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The present work deals with the mechanical behaviour of thin films bonded to a homogeneous elastic orthotropic half plane under
plain strain condition and infinitesimal strain. Both the film and semi-infinite substrate display linear elastic orthotropic behaviour.
By assuming perfect adhesion between film and half plane together with membrane behaviour of the film, the compatibility
condition between the coating and substrate leads to a singular integral equation with Cauchy kernel. Such an equation is
straightforwardly solved by expanding the unknown interfacial stress in series of Chebyshev polynomials displaying square-root
singularity at the film edges. This approach allows handling the singular behaviour of the shear stress and, in turn, reducing
the problem to a linear algebraic system of infinite terms. Results are found for two loading cases, with particular reference to
concentrated axial forces acting at the edges of the film. The corresponding mode II stress intensity factor has been assessed, thus
providing the stress concentrations at both ends of the covering. Possible applications of the results here obtained range from
MEMS, NEMS, and solar Silicon cell for energy harvesting to welded joint and building foundation.

1. Introduction

A wide class of MEMS and NEMS are based on thin films
and coatings technology and the most part of these microde-
vices involves film and substrate materials which exhibit
anisotropic behaviour [1]. As an example, a crystalline undu-
lator (CU) is a special kind ofMEMS realized by properly pat-
terning [2, 3], through a suitable photolithographic process,
a coated ceramic substrate [4, 5] which generally consists of
a silicon (Si) or germanium (Ge) crystalline plate. As shown
in [4], based on the channeling phenomenon, a CU can be
used as a compact source of intense and coherent electro-
magnetic waves, with particular reference to UV and hard
X-rays.

Thin films and coatings are also widely used as thermal
barriers and protective layers to shield compressors, internal
combustion engines, and turbine engine components from
gaseous and aqueous aggressive environments in order to
prevent excessive wear and oxidation [6].

Thin films and coatings are usually employed for the
realization of modern optical devices also, with particular
reference to high-reflectance mirrors and lens in the inter-
ferometry and spectroscopy fields (optical filters, telescopes,
binoculars, etc.).

In the field of civil engineering, sheets or fibre reinforced
stiffeners are often modeled as thin membranes bonded
to an elastic substrate simulating concrete [7–11] or rigid
road pavement [12] (a viscoelastic analysis performed on
variable structural systems can be found in [13, 14]). As a
rough approximation, these problems have been modeled by
considering beams resting on an elastic support (e.g., [15]).

Thin films and coatings bonded to an elastic substrate
generate geometric discontinuities and, in turn, stress con-
centrations and strain localizations which can drive damag-
ing phenomena like delamination and crack growth. These
phenomena can be properly modeled in the framework of
both infinitesimal [16, 17] and finite elastostatics [18–22]. In
order to accurately evaluate the mechanical behaviour of this
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Figure 1: Half plane and film’s geometry.

kind of micro- or nanosystems, the actual physical properties
of the film and substrate materials must be taken into
account and the accurate evaluation of the stress and strain
fields, particularly along the interface, is mandatory (for
nonhomogeneous graded films, nanobeams, and nanoplates,
see, e.g., [23–26]).

The mechanical interaction between a thin film and an
isotropic half plane has been widely investigated by many
researchers through analytical models [5, 27–29] or via
numerical analyses [30–32]. The present study investigates
the mechanical interaction between a thin elastic film and
an elastic orthotropic half plane under various loading
conditions. In particular, the present work extends the results
obtained in [5] by taking into account anisotropic behaviour
of the substrate. The analysis has been performed by assum-
ing plane strain conditions for both the film and the half
plane. Moreover, the film is assumed very thin, thus allowing
for neglecting its bending stiffness. The strain compatibility
condition between the film and the underlying substrate
leads to a singular integral equation with Cauchy kernel. By
expanding the unknown interfacial shear stress in singular
series of Chebyshev polynomials, the integral equation is
reduced to an algebraic linear system of infinite terms which
is solved for the coefficients of the series expansion.The shear
stress intensity factors are then evaluated and compared for
two different cases.

The paper is organized as follows: the formulation of
the problem in terms of singular integral equation with the
Cauchy kernel is presented in Section 2. In Section 3, effective
values for material and geometric parameters governing the
problem are quantified.The effect induced by the slenderness
of the film with respect to the compliance of the half plane is
discussed in Section 4 by studying two different loading cases𝛾. Finally, conclusions are drawn in Section 5.

