prove (73) we use the fact that x(t) has a Skellam distribution with parameters
([2j]qq

−2jt, [2j]qq
2jt), i.e. x(t) is the difference of two independent Poisson random variables

with those parameters. This implies that

E0

[(
q4j

λq

)x(t)

1x(t)≤0

]
= E0

[
λx(t)
q 1x(t)≥0

]
.

Then we can rewrite (72) as

E⊗µ
[
q2Ji(t)

]
= E0

[(
λx(t)
q +

(
q4jλ1/q

)x(t)
)

1x(t)≥1

]
+ P0 (x(t) = 0)

+
(
λ−1
q − λ1/q

)
E0

[
q4jx(t)1x(t)≥1

]
= E0

[
Mx(t)
q 1x(t)≥0

]
(1 + E1(t) + E2(t) + E3(t)) (80)

with

E1(t) :=
E0

[(
λ
x(t)
q +

(
q4jλ1/q

)x(t)
)

1x(t)≥1

]
E0

[
M

x(t)
q 1x(t)≥0

] , E2(t) :=
P0 (x(t) = 0)

E0

[
M

x(t)
q 1x(t)≥0

]
and

E3(t) :=

(
λ−1
q − λ1/q

)
E0

[
q4jx(t)1x(t)≥1

]
E0

[
M

x(t)
q 1x(t)≥0

] . (81)
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To identify the leaden term in (80) it remains to prove that, for each i = 1, 2, 3 there exists
ci > 0 such that

sup
t≥0
|Ei(t)| ≤ ci (82)

This would imply, making use of Lemma 3.2, the result in (73). The bound in (82) is
immediate for i = 1, 2. To prove it for i = 3 it is sufficient to show that there exists c > 0
such that

λ−1
q E0

[
q4jx(t)1x(t)≥1

]
≤ cE0

[(
q4jλ1/q

)x(t)
1x(t)≥1

]
. (83)

This follows since there exists x∗ ≥ 1 such that for any x ≥ x∗ λ−1
q ≤ λx1/q and then

λ−1
q E0

[
q4jx(t)1x(t)≥1

]
≤ λ−1

q E0

[
q4jx(t)11≤x(t)<x∗

]
+ E0

[
q4jx(t)λ

x(t)
1/q 1x(t)≥x∗

]
≤ λ−1

q E0

[
q4jx(t)11≤x(t)

]
+ E0

[
q4jx(t)λ

x(t)
1/q 1x(t)≥1

]
≤
(
1 + λ−1

q

)
E0

[(
q4jλ1/q

)x(t)
1x(t)≥1

]
. (84)

This concludes the proof.

The rest of our paper is devoted to the construction of the process ASEP(q, j) from a quantum
spin chain Hamiltonian with Uq(sl2) symmetry of which we show that it admits a positive
ground state. The self-duality functions will then be constructed from application of suitable
symmetries to this ground state and application of proposition 2.1.

4 Algebraic structure and symmetries

4.1 The quantum Lie algebra Uq(sl2)

For q ∈ (0, 1) we consider the algebra with generators J+, J−, J0 satisfying the commutation
relations

[J+, J−] = [2J0]q, [J0, J±] = ±J± , (85)

where [·, ·] denotes the commutator, i.e. [A,B] = AB −BA, and

[2J0]q :=
q2J0 − q−2J0

q − q−1
. (86)

This is the quantum Lie algebra Uq(sl2), that in the limit q → 1 reduces to the Lie algebra
sl2. Its irreducible representations are (2j+ 1)−dimensional, with j ∈ N/2. They are labeled
by the eigenvalues of the Casimir element

C = J−J+ + [J0]q[J
0 + 1]q . (87)

A standard representation [14] of the quantum Lie algebra Uq(sl2) is given by (2j+1)×(2j+1)
dimensional matrices defined by

J+|n〉 =
√

[2j − η]q[η + 1]q |n+ 1〉
J−|n〉 =

√
[η]q[2j − η + 1]q |n− 1〉

J0|n〉 = (η − j) |n〉 .
(88)
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Here the collection of column vectors |n〉, with n ∈ {0, . . . , 2j}, denote the standard orthonor-
mal basis with respect to the Euclidean scalar product, i.e. |n〉 = (0, . . . , 0, 1, 0, . . . , 0)T with
the element 1 in the nth position and with the sympol T denoting transposition. Here and in
the following, with abuse of notation, we use the same symbol for a linear operator and the
matrix associated to it in a given basis. In the representation (88) the ladder operators J+

and J− are one the adjoint of the other, namely

(J+)∗ = J− (89)

and the Casimir element is given by the diagonal matrix

C|n〉 = [j]q[j + 1]q|n〉 .

Later on, in the construction of the q-deformed asymmetric simple exclusion process, we will
consider other representations for which the ladder operators are not adjoint of each other.
For later use, we also observe that the Uq(sl2) commutation relations in (85) can be rewritten
as follows

qJ0J+ = q J+qJ0 (90)

qJ0J− = q−1 J−qJ0

[J+, J−] = [2J0]q

4.2 Co-product structure

A co-product for the quantum Lie algebra Uq(sl2) is defined as the map ∆ : Uq(sl2) →
Uq(sl2)⊗ Uq(sl2)

∆(J±) = J± ⊗ q−J0
+ qJ

0 ⊗ J± ,
∆(J0) = J0 ⊗ 1 + 1⊗ J0 . (91)

The co-product is an isomorphism for the quantum Lie algebra Uq(sl2), i.e.

