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42122 Reggio Emilia, Italy

Received 24 September 2014, Accepted 17 November 2014

Abstract – Based on the relationships from the ISO 76 standard, this paper optimizes the internal dimen-
sions of tapered roller bearings for maximum static load capacity. A bearing system formed by two identical
bearings is assumed, subjected to whatever combination of centred radial and axial forces. It is shown that
the static capacity increases linearly with the roller infill, with the ratio of roller length to roller diameter
and with the square of the pitch diameter of the roller set. Further, given the ratio of axial to radial force,
an optimal contact angle exists which maximizes the static capacity of the bearing pair, regardless of the
actual bearing size and ratio of roller diameter to pitch diameter. The optimization procedure can either
be used to design custom-made bearings or to pick from manufacturers’ catalogues the bearing with the
best contact angle for any assigned loading condition.
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1 Introduction

Ordinarily, rolling bearings are not designed and built
in-house but are chosen by the designer from the cat-
alogue of specialized manufactures. The high degree of
specialization has fostered the development of standard-
ized high-quality products, readily available off-the-shelf
in a wide range of shape and dimensions at affordable
prices. Under particular design circumstances, like very
large bearings or tight mounting spaces, the need can arise
for non-standard bearings which the regular market can
satisfy only at a considerable cost of time and money. In
such instances, rolling bearings of simple geometry (as
with cylindrical or tapered rollers) can be manufactured
by the end user itself to meet the specific requirements at
a fraction of the costs and delivery time requested by the
specialized suppliers.

When tackling the construction of custom bearings
the designer has the control of all the variables and the
design is conveniently conducted according to optimiza-
tion methods. Unlike conventional machine elements, for
which a wealth of optimization criteria have been devel-
oped since long [1, 2], the category of rolling bearings
has received so far relatively little attention. May be due
to the aforementioned passive design approach (selection
from a catalogue) towards these components, until the
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turn of the century the technical literature has been lim-
ited to optimal bearing selectors [3] and simulators of
bearing kinematics [4]. Papers dealing with the optimiza-
tion of bearing features have appeared only lately, aimed
at maximizing one or several performance properties of
ball bearings [5–11], cylindrical roller bearings [12,13] and
tapered roller bearings [14–19].

As for ball bearings, Choi and Yoon [5] optimized an
automotive wheel-bearing unit with double-row, angular-
contact architecture using a genetic algorithm. They
showed that the system life can be improved over the
standard design without any constraint violations. Kalita
et al. [6] adopted a multi-objective optimisation approach
for the design of ball bearings with enhanced dynamic ca-
pacity, static capacity and lubricant film thickness. The
work uses both deterministic methods (penalty functions)
and stochastic algorithms (simulated annealing and ge-
netic search). The genetic approach was further explored
by Chakraborty et al. [7] for ball bearings and its merits
were compared to conventional techniques. Also based on
genetic algorithms, a non-linear optimization procedure
was developed by Rao and Tiwari [8] for the design of
ball bearings with maximum fatigue life under kinematic
constraints. The optimized bearing yielded better fatigue
life as compared to standard catalogues. This study was
further evolved [9] to achieve multi-objective optimization
of the bearing in terms of static load capacity, fatigue life
and elastohydrodynamic film thickness under inner and
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Nomenclature

b Width of outer ring of bearing
C0 Static radial load rating of the bearing

d Roller diameter (measured at midlength of roller)
di Inside diameter of bearing
do Outside diameter of bearing
d∗

δ Optimum value of d for δ ≤ δlim

D Pitch diameter of the roller set
D∗

δ Optimum value of D for δ ≤ δlim

Fa Axial load acting on the most loaded bearing of the pair

Fr External radial load applied to the bearing pair
Frs Radial load acting on the single bearing of the pair (=0.5 Fr)
k Ratio of radial to axial external loads (=Ka/Fr)
Ka External axial load applied to the bearing pair

L Roller length
L∗

δ Optimum value of L for δ ≤ δlim

P0 Static equivalent radial load acting on the most loaded bearing of the pair
S0 Static safety factor of the bearing pair

s0 Intrinsic static safety factor of the bearing pair
s∗0 Global optimum of s0

s∗0δ Optimum value of s∗0 for δ ≤ δlim

X0, Y0, Y Load coefficients of the bearing
Z Number of rollers
Z∗

δ Optimum value of Z for δ ≤ δlim

α Contact angle of bearing

α∗ Global optimum of α
α∗

δ Optimum value of α for δ ≤ δlim

δ Pitch ratio of bearing (=d/D)

