AMERICAN OPTION PRICING WITH IMPRECISE RISK-NEUTRAL
PROBABILITIES:
FROM PLAIN INTERVALS TO FUZZY SETS
S. Muzzioli, H. Reynaerts

1 INTRODUCTION

The aim of this paper is to price an American style option when there is
uncertainty on the volatility of the underlying asset. An option contract can
be either European or American style depending on whether the exercise is
possible only at or also before the expiry date. A European option gives the
holder the right to buy or sell the underlying asset only at the expiry date
of the option. On the other hand, an American option gives the holder the
right to buy or sell the underlying asset at any time up to the expiry date.
Therefore, in American option pricing, the likelihood of the early exercise
should be carefully taken into account. American option valuation is usually
performed, under the risk-neutral valuation paradigm, by using numerical
procedures such as the binomial option pricing model of Cox, Ross, Rubin-
stein (1979). A key input of the multiperiod binomial model is the volatility
of the underlying asset, that is an unobservable parameter.

The volatility parameter can be estimated either from historical data (his-
torical volatility) or implied from the price of European options (implied
volatility). In the first case, the lenght of the time series, the frequency and
the estimation methodology may lead to different estimates. In the second
case, as options differ in strike price, time to expiration and option type (call
or put), which option class yields implied volatilities that are most represen-
tative of the markets’ volatility expectations, is still an open debate. Various
papers have examined the predictive power of implied volatility extracted
from different option classes. Christensen and Prabhala (1998) examine the
relation between implied and realized volatility on SP&100 options. They
found that at the money calls are good predictors of future realized volatil-
ity. Christensen and Strunk (2002) consider the relation between implied
and realized volatility on the S&P100 options. They suggest to compute im-
plied volatility as a weighted average of implied volatilities from both in the
money and out of the money options and both puts and calls. Ederington
and Guan (2005) examine how the information in implied volatility differs
by strike price for options on S&P500 futures. They suggest to use implied
volatilities obtained from high strike options (out of the money calls and in
the money puts) since the information content in implied volatilities varies
roughly in a mirror image of the implied volatility smile.
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Several ways have been proposed to introduce non-constant volatility in an
option pricing model. One way is to make the volatility deterministically de-
pendent on strike price and time (see e.g. Dupire (1994), Derman and Kani
(1994), Rubinstein (1994)). An other way is to consider stochastic volatility
(see e.g. Hull and White (1987)).

In this paper we follow a different approach. As it is hard to precisely es-
timate the volatility parameter, we let it take interval values. When using
plain intervals, cautiousness may lead to a severe overestimation of the inter-
val width. Therefore, if some expert judgment is available about the actual
value of the parameters, it is possible to assign a greater degree of member-
ship to some values within the interval. A more optimistic expert can choose
a smaller interval, while a more cautious expert will prefer a larger one. Also
the same expert can give different possibility degrees to some values within
the interval. If the knowledge is more precise, a nested set of subintervals,
with increasing degree of membership, within which one or more values have
membership equal to one, i.e. a fuzzy number can be found (for a detailed
discussion on the relation between nested intervals and fuzzy sets and a deep
discussion on the pooling of experts’ opinions see e.g. Nguyen and Kreinovich
(1996)).

Fuzzy numbers combine qualitative and quantitative assesments in a sin-
gle tool that is able to handle uncertainty. They provide us with a simple
framework that is intuitively appealing and computationally simple. Fuzzy
numbers and possibility distributions can be considered as two faces of the
same coin since they have a common mathematical expression and possibility
distributions can be manipulated by the combination rules of fuzzy numbers
(for more details see Dubois and Prade (1980, 1988)). Therefore in the fol-
lowing we will use the two terms as synonims, keeping in mind that, even if
they have a common mathematical expression, the underlying concepts are
different: while a fuzzy number can be seen as a fuzzy value that we assign
to a variable, viewed as a possibility distribution, the fuzzy number is the
set of non fuzzy values that can possibly be assigned to a variable.