2. Half Plane Covered by Thin Film

In the present section, the problem of an orthotropic elastic
half plane covered by a thin film and subjected to two
opposite or concordant axial loads (Figures 1 and 2) is
treated. Perfect adhesion between the half plane and the
film and negligible bending stiffness of the film have been
assumed also. The present analysis could also be extended
by assuming a proper constitutive law for the interface in
order to simulate imperfect welding, detachment, and so
on (e.g., [39]). Under these statements, only the tangential
component of the interfacial stress arises within the contact

region (Figure 2). The strain fields along the contact region
can be written in terms of the interface shear stress 𝜏(𝑥) by
using Green’s function for the elastic half plane and by the
membrane constitutive equation:

𝜀𝐹 = 𝐾𝐹 ∫𝑎
𝑥
𝜏 (𝑡) 𝑑𝑡 − Δ𝜀,

𝜀𝑆 = 𝐾𝑆𝜋 ∫𝑎
−𝑎

𝜏 (𝑡)𝑦 − 𝑡𝑑𝑡.
(1)

Then, the compatibility condition under perfect adhesion
assumption leads to the following integral equation:

𝐾𝐹 ∫𝑎
𝑥
𝜏 (𝑡) 𝑑𝑡 − Δ𝜀 = 𝐾𝑆𝜋 ∫𝑎

−𝑎

𝜏 (𝑡)𝑥 − 𝑡𝑑𝑡, (2)

where 𝐾𝑖 (𝑖 = 𝐹, 𝑆 stands for “film” or “substrate,” resp.; see
(A.3)) represents the compliance of the 𝑖 component.The load
term,Δ𝜀, has been considered acting on the filmonly; namely,

Δ𝜀 = −𝐹𝐾𝐹,
Δ𝜀 = − [(1 + 𝛼3𝐹𝛼1𝐹 ]31)𝛼𝑆 − (1 + 𝛼3𝑆𝛼1𝐹)𝛼𝐹]Δ𝑇, (3)

for the case of two opposite axial forces of magnitude 𝐹 or
thermal load variation Δ𝑇, respectively (for a detailed study
about the thermoelasticity without energy dissipation, see
[40]). By using the Chebyshev polynomials of the first kind,𝑇𝑛(𝑡), the following series expansion has been assumed for the
shear stress:

𝜏 (𝑥) = ∑∞𝑛=0 𝐶𝑛𝑇𝑛 (𝑥/𝑎)
𝐾𝑆√1 − (𝑥/𝑎)2 , for − 𝑎 ≤ 𝑥 ≤ 𝑎. (4)

Introducing the series expansion (4) in (2) using the orthog-
onality properties of Chebyshev polynomials (Appendix B),
multiplying by Chebyshev polynomials of second type𝑈𝑚−1(𝑡)with𝑚 = 0, 1, 2 . . ., and integrating over [−𝑎, +𝑎], the
integral equation is transformed in a linear algebraic system
for the unknown coefficient 𝐶𝑛. From (2) and (4), it follows
that
∞∑
𝑛=1

𝐶𝑛 [𝜋𝛾2𝑛 𝛿𝑛𝑚 + 𝐵𝑛𝑚]
= Δ𝜀 {1 − cos (𝑚𝜋)𝑚 + 1 − cos [(𝑚 + 1) 𝜋]𝛾𝜋 }

(5)

𝐵𝑛𝑚 = ∫+1
−1

𝑈𝑛−1 (𝜉) 𝑈𝑚−1 (𝜉) 𝑑𝜉, with𝑚 = 1, 2 . . . , (6)

where 𝛾 = 𝑎𝐾𝐹/𝐾𝑆 is a dimensionless parameter which gov-
erns the problem, whose role will be discussed in Section 4,
and 𝛿𝑛𝑚 is the Kronecker delta, respectively.

For the loading case sketched in Figure 2(b), the coef-
ficient 𝐶0 is provided by (4) together with the equilibrium
condition of the film:

𝐶0 = Δ𝜀𝛾𝜋 . (7)
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Figure 2: Loading cases.