δ∗ Global optimum of δ
ζ Filling ratio of the roller set (=Zd/πD)
λ Aspect ratio of the rollers (=L/D)
ξ Auxiliary variable (=δ cos α)

φ Component of the static safety factor (=ζλD2/Fr)
φ∗

δ Optimum value of φ for δ ≤ δlim

outer geometric constraints. Angular-contact ball bear-
ings were optimized by Savsani et al. [10] for maximum
static and dynamic loading ratings and minimum film
thickness using a modified particle swarm optimization
technique. Both single and multi-objective optimization
tasks were considered, claiming advantages with respect
to former, mainly genetic, numerical procedures. Wei and
Chengzu [11] improved on the computational side of the
problem introducing non-dominated sorting genetic algo-
rithms to optimize high-speed, angular-contact ball bear-
ings for fatigue life and frictional power losses.

The optimization of cylindrical roller bearings was
first tackled by Kumar et al. [12] for maximum dynamic
capacity using real-coded genetic algorithms and adopt-
ing, as design variables, the diameter of the rollers, the
roller pitch diameter, the roller length and the number of
rollers. This work was then expanded by adding the roller
crowning (non linear profile) among the design parame-
ters [13] and performing a Monte Carlo sensitivity analy-
sis to investigate changes in the fatigue life of the bearing.
The results showed that the multiplier of the logarithmic
profile deviation parameter has more effect on the fatigue
life as compared with other geometric parameters.

A pioneering instance of tapered roller bearing op-
timization can be traced back to the paper by Parker
et al. [14], in which the performance of several large-bore
(about 120 mm), tapered roller bearings was simulated
and tested at shaft speeds up to 20 000 rpm under com-
bined thrust and radial load. The computer-optimized
bearing design proved superior to equal-sized standard
bearings tested for comparison. Chaturbhuj et al. [15] op-
timized tapered roller bearings using genetic algorithms
and demonstrated that the fatigue life of the bearing
improved marginally compared with respect to standard
bearings. However, some authors [12,13] have pointed out
that some optimization constraints introduced in this pa-
per were unrealistic. A method for optimizing the geom-
etry of tapered roller bearings at high speeds was devel-
oped by Walker [16] with the main aim of determining the
cup and cone angles which minimize the contact stresses
under a specific ratio of axial to radial load. Walker found
that at low speeds the optimum cup angle is 40 degrees,
whereas the optimum value decreases to 10 degrees for
the highest speeds. Wang et al. [17] presented a mathe-
matical model for optimizing the design of four-column
bearings with tapered rollers subject to several geometric
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Fig. 1. Longitudinal section of a two-stage bevel/spur gearbox with “O” and “X” arranged tapered roller bearings susceptible
of customization and/or optimization.

constraints. By acting on a rearrangement of the classi-
cal variables (roller diameter and length, pitch diameter,
number of rollers and cup angle), they improved the dy-
namic load rating by 22% and the life expectancy by 85%
over a commercial competitor of like dimensions. Though
interesting for the potential of improvements it shows,
Wang et al.’s paper [17] does not provide details on the
optimization method behind the model and little can be
taken away from the published results apart from the
specific example presented. Two comprehensive contribu-
tions to the optimal design of tapered roller bearings have
recently been published by Tiwari et al. [18,19]. These two
papers contain also excellent reviews of the technical lit-
erature on rolling bearings and the various optimization
methods applied so far to bearing design.

In general, the above papers are focused on the
methodological approach to the optimization problem
and pay much less attention to the engineering value of
the optimization results. If most of the numerical algo-
rithms referenced above can be beneficial to the special-
ist’s work, they are of little use for the general-purpose
mechanical designer confronted with the task of design-
ing simple custom bearings. As outcome of an applied
research for a small Italian manufacturer of planetary
gear drives, the present author has recently published an
optimization procedure for radial cylindrical roller bear-
ings [20], which overcomes these limitations. Relying on
easy step-by-step calculations and with no need for spe-
cific optimization backgrounds, that procedure gives the
macro-geometry of the bearing (roller diameter, roller
length, pitch diameter of roller set, number of rollers)
which maximizes the static and the dynamic load ratings
under realistic size constraints.