Recent literature on option pricing in the presence of uncertainty has mixed
probability with fuzziness. Probability is used to model the uncertainty of an
event that can occur or not, while fuzziness is used to model the imprecision
on a value. Fuzzy European option pricing has been examined in continuous
time by Yoshida (2003a) and Wu (2004) and in discrete time by Muzzioli
and Torricelli (2004). Fuzzy American option pricing has been examined
both in discrete and continuous time by Yoshida (2003b). Yoshida (2003b)
has addressed the issue by using fuzzy random variables and fuzzy expec-
tation based on the decision maker‘s subjective judgement. The approach
hinges on a symplifying assumption on the evolution of the fuzzy stochastic



process. In particular it assumes that the amount of fuzziness is constant
through time and symmetrical w.r.t. the crisp stochastic process. By con-
trast, in this paper, we drop this assumption. By following the approach
of Muzzioli and Torricelli (2004), we let the fuzziness amount decrease as
time goes by and allow it to be non symmetrical w.r.t. the crisp stochastic
process. Starting from the Cox Ross Rubinstein (1979) binomial model in
which the option has a well known valuation formula, we investigate which
is the effect on the option price of assuming the volatility as an uncertain
parameter. In the binomial model of Cox Ross and Rubinstein (1979) the
volatility is modelled by two jump factors, up and down, that describe the
possible moves of the underlying asset in the next time period. In this paper
we use fuzzy numbers in order to model the two jump factors. Three cases
are examined. Since a fuzzy number can be considered as a nested set of
subintervals, with increasing degree of membership, as a first step we study
the case in which the up and down jump factors are modelled by plain in-
tervals. Then we tackle the case in which the up and down jump factors are
modelled by triangular or trapezoidal fuzzy numbers. In order to compute
the option price we first show how to derive the risk-neutral probabilities,
i.e. the probabilities of an up and a down move of the underlying asset in the
next time period in a risk-neutral world. The existence of the risk-neutral
probabilities is guaranteed by the no arbitrage condition. The risk-neutral
probabilities derivation is a fundamental problem in finance since they are
necessary for the pricing of any derivative security. The problem boils down
to the solution of a linear system of equations with interval or fuzzy coeffi-
cients, depending on the case analyzed. Once the risk-neutral probabilities
are derived, they are used in the option valuation.

The plan of the paper is the following: In section 2 we present the Cox
Ross Rubinstein binary tree model for the pricing of American put options.
Section 3 illustrates the case in which plain intervals are used in order to
model the up and down jump factors. Sections 4 and 5 illustrate the case
in which triangular and trapezoidal fuzzy numbers respectively are used. In
particular, in section 4 a comparison between the Yoshida (2003b) approach
is provided. The last section concludes.



2 THE BINARY TREE MODEL FOR THE
PRICING OF AN AMERICAN PUT OP-
TION

The binary tree model of Cox et al. (1979) is used to price options and other
derivative securities. As the price of an American call option written on a
non dividend paying stock is the same of that of a Furopean call option, in
this paper we analyse the only interesting case of a put option. An American
put option is a financial security that provides its holder, in exchange for
the payment of a premium, the right but not the obligation to sell a certain
underlying asset before or at the expiration date for a specified price K. In
the binary tree model of Cox et al. (1979) the following assumptions are made:
(A1) the markets have no transaction costs, no taxes, no restrictions on short
sales, and assets are infinitely divisible; (A2) the lifetime 7" of the option is
divided into N time steps of length 7'/N; (A3) the market is complete; (A4)
no arbitrage opportunities are allowed, which implies for the risk-free interest
factor, 1 + r, over one step of length T'/N, that d < 1+ r < u, where u is
the up and d the down factor. In order to price the American put option,
the American algorithm is applied (see for example S. Shreve (2004)):
Define the functions v,(s),n = N, N —1,...,0 as follows