[∆(J+),∆(J−)] = [2∆(J0)]q, [∆(J0),∆(J±)] = ±∆(J±) . (92)

Moreover it can be easily checked that the co-product satisfies the co-associativity property

(∆⊗ 1)∆ = (1⊗∆)∆ . (93)

Since we are interested in extended systems we will work with the tensor product over copies
of the Uq(sl2) quantum algebra. We denote by J+

i , J
−
i , J

0
i , with i ∈ Z, the generators of the

ith copy. Obviously algebra elements of different copies commute. As a consequence of (93),

one can define iteratively ∆n : Uq(sl2) → Uq(sl2)⊗(n+1), i.e. higher power of ∆, as follows:
for n = 1, from (91) we have

∆(J±i ) = J±i ⊗ q
−J0

i+1 + qJ
0
i ⊗ J±i+1

∆(J0
i ) = J0

i ⊗ 1 + 1⊗ J0
i+1 , (94)

for n ≥ 2,

∆n(J±i ) = ∆n−1(J±i )⊗ q−J0
n+i + q∆n−1(J0

i ) ⊗ J±n+i

∆n(J0
i ) = ∆n−1(J0

i )⊗ 1 + 1⊗ . . .⊗ 1︸ ︷︷ ︸
n times

⊗J0
n+i . (95)
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4.3 The quantum Hamiltonian

Starting from the quantum Lie algebra Uq(sl2) (Section 4.1) and the co-product structure
(Section 4.2) we would like to construct a linear operator (called “the quantum Hamiltonian”
in the following and denoted by H(L) for a system of length L) with the following properties:

1. it is Uq(sl2) symmetric, i.e. it admits non-trivial symmetries constructed from the
generators of the quantum algebra; the non-trivial symmetries can then be used to
construct self-duality functions;

2. it can be associated to a continuos time Markov jump process, i.e. there exists a
representation given by a matrix with non-negative out-of-diagonal elements (which
can therefore be interpreted as the rates of an interacting particle systems) and with
zero sum on each column.

We will approach the first issue in this subsection, whereas the definition of the related
stochastic process is presented in Section 5.

A natural candidate for the quantum Hamiltonian operator is obtained by applying the co-
product to the Casimir operator C in (87). Using the co-product definition (91), simple
algebraic manipulations (cfr. also [3]) yield the following definition.

DEFINITION 4.1 (Quantum Hamiltonian). For every L ∈ N, L ≥ 2, we consider the operator
H(L) defined by

H(L) :=
L−1∑
i=1

H i,i+1
(L) =

L−1∑
i=1

(
hi,i+1

(L) + c(L)

)
, (96)

where the two-site Hamiltonian is the sum of

c(L) =
(q2j − q−2j)(q2j+1 − q−(2j+1))

(q − q−1)2
1⊗ · · · ⊗ 1︸ ︷︷ ︸
L times

(97)

and
hi,i+1

(L) := 1⊗ · · · ⊗ 1︸ ︷︷ ︸
(i−1) times

⊗∆(Ci)⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
(L−i−1) times

(98)

and, from (87) and (91),

∆(Ci) = ∆(J−i )∆(J+
i ) + ∆([J0

i ]q)∆([J0
i + 1]q) . (99)

Explicitely

∆(Ci) = −qJ0
i

{
J+
i ⊗ J

−
i+1 + J−i ⊗ J

+
i+1 +

(qj + q−j)(qj+1 + q−(j+1))

2
[J0
i ]q ⊗ [J0

i+1]q

+
[j]q[j + 1]q

2

(
qJ

0
i + q−J

0
i

)
⊗
(
qJ

0
i+1 + q−J

0
i+1

)}
q−J

0
i+1 (100)
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REMARK 4.1. The diagonal operator c(L) in (97) has been added so that the ground state

|0〉(L) := ⊗Li=1|0〉i is a right eigenvector with eigenvalue zero, i.e. H(L)|0〉(L) = 0 as it is
immediately seen using (88).

PROPOSITION 4.1. In the representation (88) the operator H(L) is self-adjoint.

PROOF. It is enough to consider the non-diagonal part of H(L). Using (89) we have(
qJ

0
i J+

i ⊗ J
−
i+1q

−J0
i+1 + qJ

0
i J−i ⊗ J

+
i+1q

−J0
i+1

)∗
= J−i q

J0
i ⊗ q−J0

i+1J+
i+1 + J+

i q
J0
i ⊗ q−J0

i+1J−i+1

= qJ
0
i +1J−i ⊗ J

+
i+1q

−J0
i+1−1 + qJ

0
i −1J+

i ⊗ J
−
i+1q

−J0
i+1+1

where the last identity follows by using the commutation relations (90). This concludes the
proof.

4.4 Basic symmetries

It is easy to construct symmetries for the operator H(L) by using the property that the

co-product is an isomorphism for the Uq(sl2) algebra.

THEOREM 4.1 (Symmetries of H(L)). Recalling (95), we define the operators

J±(L) := ∆L−1(J±1 ) =
L∑
i=1

qJ
0
1 ⊗ · · · ⊗ qJ0

i−1 ⊗ J±i ⊗ q
−J0

i+1 ⊗ . . .⊗ q−J0
L ,

J0
(L) := ∆L−1(J0

1 ) =
L∑
i=1

1⊗ · · · ⊗ 1︸ ︷︷ ︸
(i−1) times

⊗J0
i ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

(L−i) times

. (101)

They are symmetries of the Hamiltonian (96), i.e.

[H(L), J
±
(L)] = [H(L), J

0
(L)] = 0 . (102)

PROOF. We proceed by induction and prove only the result for J±(L) (the case J0
(L) is similar).

By construction J±(2) := ∆(J±) are symmetries of the two-site Hamiltonian H(2). Indeed this

is an immediate consequence of the fact that the co-product defined in (92) conserves the
commutation relations and the Casimir operator (87) commutes with any other operator in
the algebra :

[H(2), J
±
(2)] = [∆(C1),∆(J±1 )] = ∆([C1, J

±
1 ]) = 0 .

For the induction step assume now that it holds [H(L−1), J
±
(L−1)] = 0. We have

[H(L), J
±
(L)] = [H(L−1), J

±
(L)] + [hL−1,L

(L) , J±(L)] (103)

The first term on the right hand side of (103) can be seen to be zero using (95) with i = 1
and n = L− 1:

[H(L−1), J
±
(L)] = [H(L−1), J

±
(L−1)q

−J0
L + q

J0
(L−1)J±L ]
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Distributing the commutator with the rule [A,BC] = B[A,C] + [A,B]C, the induction hy-
pothesis and the fact that spins on different sites commute imply the claim. The second term
on the right hand side of (103) is also seen to be zero by writing

[hL−1,L
(L) , J±(L)] = [hL−1,L

(L) , J±(L−2)q
−∆(J0

L−1) + q
J0
(L−2)∆(J±L−1)] = 0 .