In the wake of that fruitful effort, this paper tackles
the engineering optimization of tapered roller bearings
encountered in many industrial applications (see Fig. 1
for a typical instance). The optimization involves the
static load capacity of bearing pairs, mounted accord-
ing to either “O” or “X” arrangements, subjected to a

combination of radial and axial forces. Each bearing is
defined by the number, diameter and length of the rollers,
by the contact angle (cup angle) and by the pitch diame-
ter of the roller set. Following the equations provided by
the standard ISO 76 [21], the safety factor of the bearing
system is expressed in terms of three parameters: the ra-
tio between roller diameter and pitch diameter, the cup
angle and the ratio of axial to radial force. This simple
expression gives engineering insight into the problem and
shows that for each given load ratio an optimal contact
angle exists which maximizes the static load capacity of
the bearing, regardless of it actual size and proportions.
Tables of optimal contact angles are provided for quick
reference.

The optimization method presented here gives its best
results for custom-made bearings, for which the design pa-
rameters can be varied with the greatest freedom. How-
ever, the results disclosed are useful also for identify-
ing the best commercial bearings that can be selected
from the manufacturers’ catalogues to fit a particular
application.

2 Problem statement

Figure 2 shows the baseline configuration of the bear-
ing system examined in this paper. The two bearings B1

and B2 are assumed to be equal and subjected to the ra-
dial force Fr, which is applied at the centre point of the
pair. In addition to Fr, an axial thrust Ka, also acts on
the system through the centre shaft.

Geometrically, each bearing is defined by the follow-
ing parameters: roller length, L; mean roller diameter, d
(measured at midlength of L); number of rollers, Z; pitch
diameter of the roller set, D; contact angle, α. The ISO 76
standard [21] specifies that this angle should measure the
slope of the raceway without retaining ribs, which is nor-
mally the outer one (cup) as shown in Figure 2. Should
the retaining rib be provided by the cup, the contact angle
α should refer to the inner raceway (cone).
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Fig. 2. Reference configuration of the bearing system with applied loads (Fr and Ka) and characteristic dimensions of the
bearings.

With reference to Figure 2, the paper seeks the set of
bearing parameters {d, D, L, Z, α} which maximizes the
static load capacity of the system for given forces Ka and
Fr. The search for the optimum will be based on the equa-
tions provided by the ISO 76 standard [21]. The effect of
the flanges is disregarded because the roller-flange con-
tact, though relevant for the wear damage of the bearing,
especially for high-speed applications, pays no role under
static loading. Although obtained explicitly for the par-
ticular bearing combination depicted in Figure 2 (O ar-
rangement with bearings removed from each other), the
optimal solution presented will be applicable also to other
combinations such as those shown in Figure 3 (O and X
arrangements with removed or paired bearings).

3 Theory

3.1 Static radial load rating

Subject to the conditions clarified below, the standard
ISO 76 [21] gives the following field-tested expression for
the static radial load rating, C0 (N), of tapered roller
bearings

C0 = 44
(

1 − d

D
cosα

)
Z L d cosα (1)

Equation (1), in which the lengths are expressed in mm,
holds true if the bearing is built and installed under the
following assumptions: (a) use of bearing steels with hard-
ness HRC ≥ 58; (b) manufacture according to regular tol-
erances [22, 23] to enhance pressure uniformity over the
roller length; (c) accurate guide of rollers with rounded
ends to avoid pressure spikes at the edges [24]; (d) mount-
ing onto stiff shafts and within rigid housings; (e) working
temperature not higher than 150 ◦C; (f) an angular load
zone of 180◦ (i.e. the circumferential extent of the set of

rollers that are in contact with both inner and outer race-
ways). Significant deviations from these reference condi-
tions can be accommodated either by applying correction
factors available in the literature [25] or by resorting to
second-order methods [25, 26] and specialized numerical
tools [27] available to bearing manufacturers. The extent
of the load zone f is particularly sensitive to the end
play (i.e. axial clearance) with which the bearing pair is
mounted and to axial displacements produced by the load
(see further comments in Sect. 3.2).

Table 1 compares the static load ratings predicted by
Equation (1) with the actual load ratings of a selection
of tapered roller bearings retrieved from the catalogue of
a leading manufacturer (INA). The internal geometry of
the bearings in Table 1 (properties from α to Z) were
calculated starting from the catalogue properties (from
di to Y0) using the method described in the Appendix.

By defining the filling ratio of the bearing, ζ, the as-
pect ratio of the rollers, λ, and the pitch ratio, δ, as follows

ζ =
Zd

πD
(2)

λ =
L

d
(3)

δ =
d

D
(4)

Equation (1) becomes

C0 = 44 π ζ λD2 (1 − δ cosα) δ cosα (5)

Although the theoretical limits for the positive parame-
ters ζ, λ and δ are ζ ≤ 1, λ ≥ 0 and δ < 1, in practice
the following ranges are generally observed: 0.5 ≤ ζ ≤ 1,
0.5 ≤ λ ≤ 2 and δ ≤ 0.2.