un(s) = (K —$)q, s = Sou'd™ 7, i=0,1,...N,
1
Un(s) = max{K -5, m(puvn-&-l (US) + PaVn+1 (dS))},
n = N—1,N—-2,...,0 s = Sou'd"™", 1=0,1,...n,

where K is the exercise price, Sy is the price of the underlying asset at time
the contract begins, p, and p, are the resp. up and down risk-neutral transi-
tion probabilities. Fundamental for the option valuation is the derivation of
the risk-neutral probabilities, which are obtained from the following system:
Du + Pd = 1

{ (1)

up, +dpg =1+

The solution is given by:
(1+7r)—d u—(1+r)
=

u—d u—d
In order to estimate the up and down jump factors from market data, the
standard methodology (see Cox et al. (1979)) leads to set:

u = eU\/T/N’d _ e—JN/T/N’

Pu =
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Figure 1: Price for the wunderlying asset.

where o is the volatility of the underlying asset.

Numerical example

Consider the two-period model where Sy = 30, K = 35, u = 2, d = .50 and
r = .02.

The up and down probabilities are: p, = .3467 and p; = .6633.

The binomial tree for the price of the underlying asset is illustrated in Figure
1. By applying the American algorithm one obtains the American put option
prices reported in Figure 2, as follows:

v5(120) = (35 — 120), = 0

v2(30) = (35 = 30)+ =5
vs(7.50) = (35 — 7.50), = 27.50
’U1(60) =
maz {35 — 60, = [0.346705(60 = 2) + 0.65330(60  50)]} = 3.2025
’U1(15) =
max{35 — 15, ' Too ——[0.3467v9(15 * 2) + 0.6533v5(15 * .50)]} = 20
’UQ(30) =
maz{35 — 30, ——[0.3467v1 (30 * 2) + 0.653301 (30 * .50)]} = 13.8989.

"1.02
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Figure 2: American put option prices.

3 THE CASE OF PLAIN INTERVALS

If there is some uncertainty about the value of the volatility, then it is also
impossible to precisely estimate the up and down factors. In this section
we examine the case in which the information about the up and down jump
factors is so vague that we can only fix a lower and an upper bound for the
possible values, i.e. u and d are represented by the real intervals u = [uy, us]
and d = [dy, ds]. A real interval x is defined as the set of real numbers such
that o = [2,7] = {# € R" : z < & < T}, where z and T are respectively the
lower and the upper bound of the interval.

Basic operations on intervals are defined in Moore (1966). Assumptions
(A1), (A2) and (A3) are still valid, while assumption (A4) changes as follows:
d2 <l4+r<u.

In this setting system (1) is an interval linear system of the form:

Az =10 (1)

where the elements, a;;, i = 1,2 j = 1,2 of the matrix A are intervals and
the elements, b;, of the vector b are crisp. An interval matrix A,, ,, is defined

as: A = [A,A] = {A e R . A < A < A}. Note that condition (A4)
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guarantees that the resulting interval matrix:

Ldlaldﬂ [U1,1u2]]

has always full rank for all d € [d, dy] and for all u € [uy, us).

There is no uncertainty in the risk-free rate of interest, since it is given at
time zero.

The solution of the interval system is found by looking to the united solution
set (USS)(see e.g. Kearfott (1996), Muzzioli and Reynaerts (2006a)). The
USS looks for the set of all real vectors x that fulfil the set of equations
Az = 6, where A € A, is a real matrix contained in the interval matrix A
and vector b € b, is a real vector contained in the right-hand side vector b:

Xaz={#eR": (34 c AP cb)At =b} = {# € R": At Nb+# 0}

The USS looks at all the possible combinations between a real matrix AeA
and a real right-hand side vector beb.

Usually the interval vector formed by the bounds on the coordinates of the
USS is considered, this is called the solution hull:

hull(X=53) = [inf X3, supX33]

In order to compute the solution hull, it is useful to define the vertex solution
set.