REMARK 4.2. In the case q = 1, the quantum Hamiltonian in Definition 4.1 reduces to
the (negative of the) well-known Heisenberg ferromagnetic quantum spin chain with spins Ji
satisfying the sl2 Lie-algebra. With abuse of notation for the tensor product, the Heisenberg
quantum spin chain reads

HHeis
(L) =

L−1∑
i=1

(
J+
i J
−
i+1 + J−i J

+
i+1 + 2J0

i J
0
i+1 − 2j2

)
, (104)

whose symmetries are given by

J±,Heis(L) =
L∑
i=1

J±i and J0,Heis
(L) =

L∑
i=1

J0
i .

5 Construction of the ASEP(q, j)

In order to construct a Markov process from the quantum Hamiltonian H(L), we apply item
a) of Corollary 2.1 with A = H(L). At this aim we need a non-trivial symmetry which yields a
non-trivial ground state. Starting from the basic symmetries of H(L) described in Section 4.4,
and inspired by the analysis of the symmetric case (q = 1), it will be convenient to consider
the exponential of those symmetries.

5.1 The q-exponential and its pseudo-factorization

DEFINITION 5.1 (q-exponential). We define the q-analog of the exponential function as

expq(x) :=
∑
n≥0

xn

{n}q!
(105)

where

{n}q :=
1− qn

1− q
(106)

REMARK 5.1. The q-numbers in (106) are related to the q-numbers in (10) by the relation
{n}q2 = [n]qq

n−1. This implies {n}q2 ! = [n]q! q
n(n−1)/2 and therefore

expq2(x) =
∑
n≥0

xn

[n]q!
q−n(n−1)/2 (107)
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One could also have defined the q-exponential directly in terms of the q-numbers (10), namely

ẽxpq(x) =
∑
n≥0

xn

[n]q!
(108)

The reason to prefer definition of the q-deformed exponential given in (105), rather than
(108), is that with the first choice we have then a pseudo-factorization property as described
in the following.

PROPOSITION 5.1 (Pseudo-factorization). Let {g1, . . . , gL} and {k1, . . . , kL} be operators
such that for L ∈ N and g ∈ R

kigi = rgiki for i = 1, . . . , L . (109)

Define

g(L) :=

L∑
i=1

k(i−1)gi, with k(i) := k1 · · · · · ki for i ≥ 1 and k(0) = 1, (110)

then
expr(g

(L)) = expr(g1) · expr(k
(1)g2) · · · · · expr(k

(L−1)gL) (111)

Moreover let

ĝ(L) :=

L∑
i=1

gi h
(i+1), with h(i) := k−1

i · · · · · k
−1
L for i ≤ L and h(L+1) = 1, (112)

then
expr(ĝ

(L)) = expr(g1 h
(2)) · · · · · expr(gL−1 h

(L)) · expr(gL) (113)

In this section we prove only (111) since the proof of (113) is similar. We first give a series
of Lemma that are useful in the proof.

LEMMA 5.1. Let

Binr{n,m} :=
{n}r!

{m}r!{n−m}r!
(114)

then
rmBinr{n,m}+ Binr{n,m− 1} = Binr{n+ 1,m} (115)

PROOF. It follows from an immediate computation

LEMMA 5.2. For any n,L ∈ N, L ≥ 2(
g(L)

)n
=

n∑
m=0

Bin{n,m}r
(
g(L−1)

)n−m
(k(L−1)gL)m (116)
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PROOF. We prove it by induction on n. For n = 1 it is true because for each L ≥ 2

g(L) = g(L−1) + k(L−1)gL (117)

By (109), for any ` ∈ N (
k(`)
)m

g(`) = rmg(`)
(
k(`)
)m

(118)

Suppose that (116) holds for n for any L ≥ 2, then, using (115) and (118) we have(
g(L)

)n+1
=

(
g(L−1) + k(L−1)gL

)n+1

=
n∑

m=0

Binr{n,m}
(
g(L−1)

)n−m (
k(L−1)gL

)m
·
[
g(L−1) + k(L−1)gL

]
=

n∑
m=1

[rmBinr{n,m}+ Binr{n,m− 1}]
(
g(L−1)

)n+1−m (
k(L−1)gL

)m
+
(
g(L−1)

)n+1
+
(
k(L−1)gL

)n+1

=

n+1∑
m=0

Binr{n+ 1,m}
(
g(L−1)

)n+1−m (
k(L−1)gL

)m
(119)

that proves the lemma.

LEMMA 5.3. For any n,L ∈ N, L ≥ 2 we have

(
g(L)

)n
= {n}r!

n∑
mL=0

n−mL∑
mL−1=0

· · ·
n−

∑L
i=3mi∑

m2=0

g
n−

∑L
i=2mi

1

{n−
∑L

i=2mi}r!
·
L∏
i=2

(k(i−1)gi)
mi

{mi}r!
(120)

PROOF. We prove it by induction on L. From (116), for any n ∈ N we have

(
g(2)
)n

= (g1 + k1g2)n = {n}r!
n∑

m=0

(g1)n−m

{n−m}r!
(k1g2)m

{m}r!
(121)

thus (120) is true for L = 2, n ∈ N. Suppose that it holds for L for any n ∈ N then, using
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(116) we have(
g(L+1)

)n
=

(
g(L) + k(L)gL+1

)n
=

n∑
mL+1=0

Binr{n,mL+1}
(
g(L)

)n−mL+1
(
k(L)gL+1

)mL+1

=
n∑

mL+1=0

Binr{n,mL+1}
(
{n−mL+1}r!

n−mL+1∑
mL=0

. . . . . . . . .

· · ·
n−mL+1−

∑L
i=3mi∑

m2=0

g
n−mL+1−

∑L
i=2mi

1

{n−mL+1 −
∑L

i=2mi}r!
·
L∏
i=2

(k(i−1)gi)
mi

{mi}r!

