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Abstract

This paper deals with the problem of a distribution company that has to serve its customers
by putting first the products on pallets and then loading the pallets onto trucks. We approach
the problem by developing and solving integer linear models. We start with basic models, that
include the essential features of the problem, such as respecting the dimensions of the truck, and
not exceeding the total weight capacity and the maximum weigh capacity on each axle. Then,
we add progressively new conditions to consider the weight and volume of pallet bases and to
include other desirable features for the solutions to be useful in practice, such as the position of
the center of gravity and the minimization of the number of pallets.

The models have been tested on a large set of real instances involving up to 46 trucks and
kindly provided to us by a distribution company. The results show that in most cases the
optimal solution can be obtained in small running times. Moreover, when optimality cannot be
proven, the gap is very small, so we obtain high quality solutions for all the instances that we
tested.

Key words: containers; integer programming ; optimization ; cutting stock problem

1 Introduction

Everyday a distribution company has to decide how to put goods onto pallets to serve the customers’
orders and then how to efficiently distribute these pallets among the trucks, in order to get the right
goods to the right place, and in the desired conditions, while minimizing the number of trucks used.
In this paper we will take as a reference a large company in Europe, but the problem is common
to many other distribution companies around the world. Solving the problem in an optimal way
produces a reduction in the transportation costs for the companies, thus increasing the profits and
also decreasing the greenhouse emissions.

The loading problem consists of two, interrelated, phases. All items have to be placed on pallets;
we call this phase pallet building, and all pallets have to be placed onto trucks; we call this phase
truck loading. In the pallet building phase the items are grouped in layers and the layers are stacked
on the pallet base. A layer is an arrangement of items of the same product, composing a rectangle
whose dimensions and number of items are known. A layer completely covers the pallet base in
horizontal directions and other layers can be placed on top of it to make up the pallet. The layer
composition of each product has been previously decided, so we have to stack layers to build pallets.
Once the pallets are built, they have to be placed onto the trucks. In the following, we suppose that
there is an infinite supply of identical trucks.
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The loading problem we deal with is a Multi Container Loading Problem (MCLP). The means
of transport, in this case the use of trucks, introduces some constraints that have to be respected for
safety reasons. One important feature is the weight limit. There is a maximum weight that can be
loaded and this limit cannot be exceeded. There are also limits on the maximum weight each axle
can bear. Indeed, there is not only a limit on the total weight of the cargo, but there are also limits
on the weight that each axle can bear. Excesses over these weight limits represent a risk for traffic
safety and can cause damage to the road. Therefore, they are strictly controlled and the violations
severely punished. Some roads have Weight-In-Motion systems, that monitor axle weight violations
while driving (see, e.g., Jacob and Feypell-de La Beaumelle [15]).Moreover, for safety reasons the
load has to be well spread into the truck to avoid movements during the journey. This means that
the center of gravity has to be placed in between the axles and as near as possible to the geometric
center of the truck.

Unlike the Single Container Loading Problem (SCLP), that has been extensively studied, the
MCLP has attracted less attention so far. In particular, the problem studied here of putting goods
on pallets and pallets onto trucks is quite a new issue in the cutting and packing literature. As far as
we know, just a few previous studies (discussed in the following section) dealt with the MCLP, and
not all of them included real constraints such as total weight, axle weight, and position of the center
of gravity. Even fewer exact algorithms have been proposed, and just for solving some particular
versions of the problem.

For these reasons our proposal is to attempt to solve the problem exactly, in particular by us-
ing Integer Linear Programming (ILP) models. Apart from being rather easy to implement for a
practitioner, ILP models are flexible tools for adding or removing constraints so as to meet the
requirements of the specific MCLP at hand, and in recent years have acquired a very good computa-
tional behavior, as also witnessed by our results below. We model the characteristics of the problem,
starting from a basic model with the main features and then gradually adding new features, one
at a time, introducing in the model real constraints required by the company. The models have
been tested with real instances provided by a distribution center and the results show that optimal
solutions can be obtained in most cases with small computing times. In the cases in which optimality
cannot be proven, the solutions usually have a very small gap, and therefore this approach is able
to obtain high quality solutions for instances with up to 46 trucks. Our results refer to instances
where pallets are loaded onto trucks, but also apply to the loading of containers in general. For that
reason in the remaining of the paper we use the terms truck and container as synonyms.

The remainder of the paper is organized as follows. An overview of related existing research
is presented in Section 2. In Section 3 the problem is formally described. In Section 4 the test
instances are analyzed, and upper and lower bounds for each instance are calculated. In Section 5
we introduce the basic model which includes the main characteristics of the problem, such as not
exceeding the truck dimensions and the maximum weight, and then we add axle weight constraints.
In Section 6 we include the pallet bases, considering one and two pallets per position. We study
additional conditions such as the center of gravity and the minimization of the number of pallets in
Section 7. Section 8 contains the conclusions.

2 Previous work

There are not many papers that address the issues studied here, considering pallet and truck loading
together. Following the typology for cutting and packing problems introduced by Wäscher et al.
[28] the two problems, pallet and truck loading, can be classified as Single Stock Size Cutting Stock
Problems. Morabito et al. [21] deal with the same problem but in two dimensions, because the
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products cannot be stacked. In a first phase, the problem consists in loading the maximum number
of products on a pallet. They solve the problem by using the 5-block algorithm proposed by Morabito
and Morales [20]. When the pallets are built, they use the same approach to load the pallets onto
the trucks. Takahara [26] deals with the problem of loading a set of items on a set containers and
pallets. A loading sequence for the items is chosen and it determines the order in which the items are
inserted into the bins. The sequence is selected by a metaheuristic method based on a neighborhood
search. A selector determines the sequence of the bins. When a bin is selected, the first item is
loaded into the bin, placing it in the first space in which it fits. If the item does not fit into the
bin, the next bin is selected. A strategic procedure determines when to exchange the sequence of
the items with a neighbor sequence and when the choice of the bin is changed from following the
sequence to being randomly chosen, depending on the quality of the solutions.