The vertex solution set (VSS) is the set of solutions # € R" of all real
systems of equations, whose coefficients are all the possible combinations of
the endpoints of the coefficients of the interval matrix A and of the interval
vector b.

Xy = {4 e R" | IE € vert(A),3é € vert(b) | s.t.Ei = ¢}
where vert(A) = {A € A| 4 € {a; ;, @ 5}, vert(b) = {beb|b e {bb}

The VSS is a discrete and finite set, whose number of elements ¢ < gni+n
depends on how many parameters in the matrix A and in the vector b are
intervals.

As hull(X33) = hull(Xy), we can compute the hull of the USS by solving a
set of t < 271" real systems Azx = b, where the coefficients are all the possible
combinations of the endpoints of the coefficients of the interval matrix A and
of the interval vector b.

By following this procedure, we compute the solution of the interval linear
system, as follows:

(14r)—dy (1+71)—d;

Y

u—(1+7) ug—(1+47r)

Y

l

pu=| ), pa =

Uy — da u; —dg u; —dp Uy — do



In order to get the price of the American put option, the American algorithm
should now be applied. Define the functions v,(s),n = N,N —1,...,0 as
follows

UN(S) = (K - S)-HS = [SOUZ‘ldJIV_Z‘a SOUZQdéV_Z]’Z = 07 17 ce N;

vn(s) = mar{K — s, = (Putns1 (us) + pavasa (ds))},

n=N-1,N-2,...,0

where

(14+r)—dy (1+7)—d;

Y

u— (1+7) ug—(1+7)
ul—dl ’ U,Q—dg

]

pu=| l,pa =

Ug — da up —dp

and the maximum between two intervals f = [f1, fo] and g = [g1, g2 is defined
as:

max(f,g) = [max(fi, g1), max(fs, g2)],

In order to get the put price, we use the standard rules of addition and mul-
tiplication between intervals, as defined in Moore (1966).

Numerical example

Consider the two-period model where Sy = 30, K = 35, u = [1.50;3],

d = [.35;.60] and r = .02.

The the up and down probabilities are: p, = [.1750;.5826] and pg = [.4174; .8250)].
The binomial tree for the price of the underlying asset is illustrated in Figure

3. By applying the American algorithm one obtains the American put option
prices reported in Figure 4, as follows:

v9(S5") = max{(35 — [67.5;270]),0} =0

2(S4) = max{(35 — [15.75;54]),0} = [0;19.25]
(
(

<

5(S9%) = maz{(35 — [3.675;10.8]),0} = [24.2; 31.33]
v1(S}) = max{35 — [45;90],

1
m([.mo; 5826] vy (S¥) + [.4174; .8250]v5(S4))}
= [0;15.57]

=



[67.5,270]
uu
Sy

[45,90]

Figure 3: Price for the wunderlying asset.

vz (55™)

v2(S9")

24.2,31.33]

02(55“)

Figure 4: American put option prices.



v1(SY) = max{35 — [10.5; 18],

1—22([.1750; 5826] vy (S54) + [.4174; .8250]v5(S4%))}

= [17; 36.33]
v0(30) = maz{35 — 30,

1
TOQ([.1750; .5826]v1 (S¥) + [.4174; .8250]v1 (SI))},

= [6.96; 38.28]

4 THE CASE OF TRIANGULAR FUZZY
NUMBERS

In this section we assume that the information about the possible values of
the jump factors can be described by means of a nested set of intervals within
which a most possible value can be found. In order to introduce the notion of
a triangular fuzzy number, some basic concepts about fuzzy sets have to be
recalled. A fuzzy set F of R is a subset of R, where the membership function
of each element x € R, denoted by pgr(z), is allowed to take any value in
the closed interval [0,1]. pp(z) = 0 indicates no membership, up(x) = 1
indicates full membership: the closer the value of the membership function
is to 1, the more x belongs to F'.