3.2 Static equivalent radial load

Let Frs = 0.5Fr be the radial load on the single bearing
of the system in Figure 2 (remember that Fr is assumed
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Fig. 3. Examples of bearing combinations to which the present theory is applicable: X-arrangement (top); O-arrangement
(bottom); not paired bearings (left); paired bearings (right).

Table 1. Comparison of predicted and catalogue static load ratings for a selection of commercial tapered roller bearings
(INA [31]).

Properties from INA catalogue Derived properties (see Appendix) C0 (kN)
Bearing di do b Y0 α d D L Z INA Eq. (1)

(mm) (mm) (mm) (−) (◦) (mm) (mm) (mm) (−)
30210-A 50 90 17 0.79 15.6 10 70 14.1 20 96 103
30220-A 100 180 29 0.79 15.6 20 140 24.1 20 325 352
30230-A 150 270 38 0.76 16.1 30 210 31.6 20 630 692
30310-A 50 110 23 0.96 12.9 15 80 18.9 15 148 149
30320-A 100 215 39 0.96 12.9 28.75 157.5 32 16 500 519
30330-A 150 320 55 0.96 12.9 42.5 235 45.1 16 1 030 1 084
31310-A 50 110 19 0.4 28.8 15 80 17.3 15 125 126
31320-X 100 215 35 0.4 28.8 28.75 157.5 32 16 480 476
31330-X 150 320 50 0.4 28.8 42.5 235 45.7 16 1 040 1 007
T7FC050 50 105 22 0.38 30.1 13.75 77.5 20.3 16 135 144
T7FC070 70 140 27 0.38 30.1 17.5 105 25 17 237 242
T7FC095 95 180 33 0.38 30.1 21.25 137.5 30.5 19 400 406
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centred between B1 and B2) and Fa the actual axial load
on the most loaded of the two bearings (bearing B1 in
Fig. 2). Following ISO 76 [21], the static equivalent radial
load acting on the most loaded roller bearing of the pair
is

P0 = MAX {Frs; X0Frs + Y0Fa}
= MAX {0.5Fr; 0.5X0 Fr + Y0 Fa} (6)

where
X0 = 0.5 Y0 = 0.22

cosα

sinα
(7)

Equation (6) does not account for narrow load zones (see
Sect. 3.1) and uses a lower limit corresponding to a load
zone of 180 degrees (P0 = Frs). Another implicit assump-
tion behind Equation (6) is the absence of end moments
acting on the shaft at the sections coupled with the bear-
ings, which is consistent with the assumption of rigid
shaft. For a flexible shaft, the radial loads on the two
bearings would not necessarily be the same due to interde-
pendence between radial displacements, tilt rotations and
unequal load zones. Handling of these situations would
necessarily call for the use of in-house tools developed by
bearing manufacturers (e.g. [27]).

For a rigid shaft under the centre radial loading in
Figure 2 and assuming neither end play nor axial preload
on the system, the maximum axial force Fa is given by
the following universally accepted equation [28]

Fa = Ka + 0.5
(

Frs

Y

)
= Ka + 0.25

Fr

Y
(8)

with [28]

Y = 0.4
cosα

sinα
(9)

Using professional tools, it can be shown that an axial
assembly preload equal to Fa/Frs ≈ 1.55 would slightly
improve the load carrying capacity of the bearing sys-
tem with respect to the assumption of no end play. By
contrast, a positive end play (clearance) or the axial dis-
placement induced by the load itself would dramatically
decrease the load zone of the secondary bearing (i.e. the
bearing which does not support directly the external ax-
ial load, B2 in Fig. 2), so that it could become the el-
ement of the pair which experiences the highest contact
stresses. For this reason the end play should always be
strictly controlled and positive values should be avoided
whenever possible.