The SCLP is instead a well-studied problem (see, e.g., Bischoff and Ratcliff [3], Lim et al. [19],
Jin et al. [16], Araujo and Armentano [1], Fanslau and Bortfeldt [10], and Junqueira et al. [17]),
where the real constraints that we are also facing received an increased attention. According to the
survey by Bortfeldt and Wäscher [7], at least 13.9% of the container loading literature deals with
weight limit, while weight distribution is considered by 12.1% of the papers. Gehring and Bortfeldt
[11], Bortfeldt et al. [6], Terno et al. [27], and Egeblad et al. [9] are some of the authors who include
weight limit constraints in their studies. Indeed, when the cargo is heavy, the weight becomes a very
restrictive constraint, more than the volume or the space occupied.

Weight distribution constraints require the weight of the cargo to be spread across the container
floor, to avoid displacements during the journey or to balance the load between truck axles when
the container is transported by truck. To achieve a good weight distribution, the center of gravity
of the load should be in the geometrical mid-point of the container floor, as in Bischoff and Marriott
[2], or should not exceed a certain distance from it, as in Bortfeldt and Gehring [5] and Gehring and
Bortfeldt [11].

Axle weight is a constraint imposed by the means of transport and it has not been widely studied.
Lim et al. [18] deal with a particular SCLP with axle weight constraints. They propose an integrated
heuristic solution approach that combines a GRASP wall-building algorithm with ILP models. They
first apply a customized wall-building heuristic based on the GRASP by Moura and Oliveira [22],
including special considerations for box weight and density. Then they use an integrated approach
to handle the weight requirements. If the container load limit is exceeded, they unload the necessary
number of boxes by iteratively solving an ILP model to meet the requirement. If the axle weight
limit is exceeded, they take two steps iteratively until the limit is satisfied: the first step consists
in interchanging the positions of the walls created by the customized heuristic, whereas the second
step consists in solving an ILP model to unload boxes and in applying one more time the first step
to improve the container balance as well as to force a feasible weight distribution.

Haessler and Talbot [12] describe a heuristic for loading customers’ orders, and developing load
patterns for trucks and rail shipments. The products have low density and for that reason the
approach is based on loading by volume rather than by weight. To deal with axle weight constraints,
stacks are sequenced by alternating the heaviest and lightest stacks.

Weight constraints also appear in recent studies combining loading and routing, such as, e.g.,
Iori et al. [14] and Bortfeldt [4]. Doerner et al. [8] deal with a particular vehicle routing problem
in which the items are placed on pallets and stacked one above the other, producing piles. They
propose two metaheuristic algorithms, a Tabu Search, and an ACO algorithm. A survey on loading
and routing problems is presented by Iori and Martello [13]. A recent work not included in the
survey is the one by Pollaris et al. [25], that combine a capacitated vehicle routing problem with
the loading of homogeneous pallets inside the vehicle. They consider sequence-based pallet loading
and axle weight constraints, and propose a mixed ILP formulation for the problem. Pallets may
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be placed in two rows inside the vehicle but cannot be stacked on top of each other because of
their weight, fragility, or customer preferences. Sequence-based loading is assumed to ensure that,
when arriving at a customer, no items belonging to customers served later on the route block the
removal of the items of the current customer. Their model tries to minimize the transportation cost,
respecting the axle weight constraint along the delivery route.

3 Problem description

The problem we deal with is to supply a costumer, whose demand can be defined as a list of products
j ∈ J , which have to be served completely. Each product has a layer composition with dimensions
(lj , wj , hj), weight qj , and a quantity of demanded layers nj . Unless stated otherwise, layers are
placed on flat bases, called pallet bases in the following, with dimensions (lp, wp, hp) and weight qp,
forming pallets. A pallet is consequently composed of a flat base and a set of layers placed one above
the other.

Figure 1: Dimensions and axles positions of the truck

The pallets are loaded onto trucks, and a set of trucks k = {1, . . . , |K|}, large enough to ac-
commodate all the products, is available. All trucks are identical and we know their dimensions
(L,W,H), the maximum weight they can bear on the front axle, Q1, and on the rear axle, Q2, and
the maximum total weight Q. The distances to the axles from the front part of the truck are δ1 and
δ2. Figure 1 shows a truck with its dimensions and axle distances. The aim of the problem is to
minimize the number of trucks used to load all products.

A consequence of the facts that we are not considering layers bigger than the pallet base, and
that thus all pallets have the same surface dimensions, is that we can place pallets in a fixed number
of positions, i ∈ I, onto the truck. In particular, the dimensions of the truck are (L,W,H), the
dimensions of the pallet (lp, wp, hp), and we consider that we can place

⌊
L
wp

⌋
pallets along the truck’s

length and
⌊
W
lp

⌋
across the truck’s width. Therefore, the number of pallets that can be placed on

the truck’s surface is |I| =
⌊

L
wp

⌋
∗
⌊
W
lp

⌋
. The resulting grid can be seen in Figure 2, that gives a top

view of a truck with some of the positions in which a pallet can be placed. For the usual case of ISO
pallets and containers, the resulting grid is formed by 2× 16 positions. In the following we uniquely
identify the positions on a truck by their middle points (pxi , p

y
i , p

z
i ), i ∈ I, as can be observed again

in Figure 2.
In the most common MCLP configuration, when the pallets are placed onto the truck, the load

cannot exceed the maximum weight Q, and the distribution of the load cannot exceed the maximum
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Figure 2: Pallet positions on the truck floor

axle weights Q1 and Q2. The way in which the pallet weight is supported by the axles follows the
law of levers. The load supported varies in relation with the position of the load on the truck. In
Figure 1, we have divided the truck into three sections. A pallet can be placed in Section A, between
0 and the first axle, or between the two axles, Section B, or beyond the second axle, Section C.
Suppose a pallet i of weight qi is placed in a position i on the truck, defined by its middle point
pxi on the length dimension. Then the force applied on each axle depends on the weight and the
position, in the way shown in Table 1.