A fuzzy number N is a normal (i.e. at least one value = has full membership)
and convex (the membership function should not have distinct local maxi-
mal points) fuzzy set of R. Fuzzy numbers can be considered as possibility
distributions (see e.g. Dubois and Prade, 1988): let a fuzzy number A € N
and a real number x € R, then ps(z) can be interpreted as the degree of
possibility of the statement "z is A”.

A triangular fuzzy number f is uniquely defined by the triplet (fi, fa, f3)
where f; and f3 are the lower and the upper bounds of the interval of possi-
ble values and f is the most possible. The membership function ps)(z) =0
outside (f1, f3), and pp)(z) = 1 at © = f, the graph of the membership
function is a straight line from (f1,0) to (fa,1) and from ((f2, 1) to (f3,0)).
Alternatively, one can write a triangular fuzzy number in terms of its a-cuts,
f(a), ain [0,1]:

fla) = [f(a), f(a)]
= [i+alfe— ), fs—alfs = f)]
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For simplicity of the notations the a-cuts will also be noted by [f, f]. Since
the a-cuts of a triangular fuzzy number are compact intervals of the set of
real numbers, the interval calculus of Moore (1966) can be applied on them.
The up and down factors are represented by the triangular fuzzy numbers:
u = (uy,ug,u3) and d = (dy,ds,ds). Assumptions (Al), (A2) and (A3) are
still valid, while assumption (A4) changes as follows: d; < dy < ds < 1+r <
up < ug < us.

There is no fuzziness in the risk-free rate of interest, since it is given at time
Zero.

In this setting system (1) is a fuzzy linear system of the form:
Az =b (-24)

where some of the elements, a;j, ¢ = 1,2 7 = 1,2 of the matrix A are
triangular fuzzy numbers and the elements, b;, of the vector b are crisp. Note
that the no arbitrage condition guarantees that the resulting fuzzy matrix:

1 1
(d17d2, dg) (Ul,u2,u3)

has always full rank for all d € [dy, ds] and for all u € [uy, us).

As a fuzzy number can be considered as a set of nested intervals with mem-
bership greater than an increasing threshold, interval linear systems can be
considered as a special case of fuzzy linear systems.

In order to investigate the solution of such a system, we use the concept of
vector solution given in Buckley and Qu (1991), that is obtained by looking
at the USS for each alpha-cut. In Muzzioli and Reynaerts (2006b) we pro-
posed the following non linear programming problem in order to compute
the vector solution of system (2):

14+r—d
u—d
where (14+r<)u<u<u
and d<d<d(<1+7)

mat,q (resp.mingq)

u—(147r)
u—d
where (1+r<)u<u<u
and d<d<d(<1+7)

MaTy, q(TeSP.MiNy, q)

. % _d—(1+r)
Since F* = (od)?

minimum for ™"

< 0 the maximum of p, is obtained for ©«™** = u and the

=u.
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Since %pg = % < 0 the maximum of p, is obtained for d™** = d and the
minimum for d™" = d.
Since %p 4 — % > ( the maximum of p, is obtained for u™** = u and the

minimum for ™"

Opg _ u—(1+r)
Since G = a

minimum for ™" =d
The solution to the system is:

(1+7)—d (1+T)—d] _[(g—(l—l—r) (ﬂ—(l—i—r)]
i-d = w-d MU u-d T a-4
In order to get the price of the American put option, the American algorithm

should now be applied. The functions v,(s),n = N, N —1,...,0 are defined
as:

> (0 the maximum of py is obtained for d™** = d and the

pu:[

on(s) = (K —s).,s= Sl @|[d" ", d" ,i=0,1,...N,

va(s) = mar{K — s, f?(puvnﬂ(us) + pavni1(ds))},
n=N-1,N—-2....0
with
Py = [(Q_L—(l—i-r)’(ﬂ—_(lj-T)]
u—d u—d
S B NS R

maz(f,g)(@) = [maz(f(a), g(er), maz(f(e), gla)], a € [0, 1].