Using (7)–(9) and introducing the load ratio, k, as

k =
Ka

Fr
(10)

Equation (6) becomes

P0 = Fr MAX
{
0.5; 0.25 + 0.22

(cosα

sinα
k + 0.625

)}
(11)

3.3 Static safety factor

ISO 76 [21] defines the static safety factor, S0, as

S0 =
C0

P0
(12)

By means of (5) and (11), Equation (12) gives

S0 =
ζλD2

Fr

44 π (1 − δ cosα) δ cosα

MAX
{
0.5; 0.25 + 0.22

(
cos α
sin α k + 0.625

)}
(13)

which can be written as:

S0 = φs0 (14)

with

φ =
ζλD2

Fr
(15)

and

s0 =
44 π (1 − δ cosα) δ cosα

MAX
{
0.5; 0.25 + 0.22

(
cos α
sin α k + 0.625

)} (16)

4 Optimization

4.1 Free optimization

Equation (14) shows that the static safety factor, S0,
is proportional to the functions φ and s0. From Equa-
tion (15) we see that, for given radial load Fr, function φ
increases linearly with the filling ratio, ζ, and the aspect
ratio, λ, and goes up quadratically with the pitch diam-
eter, D. Function φ can be regarded as a control factor
through which the safety factor, S0, can easily be made
large at will by increasing the pitch diameter. Similarly,
function s0 in Equation (14) can be interpreted as an in-
trinsic safety factor of the bearing system obtained when
the filling ratio, the aspect ratio, the pitch diameter and
the radial load assume unit value. From Equation (16) we
see that s0 depends non-linearly on α, δ and k as shown
by the three-dimensional charts in Figure 4.

Using s0 as objective function, the free optimization
problem can be stated as follows: Maximize s0 (X̄), sub-
jected to k = const. (=Ka/Fr), with X̄ = (δ, α). Max-
imization of s0 implies minimization of the denominator
and maximization of the numerator in Equation (16). For
any given load ratio k, the denominator of Equation (16)
achieves the absolute minimum value 0.5 when the fol-
lowing condition is met

0.25 + 0.22
(cosα

sinα
k + 0.625

)
= 0.5 (17)

from which the optimum contact angle, α∗ is obtained as:

tan α∗ =
88
45

k ≈ 1.956k (18)
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Fig. 4. Charts of the intrinsic safety factor s0 for a selection of load ratios k.

Letting ξ = δ cosα, the numerator of Equation (16) is
maximum when

d
dξ

[(1 − ξ) ξ] = 0 (19)

giving
ξ = δ cosα = 0.5 (20)

Combination of Equations (18) and (20) yields the opti-
mal pitch ratio δ∗ as

δ∗ =
0.5

cos
{
arctan

(
88
45k

)} (21)

Introducing Equations (18) and (21) into (16) gives the
following absolute maximum value, s∗0, for the intrinsic
safety factor

s∗0 = 22 π ≈ 69.115 (22)

The optimal contact angles and pitch ratios given by
Equations (18) and (21) are collected in Table 2 for the
load ratio k ranging from 0 to 1. Figure 5 depicts the
shape assumed by the optimal bearing for k = 0, k = 0.3
and k = 0.6.
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Fig. 5. Optimal bearings for different load ratios k and constant pitch diameter D when no limits are put to the pitch ratio
δ = d/D.

Table 2. Absolute optimum values of contact angle (α∗) and
pitch ratio (δ∗) for a range of load ratios (k).

k tan α∗ α∗ (◦) δ∗

0 0 0 0.50
0.1 0.196 11.1 0.51
0.2 0.391 21.4 0.54
0.3 0.587 30.4 0.58
0.4 0.782 38.0 0.64
0.5 0.978 44.4 0.70
0.6 1.173 49.6 0.77
0.7 1.389 53.8 0.85
0.8 1.564 57.4 0.93
0.9 1.760 60.4 1.01
1.0 1.956 62.9 1.10

4.2 Constrained optimization

The proportions of the optimal bearings in Figure 5
are too cumbersome, especially for k > 0.3, to be of prac-
tical use. A more fruitful approach is obtained by stating
the optimization problem with a constraint on the pitch
ratio as follows: Maximize s0 (X̄), subjected to δ ≤ δlim

and k = const. (=Ka/Fr), with X̄ = (δ, α). This problem
is plotted for several k in Figure 6, with the contour lines
of s0 drawn as a function of the contact angle, α, and
the pitch ratio, δ. The centre curve mn in Figure 6 corre-
sponds to the global optimum safety factor s0 = s∗0 given
by Equation (22). For any chosen load ratio k, the coor-
dinates of point m in Figure 6 provide the global optimal
values α∗ and δ∗ listed in Table 2.