)
·
(
k(L)gL+1

)mL+1

= {n}r!
n∑

mL+1=0

n−mL+1∑
mL=0

· · ·
n−

∑L+1
i=3 mi∑

m2=0

g
n−

∑L+1
i=2 mi

1

{n−
∑L+1

i=2 mi}r!
·
L+1∏
i=2

(k(i−1)gi)
mi

{mi}r!

this proves the lemma.

LEMMA 5.4. Let L ∈ N, L ≥ 2 and for any i = 1, . . . , L let Xi ∈ RN a sequence of real
numbers, Xi = {Xi(m)}m∈N, then

∞∑
n=0

n∑
mL=0

n−mL∑
mL−1=0

· · ·
n−

∑L
i=3mi∑

m2=0

X1(n−
L∑
i=2

mi) ·
L∏
i=2

Xi(mi) =
L∏
i=1

∞∑
m1=0

Xi(mi) (122)

PROOF. It is sufficient to prove it for L = 2, the proof of (122) follows by an analogous
argument. By performing the change of variable n := m1 +m2 we obtain

∞∑
mi=0

2∏
i=1

Xi(mi) =
∞∑

m1=0

∞∑
m2=0

X1(m1)X2(m2)

=
∞∑

m2=0

∞∑
n=m2

X1(n−m2)X2(m2) =
∞∑
n=0

n∑
m2=0

X1(n−m2)X2(m2)

that yields (122) for L = 2.
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PROOF OF PROPOSITION 5.1. From (120) we have

expr(g
(L)) =

∞∑
n=0

(
g(L)

)n
{n}r!

(123)

=

∞∑
n=0

n∑
mL=0

n−mL∑
mL−1=0

· · ·
n−

∑L
i=3mi∑

m2=0

g
n−

∑L
i=2mi

1

{n−
∑L

i=2mi}r!
·
L∏
i=2

(k(i−1)gi)
mi

{mi}r!
(124)

=
L∏
i=1

∞∑
mi=0

(k(i−1)gi)
mi

{mi}r!
(125)

=

L∏
i=1

expr(k
(i−1)gi) (126)

where the passage from (124) to (125) follows from Lemma 5.4.

5.2 The exponential symmetry S+
(L)

In this Section we identify the symmetry that will be used in the construction of the process
ASEP(q, j). To have a symmetry that has quasi-product form over the sites we preliminary
define more convenient generators of the Uq(sl2) quantum Lie algebra. Let

E := qJ
0
J+, F := J−q−J

0
and K := q2J0

(127)

From the commutation relations (85) we deduce that (E,F,K) verify the relations

KE = q2EK and KF = q−2FK [E,F ] =
K −K−1

q − q−1
. (128)

Moreover, from Theorem 4.1, the following co-products

∆(E1) := ∆(qJ
0
1 ) ·∆(J+

1 ) = E1 ⊗ 1 +K1 ⊗ E2 (129)

∆(F1) := ∆(J−1 ) ·∆(q−J
0
1 ) = F1 ⊗K−1

2 + 1⊗ F2 (130)

are still symmetries of H(2). In general we can extend (129) and (130) to L sites, then we
have that

E(L) := ∆(L−1)(E1)

= ∆(L−1)(qJ
0
1 ) ·∆(L−1)(J+

1 )

= qJ
0
1J+

1 + q2J0
1+J0

2J+
2 + ...+ q2

∑L−1
i=1 J0

i +J0
LJ+

L

= E1 +K1E2 +K1K2E3 + ...+K1 · ... ·KL−1EL (131)

F (L) := ∆(L−1)(F1)

= ∆(L−1)(J−1 ) ·∆(L−1)(q−J
0
1 )

= J−1 q
−J0

1−2
∑L
i=2 J

0
i + · · ·+ J−L−1q

−J0
L−1−2J0

L + J−L q
−J0

L

= F1 ·K−1
2 · ... ·K−1

L + · · ·+ FL−1 ·K−1
L + FL (132)
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are symmetries of H. If we consider now the symmetry obtained by q-exponentiating E(L)

then this operator will pseudo-factorize by Proposition 5.1.

LEMMA 5.5. The operator
S+

(L) := expq2(E(L)) (133)

is a symmetry of H(L). Its matrix elements are given by

〈η1, ..., ηL|S+|ξ1, ..., ξL〉 =
L∏
i=1

√(
ηi
ξi

)
q

(
2j − ξi
2j − ηi

)
q

· 1ηi≥ξiq
(ηi−ξi)[1−j+ξi+2

∑i−1
k=1(ξk−j)] (134)

PROOF. From (128) we know that the operators Ei,Ki, copies of the operators defined in
(127), verify the conditions (109) with r = q2. As a consequence, from (131), (133) and
Proposition 5.1, we have

S+
(L) = expq2(E(L))

= expq2(E1) · expq2(K1E2) · · · expq2(K1 · · ·KL−1EL)

= expq2
(
qJ

0
1J+

1

)
· expq2

(
q2J0

1 qJ
0
2J+

2

)
· · · expq2

(
q2

∑L−1
i=1 J0

i +J0
LJ+

L

)
= S+

1 S
+
2 · · ·S

+
L (135)

where S+
i := expq2

(
q2

∑i−1
k=1 J

0
k+J0

i J+
i

)
has been defined. Using (107), we find

S+
i |ξ1, . . . , ξL〉 =

∑
`i≥0

1

[`i]q!

(
q2

∑i−1
k=1 J

0
k+J0

i J+
i

)`i
q−

1
2
`i(`i−1)|ξ1, . . . , ξL〉 (136)

=
∑
`i≥0

√(
2j − ξi
`i

)
q

·
(
ξi + `i
ξi

)
q

· q`i(1−j+ξi)+2`i
∑i−1
k=1(ξk−j)|ξ1, . . . , ξi + `i, . . . , ξL〉

where in the last equality we used (88). Thus we find

S+
(L)|ξ1, . . . , ξL〉 = S+

1 S
+
2 . . . S+

L |ξ1, . . . , ξL〉 (137)

=
∑

`1,`2,...,`L≥0

L∏
i=1

(√(
2j − ξi
`i

)
q

·
(
ξi + `i
ξi

)
q

· q`i(1−j+ξi)+2`i
∑i−1
k=1(ξk−j)

)
|ξ1 + `1, . . . , ξL + `L〉

form which the matrix elements in (134) are immediately found.