For simple and fast computation between fuzzy numbers a restriction to
triangular shaped fuzzy numbers is often preferable. Therefore we use the
following approximations, let A = (a1,as,a3) and B = (by,bs,b3) be two
triangular fuzzy numbers and ¢ € R a crisp number:
AOB = (a1 ~b1,a2 'bg,ag'bg),

max(A, B) = (max(ai,by), maz(ag,by), max(as,bs))

mazx(A,c) = (max(ay,c), max(ay,c), maz(ag,c))
The risk-neutral probabilities are approximated by the following triangular
numbers:
1—|—T—d3 1—|—T—d2 1+7"—d1

P = | —dy T up—dy T uy—dy )
—(14+7) ug—(14+r) ug—(1+r)
Pa = ( ) ) 7)
—d1 u2_d2 U3_d3
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[67.5,120,270]

uw
S

5.75,30,54]
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3.68,7.50,10.8]

dd
55

Figure 5: Price for the wunderlying asset.

Numerical example
Consider the two-period model where Sy = 30, K = 35, u = [1.50;2;3],
d = [.35;.50;.60] and r = .02.
The up and down probabilities are: p, = [.1750;.3467;.5826] and p; =
[.4174; .6633;.8250].
The binomial tree for the price of the underlying asset is illustrated in Figure
5. By applying the American algorithm one obtains the American put option
prices reported in Figure 6, as follows:
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(6.96,13.90,38.28 0,5,19.25]

4.2,27,50,31.33]

(544

Figure 6: American put option prices.

v9(S5™) = max{(35 — [67.5;120;270]),0} =0

v2(S5%) = max{(35 — [15.75; 30; 54]),0} = [0; 5; 19.25]

v2(S9) = max{(35 — [3.675;7.50;10.8]), 0} = [24.2;27.50; 31.325]}
v1(S}) = max{35 — [45; 60; 90],

1
T ([-1750:.3467: .5826]ua(S5") + [4174; 65333 8250]us(53))}

= [0; 3.2025; 15.5699]
v1(S%) = max{35 — [10.5; 15; 18],
1
m([.1750; .3467; .5826]vy(S5) 4 [.4174; .65333; .8250]w5(S9%))}
= [17;20; 36.3315]
v0(30) = maz{35 — 30,
1
m([.1750; .3467; .5826]v1 (SY) + [.4174; .65333; .8250]1)1(8‘11))}
= [6.96; 13.90; 38.28]
In order to underline the difference between the present approach and the one
taken in Yoshida (2003b) we note the following. Yoshida (2003b) considers

a fuzzy-valued stock price whereby the fuzziness amount is described by a
constant 0 < ¢ < 1 that represents the decision maker subjective estimate of
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the volatility o. The initial stock price Sy is multiplied by the fuzzy factor
b=[0b",b"]=[1-(1—-a)cl+(1—a),ac0,1] and the up and down
jump factors u and d are crisp. The fuzzy factor b is a triangular shaped
fuzzy number with symmetrical spreads.

The present approach differs from Yoshida (2003b), in at least two aspects.
First the triangular fuzzy numbers used are not restricted to be symmetrical
as in Yoshida (2003b), but the left and right spread can have different lenght.
This is an important feature to better capture the information on the volatil-
ity. For example the decision maker can be rather sure about the amount
the stock will gain in case it will increase, but she can be rather uncertain
about the amount the stock will loose in case it will decrease. Moreover the
decision maker can have a more optimistic (pessimistic) view on the single
jump factor, that can be modelled by a longer (shorter) right spread and a
shorter (longer) left spread. Second it clearly illustrates how the assumption
on fuzzy up and down jump factors changes the no arbitrage condition and
in turn affects the risk-neutral probabilities derivation. In fact, in Yoshida
(2003b) the fuzzy factor does not affect the no arbitrage condition and in turn
the risk-neutral probabilities derivation. Besides, we notice that in Yoshida
(2003b) the following condition should be verified in order to ensure no ar-
bitrage: dbT < 1+r <wub™,ie. d(1+4+ (1 —a)e) <l+r <u(l—(1—a)e),
therefore the decision maker is not allowed to choose any value of 0 < ¢ < 1,
but the interval of possible values should be restricted by the no arbitrage
condition. Moreover, the risk-neutral probabilities shoud be accordingly de-
rived, in order to take into account the fuzziness in the model. They can be
easily obtained as a special case of our model when u and d are symmetrical
triangular fuzzy numbers.