Position Force on axle 1 Force on axle 2

Section A 0 ≤ pxi ≤ δ1 qi(δ2 − pxi ) −qi(δ1 − pxi )
Section B δ1 < pxi ≤ δ2 qi(δ2 − pxi ) qi(p

x
i − δ1)

Section C δ2 < pxi ≤ L −qi(pxi − δ2) qi(p
x
i − δ1)

Table 1: Axle forces per section

If the pallet is placed in front of axle 1, the force on axle 1 is positive and the force on axle 2
is negative. If the pallet is placed between the two axles, both forces are positive. If the pallet is
placed behind axle 2 the force on axle 1 is negative and the force on axle 2 is positive. The forces
have to be in equilibrium, not exceeding the maximum force allowed on each axle. For that reason
the sum of all the forces exerted by the pallets from their positions in the truck should be lower than
or equal to the maximum force each axle can withstand, thus satisfying Equations (1) and (2).∑

i∈I

qi(δ2 − pxi ) ≤ Q1(δ2 − δ1) (1)∑
i∈I

qi(p
x
i − δ1) ≤ Q2(δ2 − δ1) (2)

The MCLP that we have just described may be characterized by additional practical loading require-
ments. For the sake of clarity, we postpone the description of these requirements to the respective
sections below in which we also model them as ILP constraints.
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4 A real world benchmark dataset

Our benchmark is made by 111 real instances derived from the everyday distribution activity of
a large company. The instances have been provided to us by ORTEC [23], a company developing
planning and optimization solutions and services for manufacturing and logistics companies.

A first data analysis of the instances can be seen in Table 2. The distribution of the products
ranges between 1 and 142 different types. The demand distribution varies from 241 to 9537 layers.
The histograms of the data distribution by number of products and number of layers are shown in
Figure 3.

Products Layers

Min 1 241
1st Quartile 3 1368
Median 8 1782
3rd Quartile 16.5 2510
Max 142 9537

Table 2: Statistical analysis of the number of products (|J |) and number of layers (
∑

j nj)

(a) by products (b) by layers

Figure 3: Distribution of products and layers

Using these data we can calculate some first lower bounds on the number of trucks required
for each instance, according to weight, volume, and number of positions. The bound based on the
weight is the sum of the weights of all layers divided by the weight capacity of the truck. The bound
based on the volume is calculated in the same way. The bound based on the number of positions is
calculated dividing the sum of the heights of the layers by the the truck height and by the number
of positions in a truck. Table 3 shows the distribution of the minimum number of trucks by weight
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in the first column, by volume in the second, and by positions in the third. The histograms of the
bound distributions are then shown in Figure 4. It can be observed that the bound by positions
dominates the bound by volume.

By weight By volume By positions

Min 3 2 2
1st Quartile 6 3 3
Median 8 4 4
3rd Quartile 11 5 6
Max 41 19 21

Table 3: Statistical analysis on the lower bounds on the number of required trucks

(a) by weight (b) by volume (c) by positions

Figure 4: Distribution of the lower bounds on the number of required trucks

The maximum of these three bounds, Linit, given by Equation (3), is a valid lower bound on the
number of trucks required for each instance for all the problem configurations that we address in
the following sections.

Linit = max


⌈∑

j∈J qj ∗ nj

Q

⌉
,

⌈∑
j∈J lj ∗ wj ∗ hj ∗ nj

L ∗W ∗H

⌉
,


∑

j∈J hj∗nj

H

I


 (3)

We also need an upper bound on the number of trucks, in order to estimate the difficulty of
the instances and limit the number of variables in our ILP models. This upper bound, called Uinit,
is calculated by using a constructive algorithm. This algorithm builds a solution by means of an
iterative process made by two steps. The first step is to select a position in the truck to place the
next pallet. Since the weight has to be balanced between the two axles, we divide the truck into
two parts, front and back, and start the packing process from the center. By placing a pallet each
time on a different side, we can control the balance of the weight. Every time a pallet is placed, the
weight supported by each axle is calculated. If the weight on axle 1 is greater than that on axle 2,
the next space is selected at the back, otherwise it is chosen at the front.

In the second step, a pallet is built taking into account the position in which it will be placed.
The layers of products are ordered by density, with the most dense first. We take the first layer
of the list and check if it is a candidate to compose a pallet. A layer is selected if the weight of
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the pallet, including this layer, does not exceed the maximum allowed weight for this space. The
selected layer is added to the pallet, and the process continues until no more layers can be added
and the pallet can be thus considered completed.

The process continues until all the layers have been placed or no more pallets can be placed on
the truck because one of the basic constraints, limiting the volume, the weight, or the number of
positions, has been reached. If there are still products to be shipped, a new truck is opened and the
process goes on. The resulting solution is valid for the basic packing configuration of the MCLPs
that we study, but the heuristic algorithm has also been adapted to take into consideration some
more complex constraints, as described below in the following sections.

The instances have been classified into four classes according to the difference between these
initial lower and upper bounds (see Table 11 in Annex): class A, when the difference between lower
and upper bound is 0; class B when the difference is 1; class C when the difference is 2, and class
D when the difference is 3 or more. The table shows the number of the instance, the number of
products, the quantity of layers demanded, and the lower and upper bound values. In the next
sections we also study how the difficulty of the instances might change and how the bounds might
be affected by the addition of new loading constraints.