Figure 6 shows that, for reasonable values of the limit
pitch ratio (i.e. δlim ≤ 0.5), an optimal contact angle,
α∗

δ , always exists, which depends on the limit pitch ratio
itself. Take, for example the chart in Figure 6 for k = 0.4
and assume δ ≤ δlim = 0.3 meaning that only the region
below line ab is feasible. The greatest value of s0 that can
be achieved in that region is obtained by moving on line
ab and sweeping the contact angle from a to b until the
optimum point M is reached. Point M is defined as the
tangent point between ab itself and whichever contour line
occurs to be touching the line ab. The abscissa of point M
gives the optimal value α∗

δ for the contact angle (α∗
δ ≈ 35◦

in this example). The contour line of s0 passing from M
gives the corresponding intrinsic safety factor (s∗0δ ≈ 50
in the example).

This constrained optimization can be performed sys-
tematically once and for all using Equation (16) for any
combination of load ratios k and pitch ratios δ. For given
k and δ, the intrinsic safety factor s0 in Equation (16)
depends only on α and the optimum value α∗

δ is easily
found numerically. Optimal values of α∗

δ and s∗0δ obtained
in this way are reported in Table 3 for load ratios in the
range 0 ≤ k ≤ 1.0 and pitch ratios 0.05 ≤ δ ≤ 0.25 (the
most likely to occur in practice). Optimal bearings for
δlim = 0.2 are shown in Figure 7 for k = 0 (α∗

δ = 0◦),
k = 0.3 (α∗

δ = 30◦) and k = 0.6 (α∗
δ = 38◦). In marked

contrast with the bearings in Figure 6, awkward and
hardly feasible, the designs in Figure 7 are sleek and tech-
nically viable.

The use of Table 3 for the optimal design of tapered
roller bearings is easily performed as clarified by the fol-
lowing example. Assume that the bearing system in Fig-
ure 2 has to be designed for the loads Fr = 600 000 N and
Ka = 180 000 N with a safety factor S0 = 1.5. Calculating
from Equation (10) k = Ka/Fr = 600 000/180 000 = 0.3
and assuming a limit pitch ratio δlim = 0.15, Table 3 gives
the optimal contact angle α∗

δ = 30◦ and the optimal in-
trinsic safety factor s∗0δ = 31.14. From Equation (14) the
value φ∗

δ = S0/s∗0δ = 1.5/31.14 ≈ 0.0482 is calculated,
which, adopting a filling ratio ζ = 0.8 (Eq. (2)) and
an aspect ratio λ = 1.5 (Eq. (3)) and using (15), gives
D∗

δ = (φ∗
δFr/ζλ)0.5 = (0.0482 × 600 000/0.8 × 1.5)0.5 ≈

155 mm. From Equations (4), (3) and (2), the optimal
mean roller diameter, optimal roller length and optimal
number of rollers are finally obtained as d∗δ = δlimD∗

δ =
0.15 × 155 ≈ 23.3 mm, L∗

δ = λd∗δ = 1.5 × 23.3 ≈ 35 mm,
Z∗

δ = πζ D∗
δ/d∗δ = π × 0.8 × 155/23.3 ≈ 17.

5 Discussion

5.1 Review of the results

Table 1 shows that, despite its simplicity, Equation (1)
predicts quite accurately the static load ratings of com-
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Fig. 6. Contour lines of the intrinsic safety factor s0 for a selection of load ratios k.

Fig. 7. Optimal bearings for different load ratios k and limit pitch ratio δlim = 0.2.
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Table 3. Optimum values of contact angle (α∗
δ) and corresponding intrinsic safety factors (s∗0δ) for given load ratios (k) and

limit pitch ratios (δlim).