5 THE CASE OF TRAPEZOIDAL FUZZY
NUMBERS

In this section we assume that the information about the possible values of
the jump factors can be described by means of a nested set of intervals within
which a most possible interval can be found. A trapezoidal fuzzy number is
used to describe an interval whose lower and upper bounds are uncertain. A
trapezoidal fuzzy number f is uniquely defined by the quartet (f1, fa, f3, f1)
where f; and f; are the lower and the upper bounds of the interval of possible
values and [fs, f3] is interval of the most possible values. A trapezoidal fuzzy
number may be seen as the representation of the statement ”the value of
a real variable is approximately in the interval [fi, f4]”. The membership

15



function ppy(x) = 0 outside (f1, f1), and pp(x) = 1 at = € [fa, f3], the
graph of the membership function is a straight line from (f,0) to (f2, 1) and
from ((fs,1) to (fs,0)).

Alternatively, one can write a trapezoidal fuzzy number in terms of its a-cuts,
f(a), ain [0,1]:

fla) = [f(@), f(a)]
= [A+alfo—= ), fa—alfs— f3)

For simplicity of the notations the a-cuts will also be noted by [f, f]. Since
the a-cuts of a trapezoidal fuzzy number are compact intervals of the set
of real numbers, the interval calculus of Moore (1966) can be applied on
them. The up and down factors are represented by the trapezoidal fuzzy
numbers: u = (uy,ug, us, uy) and d = (dy,ds,ds,ds). Assumptions (Al),
(A2) and (A3) are still valid, while assumption (A4) changes as follows:
dy <dy <ds <dy<1l+r<u <ur <uz < uy.

There is no fuzziness in the risk-free rate of interest, since it is given at time
zZero.

In this setting system (1) is a fuzzy linear system of the form:

Ar=1b (-59)

where some of the elements, a;;, ¢ = 1,2 j = 1,2 of the matrix A are
trapezoidal fuzzy numbers and the elements, b;, of the vector b are crisp.
Note that the no arbitrage condition guarantees that the resulting fuzzy

matrix:
1 1

(d17d2,d3,d4) (UlaU2>U37U4)

has always full rank for all d € [dy, d4] and for all u € [uy, ua].
The solution of the system is:

(1+r)—d (14+7r)—d, (u—1+r) @—(1+7)
u—d

([ ﬂ—c_l Y Q—d 7[ Q_C_l Y

D,

where

uy + a(ug — uy)

= uy — aluy — u3)
di + a(dy — dy)

( )

= 4—Ozd4—d3

e =l I
|

In order to get the price of the American put option, the American algorithm
should now be applied.