5 Basic MCLP models

The goal of this section is to introduce some first ILP models for the MCLPs. These models do not
solve the complete optimization problem outlined in the previous sections, but focus on the basic
packing issues. They are used to assess the difficulty of the real-world instances that we presented,
and to provide valid lower bounds for the more complex MCLP configurations that we address in the
next sections. In Section 5.1 we provide the basic MCLP model, that only deals with the packing
of the layers intro the minimum number of trucks, whereas in Section 5.2 we include the constraint
that limits the maximum weight on the truck axles (and that is common to almost all real-world
MCLPs). Note that in this section we do not take into account pallet bases, that will be considered
only starting from the next section.

5.1 Pure container packing

Let us consider the version of the MCLP in which we only deal with the packing of the layers into
the minimum number of containers. By introducing the two decision variables

xkij = number of layers of product j packed in position i of container k j ∈ J, i ∈ I, k ∈ K (4)

yk = 1 if container k is used, 0 otherwise k ∈ K (5)

the problem can be modeled as the following ILP:

(pure packing) min
∑
k∈K

yk (6)∑
k∈K

∑
i∈I

xkij ≥ nj j ∈ J (7)∑
j∈J

hjxkij ≤ Hyk k ∈ K, i ∈ I (8)

∑
i∈I

∑
j∈J

qjxkij ≤ Qyk k ∈ K (9)
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yk ≥ yk+1 k ∈ K : k < |K| (10)

xkij ≥ 0, integer k ∈ K, i ∈ I, j ∈ J (11)

yk ∈ {0, 1} k ∈ K (12)

Constraints (7) impose that nj layers are shipped for any product j. Constraints (8) require that
the height of the layers packed in a position does not exceed the container height. Constraints (9)
set the weight limit to Q for each container.

Constraints (10) are not required for the completeness of the model, but reduce the size of the
enumeration tree by forcing containers to be used by increasing order of index. To keep the number
of variables as low as possible, the size of the fleet of trucks is set to |K| = Uinit, i.e., to the upper
bound value computed by the constructive heuristic of Section 4.

Apart from the simple improvements introduced to reduce the size of the enumeration tree and
limit the number of variables, another improvement may be obtained by tightening the right-hand
side of constraints (8) and (9). For what concerns (8), we attempt to reduce the maximum height
allowed for a packing, by considering all combinations of layers heights not exceeding H. If the
maximum attained value, say, H ′, is lower than H, then we can set H = H ′ being sure that no
feasible solution is missed. The value of H ′ may be obtained by solving a subset sum problem (SSP):
given the set J of layers of height hj , find the subset of J whose total height is a maximum but does
exceed H. The SPP can be formally stated by introducing a binary variable ξj taking value 1 if and
only if j is in the selected subset, thus obtaining:

(SSP) max H ′ =
∑
j∈J

hjξj (13)

∑
j∈J

hjξj ≤ H (14)

0 ≤ ξj ≤ nj , integer j ∈ J (15)

The minimum capacity value, say, Q′, that can be used to tighten the right-hand side of (9) may
be obtained by solving an equivalent SSP, in which qj replaces hj in (13) and (14) and Q replaces
H in (14). The values of H ′ and Q′ are then used to replace, respectively, H in (8) and Q in (9).

The ILP model obtained in this way has been solved with CPLEX 12.51, maintaining the default
parameters but imposing the use of a single thread. The test were performed on a PC Inter Core
i3-2100 (3.1Ghz, 4GB), allowing a maximum time limit of 5 CPU minutes per instance. In our
implementation, instead of solving the SSP with the model (13)–(15), we found convenient to use
the dedicated algorithm by Pisinger [24]. Before executing the ILP model we compute Linit and
Uinit, using the algorithms described in Section 4.

The computational results that we obtained are given in Table 4. The top part of the table
gives aggregate information on the model behavior, as each line presents average or total values
obtained for the corresponding class of instances. The bottom part of the table gives details on
the unsolved instances. Apart from the name of the class and the number of instances in the class
(# inst.), the columns in Table 4-(a) have the following meanings: L and U give the average lower
and upper bound returned by the model; missed gives the total number of instances not solved to
proven optimality; gap gives the total absolute gap, that is, the total difference between U and L on
all the instances in the line; nodes gives the average number of nodes explored by the enumeration
tree of the model , and sec the average computational effort in seconds; nodesopt and secopt provide,
respectively, the same information given by nodes and sec but refer only to the instances solved to
proven optimality by the model.
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Table 4: Computational results for the pure packing model

(a) Aggregate results (total/average values)

class # inst. missed gap L U nodes sec nodesopt secopt

A 27 0 0 8.19 8.19 0 0.04 0 0.04
B 53 0 0 8.98 8.98 0 0.07 0 0.07
C 20 0 0 9.20 9.20 49 0.32 49 0.32
D 11 2 2 17.82 18.00 15425 54.65 116 0.52

tot/avg 111 2 2 9.70 9.72 1537 5.51 19 0.14

(b) Details for the unsolved instances

class number |J |
∑

j nj Linit Uinit L U nodes

D 17 25 6248 26 29 26 27 80322
D 106 25 4088 15 21 15 16 88303

Classes A, B, and C are very easy and our approach solves all of them in less than one second
on average. Class D is more challenging. Nine instances are solved to proven optimality using 116
nodes and 0.5 seconds on average, but two instances remain unsolved in the given time limit. The
use of the SPP-based improvement is quite positive, especially in reducing the number of explored
nodes. Indeed nodesopt is about 49 on average when SPP is used, and about 209 on average when it
is not. Details on the two unsolved instances are provided in Table 4-(b). The two instances are very
different one from the other. In instance 17, the weight of the layers is a tight constraint, whereas
their volume is not as important (indeed, for this instance we have L1 = 26, L2 = 8, and L3 = 9).
In instance 106 the volume is instead tighter than the weight (L1 = 11, L2 = 14, and L3 = 15).
The difference between the upper and lower bound is just one bin in both cases, so the gap is very
small. Note that the model is very effective in reducing the initial upper bound. The number of
nodes explored is quite high, about 80.000. Note that we could not find proven optimal solutions on
these two instances even by running the ILP model for 3 CPU hours. This confirms the asymptotic
behavior that is common to ILP applications for NP-hard problems.