δlim

0.05 0.1 0.15 0.2 0.25

k α∗
δ (◦) s∗0δ α∗

δ (◦) s∗0δ α∗
δ (◦) s∗0δ α∗

δ (◦) s∗0δ α∗
δ(

◦) s∗0δ

0 0 13.13 0 24.88 0 35.25 0 44.23 0 51.84

0.1 11.0 12.89 11.0 24.44 11 34.67 11.0 43.56 11.0 51.14

0.2 21.5 12.26 21.5 23.33 21.5 33.20 21.5 41.87 21.5 49.35

0.3 29.5 11.41 30.0 21.79 30.0 31.14 30.0 39.45 30.0 46.73

0.4 32.0 10.62 32.5 20.31 33.0 29.07 34.0 36.91 35.0 43.87

0.5 34.0 9.98 34.5 19.09 35.0 27.36 36.0 34.79 37.0 41.41

0.6 35.5 9.43 36.0 18.06 37.0 25.90 38.0 32.98 39.0 39.31

0.7 37.0 8.95 37.5 17.17 38.5 24.65 39.5 31.41 40.5 37.48

0.8 38.5 8.54 39.0 16.38 39.5 23.54 40.5 30.03 41.5 35.87

0.9 39.5 8.17 40.0 15.68 41.0 22.55 41.5 28.80 42.5 34.43

1.0 40.5 7.84 41.0 15.06 42.0 21.67 42.5 27.69 43.5 33.14

mercial tapered roller bearings. Within the wide range of
dimensions and contact angles considered, the maximum
error in Table 1 (see Appendix) is less than 10 per cent
(bearing 3023-A) while the average absolute error is just
above 4 per cent. Errors of the same order of magnitude
were calculated by Dragoni [20] for one standard cylindri-
cal roller bearing for which the internal dimensions were
known exactly, not simply estimated as in Table 1.

For the case of purely radial load (k = 0), Table 2 gives
a global optimum solution with contact angle α∗ = 0 and
pitch ratio δ∗ = 0.5, which means cylindrical rollers of
diameter, d, equal to one half of the pitch diameter, D.
This result coincides with the global optimal proportions
reported by Dragoni [20] for the specific category of ra-
dial cylindrical roller bearings. For increasing axial loads
(k > 0), the global optima for the pitch ratio collected
in Table 2 become more and more unlikely for real-life
applications (see Fig. 5). The reason why the theoretical
optimization tends to these quite odd shapes is perhaps
imputable to the fact that the empirical expression (1)
was developed to fit the experimental behaviour of bear-
ings with pitch ratios much lower than 0.5 as commonly
encountered in practice (for example, the pitch ratios of
the twelve commercial bearings in Tab. 1 range from 0.14
to 0.19).

Table 3, developed to take into account realistic ge-
ometric constraint on δ (δ ≤ δlim = 0.05 . . .0.25), shows
that the optimum contact angle, α∗

δ , depends both on
the load ratio, k, and the limit pitch ratio, δlim. However,
while the effect of the load ratio is strong (with α∗

δ increas-
ing monotonically with k), the dependence on the pitch
ratio is weak (on passing from δlim = 0.05 to δlim = 0.25,
the maximum relative increase of the optimum contact
angle is about 10% and occurs for k = 0.6). For k = 0.3,
the optimal contact angle in Table 3 is about 30◦, which
is the highest contact angle prescribed by the ISO 355
standard [29] and offered by most bearing manufacturers
(see Tab. 1). For load ratios greater than 0.3, the optimal

contact angle exceeds 30◦ and reaches the optimum value
slightly above 40◦ for k = 1. In this range of operation,
special supplies [30] or custom constructions are needed
to achieve the maximum load capacity.

Walker [16] confirms that for low-speed roller bearings
loaded under prevailing axial thrusts, the optimal cone
angle is about 40◦ as predicted by Table 1 for k ≥ 0.8.
Conversely, for k = 0, purely radial load, Table 1 predicts
correctly α∗ = 0◦ and Equation (21) predicts δ∗ = 0.5,
meaning cylindrical rollers with diameter one half of the
pitch diameter. This result coincides with the global op-
timum reported by Dragoni [20] for the specific category
of radial cylindrical roller bearings.

Table 3 also shows that the optimal intrinsic safety
factor, s∗0δ, rapidly increases with the limit pitch ratio,
δlim, and decreases with the load ratio, k. The increase of
s∗0δ with δlim is a consequence of the marked gradient of
the surfaces of s0 in Figure 4 (confirmed by the density
of the contour lines in Fig. 6) for pitch ratios in the range
0 ≤ δ ≤ 0.5. The decrease of s∗0δ with k is due to the fact
that, given the radial force Fr in Figure 2, an increase of
the load ratio k implies a greater total force on the bear-
ing system with respect to the condition of pure radial
loading.

With reference to the numerical example at the end of
the Section Constrained optimization, it is easily verified
that substituting the design data Fr = 600 kN and k =
0.3, together with the optimal results α∗

δ = 30◦, d∗δ =
23 mm, L∗

δ = 34.5 mm, Z∗
δ = 17 for Fr, k, α, d, L and

Z, in Equations (11) and (1), gives P0 = 300 kN and
C0 = 458.8 kN, respectively. These values imply a safety
factor S0 = C0/P0 = 458.8/300 ≈ 1.53, slightly greater
than the design value of 1.5. This small difference is due
to roundoff of the variables involved in the calculations,
especially as regards to the optimum number of rollers Z∗

δ
(the exact value 16.72 was rounded to 17 in the example).
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Table A.1. Relationships between catalogue data (Y0, di, do, b) and internal bearing properties (α, d, D, L, Z).