5.3 Construction of a positive ground state and the associated Markov
process ASEP(q, j)

By applying Corollary 2.1 we are now ready to identify the stochastic process related to the
Hamiltonian H(L) in (96).
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We start from the state |0〉 = |0, . . . , 0〉 which is obviously a trivial ground state of H(L).

We then produce a non-trivial ground state by acting with the symmetry S+
(L) in (133), as

described in Remark 2.1. Using (137) we obtain

|g〉 = S+
(L)|0, . . . , 0〉 =

∑
`1,`2,...,`L≥0

L∏
i=1

√(
2j

`i

)
q

· q`i(1+j−2ji) |`1, ..., `L〉

Therefore we arrived to a positive ground state (cfr. Remark 2.1). Following the scheme in
Corollary 2.1 we construct the operator G(L) defined by

G(L)|η1, . . . , ηL〉 = |η1, . . . , ηL〉〈η1, . . . , ηL|S+|0, . . . , 0〉 (138)

In other words G(L) is represented by a diagonal matrix whose coefficients in the standard
basis read

〈η1, . . . , ηL|G(L)|ξ1, . . . , ξL〉 =

L∏
i=1

√(
2j

ηi

)
q

· qηi(1+j−2ji) · δηi=ξi (139)

Note that G(L) is factorized over the sites, i.e.

〈η1, . . . , ηL|G(L)|ξ1, . . . , ξL〉 = ⊗Li=1〈ηi|Gi|ξi〉 (140)

As a consequence of item a) of Corollary 2.1, the operator L (L) conjugated to H(L) via G−1
(L),

i.e.
L (L) = G−1

(L)H(L)G(L) (141)

is the generator of a Markov jump process η(t) = (η1(t), . . . , ηL(t)) describing particles jump-
ing on the line {1, . . . , L}. The state space of such a process is given by {0, . . . , 2j}L and its
elements are denoted by η = (η1, . . . , ηL), where ηi is interpreted as the number of particles
at site i. The exclusion rule is due to the fact that on each site can sit no more than 2j
particles. The asymmetry is controlled by the parameter 0 < q ≤ 1.

PROPOSITION 5.2. The action of the Markov generator L (L) := G−1
(L)H(L)G(L) is given by

(11).

PROOF. From Proposition 4.1 we know that H∗(L) = H(L), hence we have that the operator

H̃(L) := G(L)H(L)G
−1
(L) is the transposed of the generator L (L) defined by (141). Then we

have to verify that the transition rates to move from η to ξ for the Markov process generated
by (11) are equal to the elements 〈ξ|H̃(L)|η〉.
Since we already know that L (L) is a Markov generator, in order to prove the result it is
sufficient to apply the similarity transformation given by the matrix G(L) defined in (139) to

the non-diagonal terms of (100), i.e. qJ
0
i J±i J

∓
i+1q

−J0
i+1 . We show here the computation only

for the first term, being the computation for the other term similar.
We have

〈ξi, ξi+1|GiGi+1 · qJ
0
i J+

i J
−
i+1q

−J0
i+1 ·G−1

i G−1
i+1|ηi, ηi+1〉

= 〈ξi|GiqJ
0
i J+

i G
−1
i |ηi〉 ⊗ 〈ξi+1|Gi+1J

−
i+1q

−J0
i+1G−1

i+1|ηi+1〉 (142)
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Using (139) and (88) one has

〈ξi|GiqJ
0
i J+

i G
−1
i |ηi〉 = qηi+2−2ji [2j − ηi]q〈ξi|ηi + 1〉 (143)

and

〈ξi+1|Gi+1J
−
i+1q

−J0
i+1G−1

i+1|ηi+1〉 = q−ηi+1+2j−1+2ji [ηi+1]q〈ξi+1|ηi+1 − 1〉 (144)

Multiplying the last two expressions one has

〈ηi+1,i|H̃(L)|η〉 = qηi−ηi+1+(2j+1)[2j − ηi]q[ηi+1]q (145)

that corresponds indeed to the rate to move from η to ηi+1,i in (11). This concludes the
proof.

REMARK 5.2. From item c) of Corollary 2.1, we have that the product measure µ(L) defined
by

µ(L)(η) = 〈η|G2
(L)|η〉 (146)

is a reversible measure of L (L). Notice that it corresponds to the reversible measure P(α)

defined in (16) with the choice α = 1.

6 Self-Duality results for the ASEP(q, j)

We now use Proposition 2.1 and the exponential simmetry obtained in Section 5.2 to deduce
a non-trivial duality function for the ASEP(q, j) process. We first have the following remark
on trivial duality functions.

REMARK 6.1. From (9) and item a) of Theorem 3.1 it follows that all the functions

dα(η, ξ) =
L∏
i=1

((
2j

ηi

)
q

· αnq2ηi(1+j−2ji)

)−1

· δηi=ξi (147)

are diagonal duality functions for the Markov process with generator L (L).

We then deduce the main result, i.e. a non-trivial duality function.

PROOF OF (34) IN THEOREM 3.2. From Proposition 4.1 we know that H(L) is self-adjoint,

then, using Proposition 2.1 with A = H(L), G = G(L) given by (139) and S = S+
(L) given by

(134) it follows that
G−1

(L)S
+
(L)G

−1
(L) (148)
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is a self-duality function for the process generated by L (L). Its elements are computed as
follows:

〈η|G−1
(L)S

+
(L)G

−1
(L)|ξ〉 = (149)

=
L∏
i=1

(√(
2j

ηi

)
q

· qηi(1+j−2ji)

)−1

〈η|S+
i |ξ〉

(√(
2j

ξi

)
q

· qξi(1+j−2ji)

)−1

= (150)

=
L∏
i=1

√(
ηi
ξi

)
q

(
2j − ξi
2j − ηi

)
q

/(
2j

ηi

)
q

(
2j

ξi

)
q

· q(ηi−ξi)[2
∑i−1
k=1(ξk−j)+ξi]+(2ji−j−1)(ηi+ξi) · 1ξi≤ηi =

= q
∑L
i=1((j−1)ηi−(3j+1)ξi)

L∏
i=1

[2j − ξi]q![ηi]q!
[2j]q![ηi − ξi]q!