5.2 Axle weight constraints

The majority of MCLPs encountered in practice contemplate a maximum weight limit on each axle
of the truck. Following Equations (1) and (2), this restriction my be added to the previous pure
packing ILP model as: ∑

i∈I

∑
j∈J

qjxkij(δ2 − pxi ) ≤ Q1(δ2 − δ1)yk k ∈ K (16)

∑
i∈I

∑
j∈J

qjxkij(p
x
i − δ1) ≤ Q2(δ2 − δ1)yk k ∈ K (17)

Constraint (16) impose that the sum of the angular momenta of the layers on the front axle does
not exceed the available capacity Q1 multiplied by the distance between the axes (δ2 − δ1) (refer to
Figure 1). Constraint (17) impose the same restriction on the back axle of the truck.
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The resulting ILP model is thus to minimize (6), subject to (7)–(17). Following what done for
the pure packing model in the Section 5.1, also in this case we replace H with H ′ and Q with Q′.
The computational results that we obtained with this model are presented in Table 5.

Table 5: Computational results with the inclusion of axle weight constraints

(a) Aggregate results (total/average values)

class # inst. missed gap L U nodes sec nodesopt secopt

A 27 0 0 8.19 8.19 0 0.07 0 0.07
B 53 0 0 9.00 9.00 19 0.19 19 0.19
C 20 1 1 9.20 9.25 13981 15.31 26 0.44
D 11 2 2 17.82 18.00 7931 55.07 128 0.93

tot/avg 111 3 3 9.71 9.74 3314 8.32 24 0.26

(b) Details for the unsolved instances

class number |J |
∑

j nj Linit Uinit L U nodes

C 34 22 1945 5 7 5 6 279117
D 17 25 6248 26 29 26 27 46477
D 106 25 4088 15 21 15 16 39607

The introduction of the axle weight constraints makes the MCLP slightly more difficult, as can
be seen by comparing the results in Table 4 with those of Table 5. The average lower and upper
bound value increase, respectively, from 9.70 to 9.71 and from 9.72 to 9.74. Three instances are
now unsolved to proven optimality: instances 17 and 106 (that were unsolved even by the pure
packing model), and instance 34. In particular, instance 34 had L = U = 5 in the pure packing
case, but L = 5 and U = 6 with axle weight constraints. Notably the gap is just one bin for the
three instances, and the model is effective in reducing the upper bound provided by the initialization
phase.

6 MCLPs with pallets

The most common way of moving items is to first load them on pallet bases, whose dimensions have
thus to be considered when providing packing solutions. In this section we show how to include
pallet bases into the ILP models, by focusing on two cases. In the first case, presented in Section
6.1, we suppose that all layers occupying a position can be packed on a single pallet base, forming
a stack as high as the container. In the second case, presented in Section 6.2, we deal instead with
an additional maximum height constraint, quite common in practice, that forces stacks that are
too high to be packed on two pallet bases, one above the other. As mentioned in Section 3, in our
instances we deal with iso-pallets, whose base occupies exactly one position in the container. In the
following let hp be the pallet base height and qp its weight.

11



6.1 Single pallets

To model the case where a single pallet base is used for a stack of layers in a position, we consider
the ILP model with axle weight constraints of Section 5.2 and introduce the additional variable

zki = 1 if a pallet is packed in position of i of container k, 0 otherwise i ∈ I, k ∈ K (18)

The MCLP with axle weight constraints and single pallets can be modeled as the following ILP.

(single pallets) min
∑
k∈K

yk (19)∑
k∈K

∑
i∈I

xkij ≥ nj j ∈ J (20)∑
j∈J

hjxkij + hpzki ≤ H ′′yk k ∈ K, i ∈ I (21)

∑
i∈I

(qpzki +
∑
j∈J

qjxkij) ≤ Q′′yk k ∈ K (22)

∑
i∈I

(qpzki +
∑
j∈J

qjxkij)(δ2 − pxi ) ≤ Q1(δ2 − δ1)yk k ∈ K (23)

∑
i∈I

(qpzki +
∑
j∈J

qjxkij)(p
x
i − δ1) ≤ Q2(δ2 − δ1)yk k ∈ K (24)

zki ≤
∑
j∈J

xkij k ∈ K, i ∈ I (25)

yk ≥ yk+1 k ∈ K : k < |K| (26)

xkij ≥ 0, integer k ∈ K, i ∈ I, j ∈ J (27)

yk ∈ {0, 1} k ∈ K (28)

zki ∈ {0, 1} k ∈ K, i ∈ I (29)

Constraints (21) generalize (8) by including the height of the pallet base in the maximum height
allowed to each stack. The value of H ′′ has been computed by solving the following SSP: H ′′ =
hp+max{

∑
j∈J hjξj , subject to

∑
j∈J hjξj ≤ (H−hp), 0 ≤ ξj ≤ nj and integer for j ∈ J}. Similarly,

constraints (22) impose the maximum capacity on each container, and use Q′′ = qp+max{
∑

j∈J qjξj ,
subject to

∑
j∈J qjξj ≤ (Q− qp), 0 ≤ ξj ≤ nj and integer for j ∈ J}. The original maximum weight

constraints on the two axles, (16) and (17), have been extended respectively to (23) and (24) so as
to include the weight of the pallet bases. Constraints (25) impose that a pallet is used in a given
position of a container if at least a layer is packed there.