Internal property Relationship Numerical values Source

α = arctan

(
0.22

Y0

)
− Equation (7)

d = q1 (do − di) q1 = 0.25 Textbook [32]

D = q2 (do + di) q2 = 0.5 Assumption

L = q3
b

cos α
q3 = 0.8 Assumption

Z = q4
(do + di)

d
q4 = 1.45 Textbook [32]

5.2 Limitations of the model and future work

The present optimization is built on the assumption
that the critical bearing of the pair is the one that di-
rectly supports the axial load (B1 in Fig. 2). This is the
natural consequence of using Equation (6) for calculating
the maximum equivalent load on the system. Though this
approach is coherent with the design formulae present in
the manufacturers’ catalogues, it has limitations when the
bearing pair is mounted with end play (axial clearance)
or undergoes large axial deformations under load. A large
axial load induces a large axial displacement which causes
a very narrow load zone in the second bearing (B2 in
Fig. 2, not considered here), hence generating risk of large
roller-race load and pressure. Under these unfavourable
working conditions, the second bearing may thus become
the critical element, which is not optimized here. In this
case, the full answer to the problem cannot be obtained
with the present analytical model and requires numerical
tools considering equilibrium and compatibility (deforma-
tions) of bearings, shaft and housing as a whole.

In practical terms, the optimal design described in
this paper strictly holds true when the bearing system
is assembled with a light preload that would compensate
the axial displacement induced in the secondary bearing
by the externally applied load. This is certainly a limita-
tion, but not a prohibitive one since preloading of tapered
roller bearings is a common procedure for the many ad-
vantages it brings about such as (a) increase of the stiff-
ness, (b) noise reduction, (c) improved rotational preci-
sion, (d) wear compensation, and (e) longer life.

Spurred by the insightful results obtained for the
static loading covered in this paper, the next step of the
research will focus on the optimization of the bearing sys-
tem in Figure 2 for maximum dynamic load-carrying ca-
pacity. In the light of the comments on the sensitivity of
the contact zone emphasized in this section, an effort will
be made to incorporate the effects of the bearing defor-
mation into the optimization procedure.

6 Conclusion

Using the empirical relationships provided by the
ISO 76 standard, the internal dimensions of tapered roller
bearings are optimized for maximum static load capacity.
The bearing system investigated comprises two identical
bearings undergoing whatever combination of radial and
axial forces. Assuming that the radial force is applied at

equal distance from the bearings of the pair and that nei-
ther end play (axial clearance) nor abnormal preloading
affect the assembly, the closed-form optimization process
leads to the following general results:

– the static load capacity increases linearly with the fill-
ing ratio (number of rollers divided by the maximum
number which can fill the bearing) and the aspect ra-
tio (ratio of roller length to mean roller diameter) and
goes up with the square of the pitch diameter of the
roller set;

– given the ratio of axial to radial force, global optima
exist for the contact angle and the pitch ratio (ratio
of roller diameter to pitch diameter) which maximize
the static load capacity;

– the bearing proportions at the global optima are too
sturdy (contact angles greater than 60 degrees, pitch
ratios equal to or greater than 0.5) to be used in prac-
tice;

– if the pitch ratio is constrained to stay below reason-
able limits (≤0.25), an optimal contact angle exists
which maximizes the static load capacity, regardless
of the actual size and proportions of the bearing;

– the results of the optimization are conveniently sum-
marized by a general table and a few simple equations
that can be followed step-by-step to design the opti-
mal bearing that suits any given application;

– the optimization procedure can either be used to de-
sign custom-made bearings (thus exploiting the geo-
metrical freedom to the full) or to pick from the manu-
facturers’ catalogues the bearing with the best contact
angle for any assigned loading.

Appendix: Internal dimensions of tapered
roller bearings

The internal dimensions of rolling bearings are pro-
prietary data which the manufacturers do not provide in
their catalogues. However, starting from the external di-
mensions of the bearings (di, do, b in Fig. 2) and the
static coefficient, Y0, available from the catalogues, the
internal properties (α, d, D, L, Z in Fig. 2) can be calcu-
lated within 10–15 per cent of the true value. Table A.1
shows how the internal properties displayed in Table 1
were obtained step-by-step from the catalogue data using
elementary geometrical considerations and characteristic
proportions available from technical textbooks [32].
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