· q(ηi−ξi)[2
∑i−1
k=1 ξk+ξi]+4jiξi · 1ξi≤ηi

Since both the original process and the dual process conserve the total number of particles
it follows that D(L) in (34) is also a duality function.

7 A second symmetry and associated self-duality

Up to now we worked with the symmetry S+
(L) defined in (133). In this Section we explore

other choices for the symmetry and their consequences.

7.1 Construction of alternative symmetries

We already observed that the operator F (L) defined in (132) is a symmetry of H(L). The
following Lemma gives the exponential symmetry that is further obtained.

LEMMA 7.1. The operator
S−(L) := expq−2(F (L)) (151)

is a symmetry of H(L). Its matrix elements are given by

〈η1, ..., ηL|S−(L)|ξ1, ..., ξL〉 =
L∏
i=1

√(
ξi
ηi

)
q

·
(

2j − ηi
2j − ξi

)
q

· 1ηi≤ξiq
−(ξi−ηi)[2

∑L
k=i+1(ηk−j)+ηi−j+1]

(152)

PROOF. From (128) we know that the operators Fi,Ki, copies of the operator defined in
(127), verify the conditions (109) with r = q−2. Then, from (160) and Proposition 5.1

S−(L) = expq−2(F (L))

= expq−2(F1K
−1
2 . . .K−1

L ) · · · · · expq−2(FL−1K
−1
L ) · expq−2(FL)

= expq−2

(
J−1 q

−J0
1−2

∑L
i=2 J

0
i

)
· · · · · expq−2

(
J−L−1q

−J0
L−1−2J0

L

)
· expq−2

(
J−L q

−J0
L

)
= S−1 S

−
2 . . . S−L (153)
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where S−i := expq−2

(
J−i q

−J0
i −2

∑L
k=i+1 J

0
k

)
. Using (107) and the fact that [x]q−1 = [x]q, we

have

S−i |ξ1, ..., ξL〉 =
∑
`i≥0

1

[`i]q!

(
J−i q

−J0
i −2

∑L
k=i+1 J

0
k

)`i
q

1
2
`i(`i−1)|ξ1, ..., ξL〉 (154)

=
∑
`i≥0

√(
ξi
`i

)
q

·
(

2j − ξi + `i
`i

)
q

q−2`i
∑L
k=i+1(ξk−j) q`i(`i−ξi+j−1)|ξ1, ..., ξi − `i, ...ξL〉

then

S−(L)|ξ1, ..., ξL〉 = S−1 S
−
2 . . . S−L |ξ1, ..., ξL〉

=
∑

`1,`2,...,`L≥0

L∏
i=1

(√(
ξi
`i

)
q

·
(

2j − ξi + `i
`i

)
q

·q−2`i
∑L
k=i+1(ξk−`k−j) q`i(`i−ξi+j−1)

)
|ξ1 − `1, ..., ξL − `L〉

From this the matrix elements in (152) immediately follows.

Other symmetries can be obtained as follows. Similarly to Section 5.2, we consider

Ẽ := J+q−J
0
, F̃ := qJ

0
J− and K̃ := q2J0

(155)

and notice that (Ẽ, F̃ ,K) (as (E,F,K) in Section 5.2) verify the commutation relations

K̃Ẽ = q2ẼK̃ and K̃F̃ = q−2F̃ K̃ [Ẽ, F̃ ] =
K̃ − K̃−1

q − q−1
. (156)

Therefore the following co-products

∆(Ẽ1) := ∆(J+
1 ) ·∆(q−J

0
1 ) = Ẽ1 ⊗ K̃−1

2 + 1⊗ Ẽ2 (157)

∆(F̃1) := ∆(qJ
0
1 ) ·∆(J−1 ) = F̃1 ⊗ 1 + K̃1 ⊗ F̃2 (158)

are symmetries of H(2). In general we can extend (157) and (158) to L sites, then we have
that

Ẽ(L) := ∆(L−1)Ẽ1

= ∆(L−1)(J+
1 ) ·∆(L−1)(q−J

0
1 )

= J+
1 q
−J0

1−2
∑L
i=2 J

0
i + · · ·+ J+

L−1q
−J0

L−1−2J0
L + J+

L q
−J0

L

= Ẽ1 · K̃−1
2 · ... · K̃−1

L + · · ·+ ẼL−1 · K̃−1
L + ẼL (159)

F̃ (L) := ∆(L−1)F̃1

= ∆(L−1)(qJ
0
1 ) ·∆(L−1)(J−1 )

= qJ
0
1J−1 + q2J0

1+J0
2J−2 + ...+ q2

∑L−1
i=1 J0

i +J0
LJ−L

= F̃1 + K̃1F̃2 + K̃1K̃2F̃3 + ...+ K̃1 · ... · K̃L−1F̃L (160)

are symmetries of H(L).
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REMARK 7.1. Notice that Ẽ(L) (respectively F̃(L)) is related to F(L) (respectively E(L)) by a
transposition. More precisely, using (90), one has

(Ẽ(L))∗ = q−J
0
1J−1 q

−2
∑L
i=2 J

0
i + · · ·+ q−J

0
L−1J−L−1q

−2J0
L + q−J

0
LJ−L

= q
(
J−1 q

−J0
1 q−2

∑L
i=2 J

0
i + · · ·+ J−L−1q

−J0
L−1q−2J0

L + J−L q
−J0

L

)
= qF (L) (161)

(F̃ (L))∗ = J+
1 q

J0
1 + q2J0

1J+
2 q

J0
2 + ...+ q2

∑L−1
i=1 J0

i J+
L q

J0
L

= q−1
(
qJ

0
1J+

1 + q2J0
1+J0

2J+
2 + ...+ q2

∑L−1
i=1 J0

i +J0
LJ+

L

)
= q−1E(L) (162)

By exponentiating Ẽ(L) and F̃(L) the following two symmetries S̃+
(L) and S̃−(L) are obtained.