The results obtained by the ILP model (19)–(29) are given in Table 6. As can be noted by
comparison with the results in Table 5, the impact of the pallets on the MCLP is quite relevant.
Considering the instances solved to proven optimality, the average CPU effort increases from about
0.2 seconds to slightly more than a second, and the average number of explored nodes is about
20 times larger. Five instances are unsolved to proven optimality, one in class B and four in class
D. The smallest unsolved instance has just 4 products, but, despite the exploration of more than
300,000 nodes, the difference between lower and upper bound is still of one bin. The gap is one bin
also for the other four instances. For instance 17, the inclusion of the new constraints and variables
has quite a large impact due to the high number of containers used, and indeed the average number
of nodes has decreased to a third of those explored in the case without pallets.
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Table 6: Computational results with the inclusion of single pallets in the packing

(a) Aggregate results (total/average values)

class # inst. missed gap L U nodes sec nodesopt secopt

A 27 0 0 8.19 8.19 0 0.10 0 0.10
B 53 1 1 9.00 9.02 5713 5.87 38 0.28
C 20 0 0 9.25 9.25 2403 3.42 2403 3.42
D 11 4 4 17.91 18.27 36624 111.31 231 3.99

tot/avg 111 5 5 9.73 9.77 6790 14.47 487 1.07

(b) Details for the unsolved instances

class number |J |
∑

j nj Linit Uinit L U nodes

B 60 4 3494 8 9 8 9 300837
D 93 15 2397 7 10 7 8 241866
D 17 25 6248 26 29 26 27 15194
D 95 15 4090 12 16 12 13 105861
D 106 25 4088 15 21 16 17 38327

6.2 Double pallets

An additional constraint imposing a maximum value on the height of the stacks is frequently en-
countered in practice. This derives from the fact that it can be difficult, or even impossible, to
load/unload too high stacks in the containers or store them in the warehouses. A common way to
deal with this constraint, while keeping at the same time dense loadings inside the containers, is to
allow two pallets to be packed one over the other on the same position. In the following let Hmax

be the maximum height imposed on a stack (0 ≤ Hmax ≤ H).
To model the packing of up to two stacks in the same position, we double the set of available

positions in a container. To this aim let I2 = 1, 2, . . . , 2|I| denote the new set of positions, and i+ |I|
be the position right above i, for i ∈ I. We obtain the following ILP model.

(double pallets) min
∑
k∈K

yk (30)∑
k∈K

∑
i∈I2

xkij ≥ nj j ∈ J (31)

∑
i∈I

(hpzki + hpzki+|I| +
∑
j∈J

(hjxkij + hjxki+|I|j)) ≤ H̃yk k ∈ K (32)

∑
i∈I2

(qpzki +
∑
j∈J

qjxkij) ≤ Q′′yk k ∈ K (33)

∑
i∈I2

(qpzki +
∑
j∈J

qjxkij)(δ2 − pxi ) ≤ Q1(δ2 − δ1)yk k ∈ K (34)

∑
i∈I2

(qpzki +
∑
j∈J

qjxkij)(p
x
i − δ1) ≤ Q2(δ2 − δ1)yk k ∈ K (35)
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∑
i∈I2

zki ≤ 2|I|yk k ∈ K (36)

∑
j∈J

hjxkij ≤ Hmaxzki k ∈ K, i ∈ I2 (37)

zki ≤
∑
j∈J

xkij k ∈ K, i ∈ I2 (38)

zk,i+|I| ≤ zki k ∈ K, i ∈ I (39)

yk ≥ yk+1 k ∈ K : k < |K| (40)

xkij ≥ 0, integer k ∈ K, i ∈ I2, j ∈ J (41)

yk ∈ {0, 1} k ∈ K (42)

zki ∈ {0, 1} k ∈ K, i ∈ I2 (43)

Constraints (31), (34), (35), and (38) generalize those of the model for the packing of single
pallets by including the new set of positions. Constraints (32) and (33) impose the maximum height

and weight, respectively, with H̃ = 2hp + max{
∑

j∈J hjξj , subject to
∑

j∈J hjξj ≤ (H − 2hp),
0 ≤ ξj ≤ nj and integer for j ∈ J}, and Q′′ computed as in Section 6.1. The maximum height of
the stack is given by (37). Constraints (39) allow a stack to be packed in a top position only if a
stack has been packed in the corresponding bottom position.

We tested model (30)–(43) with Hmax = H/2. The results are given in Table 7. A proven
optimal solution is not achieved for just four instances out of 111. The average lower bound value
increases from 9.73 for the single pallet packing to 9.81, and similarly the upper bound value varies
from 9.77 to 9.88. The gaps are small on average but quite large for the instances 17 and 106. In
this case the double number of positions, and the consequent increase in the number of constraints
and variables, reduce the number of explored nodes by 3/5 times with respect to the case with single
pallets, and thus the model is not so effective in providing improved lower and upper bound values.
Note that for instance 95 we could find a proven optimal solution using 13 bins with a slightly
changed configuration of the model.

7 Additional problem features

As discussed in the introduction, the MCLPs may be characterized by a great variety of technical
features. In this section we describe two features that are of practical interest and may enrich the
ILP models presented in the previous sections.

7.1 Center of gravity

A good distribution of the load weight inside the container is important to avoid load movements
or unbalanced situations. This is crucial when, for example, the container is lifted to be loaded
on trains or ships, or even more when it is moved on road by a truck that may brake or bend
sharply. Let us define by (Gx, Gy) the desired position of the center of gravity. When the container
is loaded on a truck, the load can be the geometrical center of the truck, or, in general, any position
not exceeding the truck rear axle. We consider a load as feasible if its center of gravity lies in the
x-interval [Gx−τx1 , Gx +τx2 ] and in the y-interval [Gy−τy1 , Gy +τy2 ], where the τ are input tolerance
parameters whose values are imposed by the MCLP at hand.