16



For simple and fast computation between fuzzy numbers a restriction to
trapezoidal shaped fuzzy numbers is often preferable. Therefore we use the
following approximations, let A = (ay,as,as,as) and B = (by, be, b3, by) be
two trapezoidal fuzzy numbers and ¢ € R a crisp number:

Ao B = (a1 -bi,as-by,az-bs,ay-by)

max(A, B) = (maz(ay,by), max(az, be), maz(as, bs), max(ay,by))
max(A,c) = (max(ay, c), max(as, c), maz(ag, c), max(ay,c))

The risk-neutral probabilities are approximated by the following trapezoidal
fuzzy numbers:

1—|—T—d4 1+7’—d3 1—|—T—d2 1+7’—d1

Pu = U4—d4 ’ Ug—dg ’ Ug—dz ’ ul—dl
_ —(1+7) uu—(14+r) us—(1+r) u4—(1+7’)>
Pa = —d1 ’ Ug—dg ’ U3—d3 ’ U4—d4

Numerical example
Consider the two-period model where Sy = 30, K = 35, u = [1.50; 2; 2.50; 3],
d = [.35;.45; .50; .60] and r = .02.
The up and down probabilities are: p, = [.1750;.2600;.3467; .5826] and py =
[.4174; .6323; .7400; .8250].
The binomial tree for the price of the underlying asset is illustrated in Figure
7. By applying the American algorithm one obtains the American put option
prices reported in Figure 8, as follows:

(S¥%) = maz{(35 — [67.5;120; 187.5;270]),0} = 0
V9 (S = max{(35 — [15.75; 27; 37.5; 54]), 0} = [0; 0; 8; 19.25]
2(S9%) = max{(35 — [3.675; 6.075; 7.50; 10.8]), 0} = [24.2; 27.50; 28.935; 31.325]}
(S*) = max{35 — [45; 60; 75; 90],
102([1750 :2600; .3667; .5826]v,(SY™) + [.4174; .6323;.7400; .8250]v5(S44))}
= [0;0; 5.8039; 15.5699]
v1(S%) = max{35 — [10.5; 13.5; 15; 18],
102([1750 26003 .3667; .5826]vo(S2?) 4 [.4174; .6323; .7400; .8250]v5(S59))}
= [17;20; 23.8687; 36.3315]
)

v0(30) = maz{35 — 30,

1
T ([-1750: 2600; 3677;.5826]u, (S) + [4174; .6323; .7400; .8250]u1 (7))}

= [6.9567;12.4118;19.4088; 38.2789]

V2

<

U1
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[67.5,120,187.50,270]

uu
S

[45,60,75,90

°68,6.08,7.50,10.8]
dd
55

Figure 7: Price for the wunderlying asset.

0
v2(S55")
[0,0,5.80,15.7
(6.96,12.41,19,41 38728 0,0,8,19.25]
d
V2 (Szu)

7,50,28.93,31.33]

(554

Figure 8: American put option prices

18



6 CONCLUSIONS

In this paper we have investigated the derivation of the price of an American
put option written on a stock in the presence of uncertainty in the volatility.
As in real markets it is usually hard to precisely estimate the volatility of
the underlying asset, fuzzy sets and possibility distributions are a convenient
tool for capturing this kind of imprecision. We started from the Cox Ross
Rubinstein (1979) binomial model and we investigated which is the effect on
the option price of assuming the volatility as an uncertain parameter. As a
first step we assumed that the jump factors are represented by intervals. In
such a framework we derived the risk-neutral probabilities by solving a lin-
ear system of equations with interval coefficients and we evaluated the option
price by using interval computation. Then we analyzed the case in which the
jump factors are represented by fuzzy numbers. Both the cases of triangular
and trapezoidal fuzzy numbers are discussed. We derived the risk-neutral
probabilities by solving a linear system of equations with fuzzy coefficients,
by using the vector solution proposed by Buckley et al. (1991, 2002). Fi-
nally, the risk-neutral probabilities derived are used to evaluate the option
price. The present paper improves over previous approaches in at least four
aspects. First, by modelling the uncertainty in the volatility by means of
both intervals and fuzzy numbers, deeply explores the relation between the
two. Second, it uses two different types of fuzzy numbers: triangular and
trapezoidal. Third, it clearly illustrates the no arbitrage condition and its
role in the derivation of the risk-neutral probabilities. Finally, it provides
a simple and fast computational algorithm for the derivation of the option
price.
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