LEMMA 7.2. The operator
S̃+

(L) := expq2(Ẽ(L)) (163)

is a symmetry of H(L). Its matrix elements are given by

〈η1, ..., ηL|S̃+
(L)|ξ1, ..., ξL〉 =

L∏
i=1

√(
2j − ξi
2j − ηi

)
q

·
(
ηi
ξi

)
q

q−(ηi−ξi)[2
∑L
k=i+1(ηk−j)+ηi−j−1] · 1ξi≤ηi

(164)

PROOF. From (156) we know that the operators Ẽi, K̃i, copies of the operators defined in
(155), verify the conditions (109) with r = q2. Then, from (159) and Proposition 5.1

S̃+
(L) = expq2(Ẽ(L))

= expq2(Ẽ1K̃
−1
2 . . . K̃−1

L ) · · · · · expq2(ẼL−1K̃
−1
L ) · expq2(ẼL)

= expq2
(
J+

1 q
−J0

1−2
∑L
i=2 J

0
i

)
· · · · · expq2

(
J+
L−1q

−J0
L−1−2J0

L

)
· expq2

(
J+
L q
−J0

L

)
= S̃+

1 S̃
+
2 . . . S̃+

L (165)

where S̃+
i := expq2

(
J+
i q
−J0

i −2
∑L
k=i+1 J

0
k

)
. Using (107), we have

S̃+
i |ξ1, ..., ξL〉 =

∑
`i≥0

1

[`i]q!

(
J+
i q
−J0

i −2
∑L
k=i+1 J

0
k

)`i
q−

1
2
`i(`i−1)|ξ1, ..., ξL〉 (166)

=
∑
`i≥0

√(
2j − ξi
`i

)
q

·
(
ξi + `i
ξi

)
q

q−2`i
∑L
k=i+1(ξk−j) q−`i(ξi+`i−j−1)|ξ1, ..., ξi + `i, ...ξL〉
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then

S̃+
(L)|ξ1, ..., ξL〉 = S̃+

1 S̃
+
2 . . . S̃+

L |ξ1, ..., ξL〉

=
∑

`1,`2,...,`L≥0

L∏
i=1

(√(
2j − ξi
`i

)
q

·
(
ξi + `i
ξi

)
q

· q−2`i
∑L
k=i+1(ξk+`k−j) q−`i(ξi+`i−j−1)

)
|ξ1 + `1, ..., ξL + `L〉

Hence the matrix elements of S̃+
(L) are given by (164).

LEMMA 7.3. The operator
S̃−(L) := expq−2(F̃ (L)) (167)

is a symmetry of H(L). Its matrix elements are given by

〈η1, ..., ηL|S̃−(L)|ξ1, ..., ξL〉 =
L∏
i=1

√(
ξi
ηi

)
q

(
2j − ηi
2j − ξi

)
q

·q(ξi−ηi)[2
∑i−1
k=1(ξk−j)−ξi+1+j] ·1ηi≤ξi (168)

PROOF. From (156) we know that the operators F̃i, K̃i, copies of the operators defined in
(155), verify the conditions (109) with r = q−2. Then, from (159) and Proposition 5.1

S̃−(L) = expq−2(F̃ (L))

= expq−2(F̃1) · expq−2(K̃1F̃2) · · · · · expq−2(K̃1 · · · · · K̃L−1F̃L)

= expq−2

(
qJ

0
1J−1

)
· expq−2

(
q2J0

1 qJ
0
2J−2

)
· · · · · expq−2

(
q2

∑L−1
i=1 J0

i +J0
LJ−L

)
= S̃−1 S̃

−
2 . . . S̃−L (169)

where S̃−i := expq−2

(
q2

∑i−1
k=1 J

0
k+J0

i J−i

)
. Using (107) and the fact that [x]q−1 = [x]q, we have

S̃−i |ξ1, ..., ξL〉 =
∑
`i≥0

1

[`i]q!

(
q2

∑i−1
k=1 J

0
k+J0

i J−i

)`i
q

1
2
`i(`i−1)|ξ1, ..., ξL〉 (170)

=
∑
`i≥0

√(
2j − ξi + `i

`i

)
q

·
(
ξi
`i

)
q

· q`i(1+j−ξi)+2`i
∑i−1
k=1(ξk−j)|ξ1, ..., ξi − `i, ...ξL〉

then

S̃−(L)|ξ1, ..., ξL〉 = S̃−1 S̃
−
2 . . . S̃−L |ξ1, ..., ξL〉

=
∑

`1,`2,...,`L≥0

L∏
i=1

(√(
2j − ξi + `i

`i

)
q

·
(
ξi
`i

)
q

· q`i(1+j−ξi)+2`i
∑i−1
k=1(ξk−j)

)
|ξ1 − `1, ..., ξL − `L〉
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Hence the matrix elements of S̃−(L) are given by (168).

As it was done with the ground state S+
(L)|0, . . . , 0〉, one could wonder what Markov process is

obtained if one uses the ground state S̃+
(L)|0, . . . , 0〉. One can check by an explicit computation

(not reported here) that if H(L) is transformed by a similarity transformation G̃(L) given by

G̃(L)|η1, . . . , ηL〉 = |η1, . . . , ηL〉〈η1, . . . , ηL|S̃+
(L)|0, . . . , 0〉 (171)

one recovers the ASEP(q, j) Markov jump process.

7.2 Construction of alternative self-duality functions

One can wonder what other dualities are found using the other symmetries of the previous
Section. Using S−(L) one finds a duality function which is the transpose of (34). In the same

way S̃+
(L) and S̃−(L) give duality functions that are related by a transposition. Such duality

function is different from (34) and is given by (35) that we are going to prove below.