The computation of the overall center of gravity has to take into account the contribution of the
weight of the empty container, defined Qempty in the following, and of the weights of the loaded

14



Table 7: Computational results with the inclusion of up to two pallets per position

(a) Aggregate results (total/average values)

class # inst. missed gap L U nodes sec nodesopt secopt

A 27 0 0 8.19 8.19 0 0.43 0 0.43
B 53 0 0 9.04 9.04 31 1.72 31 1.72
C 20 1 1 9.35 9.40 754 16.77 1 1.96
D 11 3 7 18.36 19.00 3813 85.02 63 5.70

avg/sum 111 4 8 9.81 9.88 529 12.37 20 1.73

(b) Details for the unsolved instances

class number |J |
∑

j nj Linit Uinit L U nodes

C 37 19 2064 6 8 6 7 15060
D 17 25 6248 26 29 26 29 4900
D 95 15 4090 12 16 13 14 28855
D 106 25 4088 15 21 17 20 7691

items. The sum of these contributions should not exceed the minimum and maximum distances
from the desired position on both axis. This can be modeled in terms of ILP by using the following
constraints.

QemptyGx +
∑
i∈I

∑
j∈J

pxi qjxkij ≤ (
∑
i∈I

∑
j∈J

qjxkij +Qempty)(Gx + τx1 ) k ∈ K (44)

QemptyGx +
∑
i∈I

∑
j∈J

pxi qjxkij ≥ (
∑
i∈I

∑
j∈J

qjxkij +Qempty)(Gx − τx2 ) k ∈ K (45)

QemptyGy +
∑
i∈I

∑
j∈J

pyi qjxkij ≤ (
∑
i∈I

∑
j∈J

qjxkij +Qempty)(Gy + τy1 ) k ∈ K (46)

QemptyGy +
∑
i∈I

∑
j∈J

pyi qjxkij ≥ (
∑
i∈I

∑
j∈J

qjxkij +Qempty)(Gy − τy2 ) k ∈ K (47)

Constraints (44)–(47) may be added to the ILP models of the previous sections when needed.
We decided to computationally test their impact by adding them to model (19)–(29) of Section 6.1
(single pallets), and to model (30)–(43) of Section 6.2 (double pallets). In our tests we set (Gx, Gy)
as the middle point of the truck, τx1 and τx2 equal to the width of one position, τy1 and τy2 equal
to the length of one position, and Qempty = 3500 Kg. We also disregarded the use of the initial
heuristic, because it does not handle the center of gravity restriction.

Table 8 shows the results that we obtained by adding the center of gravity constraints to the
case of single pallets. With respect to the original model, see Table 6, we can notice that two more
instances are now optimally unsolved in class B and one less in class D. The overall gap has increased
consistently, from 5 to 11 containers in total. This is mostly due to instance 106 of class D, whose
final gap is of 6 containers, whereas for the other instances the gap is of just one container. For the
6 unsolved instances, the mathematical model improves the lower bound found in the initialization
phase just once. We can conclude that the inclusion of the center of gravity has a large impact on
the behavior of the single pallet model.
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Table 8: Computational results with single pallet model plus center of gravity

(a) Aggregate results (total/average values)

class # inst. missed gap L U nodes sec nodesopt secopt

A 27 0 0 8.67 8.67 45 0.33 45 0.33
B 53 3 3 9.53 9.58 19568 17.36 12 0.51
C 20 0 0 9.60 9.60 1637 3.91 1637 3.91
D 11 3 8 18.45 19.18 33594 86.16 252 7.12

avg/sum 111 6 11 10.22 10.32 12978 17.61 348 1.62

(b) Details for the unsolved instances

class number |J |
∑

j nj Linit Uinit L U nodes

B 84 8 3278 14 19 14 15 195900
B 60 4 3494 8 10 8 9 449157
B 103 4 3740 11 15 11 12 391446
D 93 15 2397 7 10 7 8 230822
D 95 15 4090 12 16 12 13 93642
D 106 25 4088 15 22 16 22 43054

Table 9 gives instead the results that we obtained for the case of double pallets. The inclusion
of the additional constraints has in this case a lower impact, because the problem was already quite
difficult to solve. We can notice a decrease in both the number of unsolved instances, from 4 to 3,
and in the total gap, from 8 to 7. Some instances remain very difficult, as instance 106 whose gap
is of 5 bins. We finally notice that the behavior of the models depend on the value assumed by the
parameters τ , and allowing larger tolerance may decrease the number of containers required to find
feasible solutions.

7.2 Minimizing the loading/unloading effort

The models presented in the previous sections aim at minimizing the number of containers used
for the loading. However, solutions using the minimum number of containers may have a large
difference in terms of the number of pallets used to load the items. A smaller number of pallets is
obviously preferable, because it can lead to a reduction in the time required for the loading/unloading
operations. The number of pallets can thus be seen as a secondary objective function with respect to
the number of containers. Preliminary tests showed, however, that embedding these two functions
in the same ILP model can lead to very poor computational results. We thus adopted a two-level
approach: we first compute the minimum number of containers, say U , by using one of the above
models, and then we compute the minimum number of pallets by solving a new ILP model in which
the number of containers cannot exceed U .

For the single pallet model of Section 6.1, the second ILP model to be solved consists of

min
∑
i∈I

∑
k∈K

zki, (48)
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Table 9: Computational results with double pallet model plus center of gravity

(a) Aggregate results (total/average values)

class # inst. missed gap L U nodes sec nodesopt secopt

A 27 0 0 8.67 8.67 54 1.36 54 1.36
B 53 1 1 9.55 9.57 3770 10.27 355 4.71
C 20 1 1 9.70 9.75 445 18.08 30 3.48
D 11 1 5 18.91 19.36 2064 73.11 1691 50.49

avg/sum 111 3 7 10.29 10.35 2098 15.74 346 7.90

(b) Details for the unsolved instances

class number |J |
∑

j nj Linit Uinit L U nodes

B 103 4 3740 11 15 11 12 181315
C 37 19 2064 6 8 6 7 8332
D 106 25 4088 15 22 17 22 5791

subject to (20)–(29) and ∑
k∈K

yk ≤ U (49)

Similarly, the minimization of the loading/unloading effort for the double pallets model of Section
6.2 requires to minimize

∑
i∈I2

∑
k∈K zki, subject to (31)–(43) and (49).

The results obtained by running the additional ILP models are presented in Table 10. The
original models for the single and double pallets cases have been run for 300 seconds as before.
Then the additional ILPs have been run for 300 seconds more. Apart from the name of the class
and the number of instances, the leftmost columns of the table give some details of the original
solutions found when minimizing the number of containers. Namely, L and U give, respectively,
the average lower and upper bound values on the number of containers (also refer to Table 6), and
U0
pallets the average number of pallets used. The rightmost columns give the results of the additional

ILP model. Namely, Lpallets and Upallets give the lower and upper bound values on the minimum
number of pallets, %diff the percentage difference with respect to the original solutions, computed
as 100(U0

pallets−Upallets)/U
0
pallets, # opt is the number of instances solved to proven optimality, and

nodes and sec give, respectively, the average number of nodes and seconds elapsed. The top part of
the table refers to the single pallet model, and the bottom part to the double pallets one.

For the single pallet case, it can be noticed that the original solutions use about 17.5 pallets
per container (between 15 and 17 pallets on average for the easy instances of Classes A and B, and
between 19 and and 21.5 on average for the instances of Classes C and D). The second ILP model
imposes a relevant burden to the solver, because only 60 out of 111 instances are optimally solved.
However, it is very effective in reducing the number of used pallets, which is decreased by 10% on
average, leading to only 16 pallets on average per container. Considering the overall set of instances,
this amounts to a reduction of from 18929 to 17367 pallets, i.e., more than 1500 pallets. An example
of this optimization process is depicted in Figure 5, where the same container load is shown before
and after the pallets minimization. The load on the left contains some pallets of short height, formed
by just a few layers. The load on the right is characterized instead by a smaller number of very high
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Table 10: Minimization of the unloading effort

(a) The case of single pallets

Original model Minimize unloading effort

class # inst. L U U init
pallets Lpallets Upallets %diff # opt nodes sec

A 27 8.19 8.19 138.15 112.19 112.96 20% 17 197980 223.78
B 53 9.00 9.02 139.11 126.17 127.32 9% 28 337159 287.46
C 20 9.25 9.25 197.95 174.35 192.75 3% 11 79579 237.07
D 11 17.91 18.27 351.55 245.73 337.64 4% 4 48299 270.50

avg/sum 111 9.73 9.77 170.53 143.30 156.46 10% 60 228268 261.21

(b) The case of double pallets

Original model Minimize unloading effort

class # inst. L U U init
pallets Lpallets Upallets %diff opt nodes sec

A 27 8.19 8.19 273.15 209.63 211.74 24% 15 112735 270.64
B 53 9.04 9.04 287.66 229.89 248.60 16% 35 52031 204.38
C 20 9.35 9.40 429.00 367.55 388.15 10% 13 50498 226.87
D 11 18.36 19.00 741.73 657.64 673.18 8% 5 19458 291.02

avg/sum 111 9.81 9.88 354.59 292.15 306.86 16% 68 63293 233.14

pallets. Note that both loads have empty positions and pallets spread evenly on the surface. This is
a typical configuration that arises to satisfy maximum weight capacity and axle weight restrictions
when the loaded products are heavy.

For the double pallets case the reduction is even more evident. The original solutions use about 36
pallets per containers, whereas the solutions optimized for the loading/unloading effort only 31. This
amounts to a percentage reduction of about 16%, and the total number of used pallets passes from
39360 to 34061 pallets, i.e., more than 5000 pallets are saved. Further improved solutions are likely
to be found, as can be noticed by the remaining gap between the values of Upallets and Lpallets, but
still we can conclude that the proposed ILP models are effective in reducing the loading/unloading
effort.

(a) Solution of the single pallet model (b) Solution after minimization of the number of pallets

Figure 5: Same container load before and after the minimization of the number of pallets
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8 Conclusions

Container loading problems are an important class of optimization problems that model several real-
world situations. The literature has largely studied the case of a single container loading, whereas
in this paper we focus on the less treated case of multi container loading. The aim is to minimize
the number of containers used to transport from a single origin to a single destination a set of items
that have been previously packed in layers. We decided to pursue optimization by the use of simple,
yet effective, Integer Linear Programming models.

The problem definition depends from the real-world loading situation at hand. Here we studied
the real-world optimization problem that derives from the everyday activity of ORTEC [23], one of
the largest European providers of logistics planning and optimization services. The problem is very
complex, so we decided to proceed in an analytical way, starting from the basic loading issues and
then adding new constraints, and/or secondary objective functions, one at a time. In this way we
gained several insights in the difficulty of this class of problems.

The original test set of 111 instances was first solved as a basic packing model, then with the
addition of axle-weight constraints, of pallet bases in two loading configurations, and of center of
gravity constraints on top of the pallet bases configurations. Out of the 666 instances addressed in
these tests, 643 were solved to proven optimality in less than 5 minutes on a standard PC. For the
23 unsolved instances, the gap between the obtained upper and lower bound values was higher than
one container in just four cases (one for instance 17 and three for instance 106). Additional tests
were also performed to minimize the number of pallets used, showing that high gains can be achieved
with limited computational efforts. We can conclude that the proposed Integer Linear Programming
models are practical, effective, and flexible tools for handling multi container loading problems.
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