PROOF OF (35) IN THEOREM 3.2. From Proposition 4.1 we know that H(L) is self-adjoint,

then, using Proposition 2.1 with A = H(L), G = G(L) given by (139) and S = S̃−(L) given by

(134) it follows that
G−1

(L)S̃
−
(L)G

−1
(L) (172)

is a self-duality function for the process generated by L (L). Its elements are computed as
follows:

〈η|G−1
(L)S̃

−
(L)G

−1
(L)|ξ〉 = (173)

=
L∏
i=1

(√(
2j

ηi

)
q

· qηi(1+j−2ji)

)−1

〈η|S̃−i |ξ〉

(√(
2j

ξi

)
q

· qξi(1+j−2ji)

)−1

= (174)

=

L∏
i=1

√(
ξi
ηi

)
q

(
2j − ηi
2j − ξi

)
q

/(
2j

ηi

)
q

(
2j

ξi

)
q

· q(ξi−ηi)[2
∑i−1
k=1(ξk−j)−ξi]+(2ji−j−1)(ηi+ξi) · 1ηi≤ξi =

= q
∑L
i=1((j−1)ξi−(3j+1)ηi)

L∏
i=1

[2j − ηi]q![ξi]q!
[2j]q![ξi − ηi]q!

· q(ξi−ηi)[2
∑i−1
k=1 ξk−ξi]+4jiηi · 1ηi≤ξi

Since both the original process and the dual process conserve the total number of particles
it follows that D′(L) in (35) is also a duality function.

7.3 Comparison with the Schütz duality in the case j = 1/2.

Consider the duality matrix D′ computed in (35), then the associated duality function is

D′(L)(η, ξ) =

L∏
i=1

(
ηi
ξi

)
q(

2j
ξi

)
q

· q(ηi−ξi)[2
∑i−1
k=1 ηk−ηi]+4jiξi · 1ξi≤ηi
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For j = 1/2 both ξi and ηi take values in {0, 1} then

η2
i ≡ ηi and for ξi ≤ ηi, ξiηi ≡ ξi (175)

hence, assuming that ξi ≤ ηi for all i, we have

L∑
i=1

(ηi − ξi)ηi =

L∑
i=1

η2
i −

L∑
i=1

ξiηi =

L∑
i=1

ηi −
L∑
i=1

ξi = N −M

where N and M are the total numbers of particles respectively in the configurations η and
ξ. Thus

L∏
i=1

(
ηi
ξi

)
q(

2j
ξi

)
q

· q−(ηi−ξi)ηi · 1ξi≤ηi = q−
∑L
i=1(ηi−ξi)ηi ·

L∏
i=1

1ξi≤ηi = c · 1{ξi≤ηi, ∀i}

On the other hand, assuming that ξi ≤ ηi, we have

ηi − ξi = 1ηi=1,ξ1=0, then
L∏
i=1

q2(ηi−ξi)
∑i−1
k=1 ηk =

∏
i:ηi=1,ξi=0

q2
∑i−1
k=1 ηk

then, for j = 1/2

D′(η, ξ) = c · 1{ξi≤ηi,∀i} · q
2
∑L
i=1 iξi

∏
i:ηi=1,ξi=0

q2
∑i−1
k=1 ηk

Now, using the Schütz notation, one may represent a given M -particles configuaration by the
set C of occupied sites. More precisely, let M be the total number of the configuartion ξ, we
denote by C := {k1, . . . , kM} the set of occupies sites ki ∈ {1, . . . , L} ki ≤ ki+1. With this
notation we have

L∑
i=1

iξi =
M∑
m=1

km

On the other hand, for the configuration η we denote by Ni, i = 1, . . . , L the number of
particles at the left of i (with site i included):

Ni :=

i∑
k=1

ηk

With this notation we have

D′(L)(η, ξ) = c · 1{ξi≤ηi, ∀i} · q
2
∑M
m=1 km q

2
∑
i:ηi=1,ξi=0Ni−1 (176)

Now, assuming that ξi ≤ ηi for all i, we have∑
i:ηi=1,ξi=0

Ni−1 =
∑
i:ηi=1

Ni−1 −
∑

i:ηi=1,ξi=1

Ni−1 (177)
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Let now N be the total number of particles in the configuration η, then we prove that∑
i:ηi=1

Ni−1 =
N(N − 1)

2
(178)

We have ∑
i:ηi=1

Ni−1 =
∑
i:ηi=1

ηiNi−1 =
∑
i:ηi=1

i−1∑
k=1

ηiηk

On the other hand

N2 =

(
L∑
i=1

ηi

)2

=

L∑
i=1

L∑
k=1

ηiηk

=
L∑
i=1

i−1∑
k=1

ηiηk +
L∑
i=1

η2
i +

L∑
i=1

L∑
k=i+1

ηiηk

= 2
L∑
i=1

i−1∑
k=1

ηiηk +N

where the last identity follows because

L∑
i=1

i−1∑
k=1

ηiηk =
L∑
i=1

L∑
k=i+1

ηiηk

and since , from the left identity in (175),

L∑
i=1

η2
i =

L∑
i=1

ηi = N

then (178) is proved. On the other hand, from the right identity in (175) we have

∑
i:ηi=1,ξi=1

Ni−1 =

L∑
i=1

ηiξi

i−1∑
k=1

ηk

=
L∑
i=1

ξi

i−1∑
k=1

ηk

=

M∑
m=1

km−1∑
k=1

ηk

=
M∑
m=1

Nkm−1 (179)

Finally from (177), (178) and (179) we have

∑
i:ηi=1,ξi=0

Ni−1 =
N(N − 1)

2
−

M∑
m=1

Nkm−1 (180)
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Finally we have that ξi ≤ ηi for all i if and only if all the sites {k1, . . . , kM} are occupied sites
for the configuration η, then from (176) and (180) we have

D′((L)η, ξ) = c′ · 1{ξi≤ηi, ∀i} · q
2
∑M
m=1 km q−2

∑M
m=1Nkm−1

= c′ ·
M∏
m=1

q2km q−2Nkm−1 · ηkm (181)

that is the Schütz self-duality function (up to a sign, i.e. q2km instead of q−2km).
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