By introducing the dimensionless variable 𝜉 = 𝑥/𝑎 over
the contact domain, the solution of system (5) with respect to
the series coefficient provides

𝜀𝑆𝑥 (𝜉) = ∞∑
𝑛=1,2,3

𝐶𝑛𝑈𝑛−1 (𝜉) , (8)

𝜀𝐹𝑥 (𝜉) = −Δ𝜀 + 𝛾 [𝐶0 arccos (𝜉)

+ ∞∑
𝑛=1

𝐶𝑛𝑈𝑛−1 (𝜉)𝑛 √1 − 𝜉2] ,
(9)

𝜏 (𝜉) = 1
𝐾𝑆√1 − 𝜉2

∞∑
𝑛=0

𝐶𝑛𝑇𝑛 (𝜉) , (10)

𝜎𝐹𝑥 (𝜉) = 𝜀𝐹𝑦 (𝜉)𝛿𝐾𝐹 , (11)

𝑢𝐹 (𝜉) = 𝑎{−Δ𝜀𝜉
+ 𝛾 [𝐶0 (1 − √1 − 𝜉2 + 𝜉 arccos (𝜉))]
+ 𝐶1 arccos (𝜉) + 𝜉√1 − 𝜉22
+ ∞∑
𝑛=2

𝐶𝑛𝑛 𝑛𝑇𝑛 (𝜉) − 𝜉𝑈𝑛−1 (𝜉)𝑛2 − 1 } ,

(12)

with 𝜀𝑥, 𝜏, 𝜎𝑥, and 𝑢 being the longitudinal strain, shear
stress, longitudinal stress, and longitudinal displacement,
respectively. As a result of the assumption of perfect adhesion
between the half plane and the film, expressions (8) and (9)
must coincide.

3. Influence of the Parameter 𝛾
The dimensionless parameter 𝛾 denotes the ratio between
the substrate and film compliances. This factor governs the
problem and affects the convergence of the Chebyshev series
and the stress intensity factor𝐾II at the edges of the film.

Values of parameter 𝛾, for different typical materials and
film geometries involved in contact problems, can be found
in Tables 1 and 2, respectively.

Table 1: Some materials involved in contact problems application.

Material Ref 𝛿𝐾𝐹 [N−1mm2] 𝐾𝑆 [N−1mm2]
Seabed soil [33] 9.97𝐸 − 1 1.27
Ice [34] 9.76𝐸 − 3 9.82𝐸 − 3
Structural steel [35] 4.33𝐸 − 5 8.67𝐸 − 5
Beech [36] 4.32𝐸 − 5 8.44𝐸 − 5
Silicon nitride [37] 3.23𝐸 − 5 6.47𝐸 − 5
Aluminium [34] 1.22𝐸 − 5 2.44𝐸 − 5
Silicon [38] 5.15𝐸 − 6 1.21𝐸 − 5
Spruce [36] 1.45𝐸 − 6 4.88𝐸 − 6
Germanium [34] 8.89𝐸 − 7 3.84𝐸 − 6
Table 2: Range of film length ratio in contact problems applications.

Welded or
bolted
plates

Cu and
silicon

solar cells
Ice lenses Slab

foundations
𝑎𝛿 101–102 103–104 102–103 102–103

The limit case occurring for high values of 𝛾, ranging
within [10−1, 102], is representative of contact problems met
in MEMS and NEMS application. In this case, the half plane
is stiffer than the film.

The other limit case concerns low values of 𝛾, ranging
within [10−3, 10−6], occurring when the stiffness of the half
plane is more compliant than the film or when the film has a
squat geometry, typically involved in soil contact application.

4. Results and Discussion

Two different loading conditions, sketched in Figure 2,
have been analysed. The Chebyshev coefficient index has
been assumed odd or even including 𝐶0, for symmetric
and skew-symmetric loading cases, respectively. The proper
superposition of the two schemes provides the same results
reported in [5], where an isotropic film subjected to a single
axial force applied to a film end has been studied.

As reported in [27, 28, 41], both the high speed conver-
gence of the coefficients 𝐶𝑛 and the regularity of system (5)
depend on the parameter 𝛾. By truncating the Chebyshev
series to 𝑛 = 40 (20 terms in series expansion), Figure 3 and
Table 3 show the convergence of the Chebyshev coefficients.
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Figure 3: Convergence of Chebyshev coefficients.

Table 3: Sensibility of 𝐶𝑛 with respect to 𝛾.
𝛾 Symmetric load Skew-symmetric load𝐶1Δ𝜀 𝐶3Δ𝜀 𝐶5Δ𝜀 𝐶2Δ𝜀 𝐶4Δ𝜀 𝐶6Δ𝜀10−3 0.99 0.0161 0.0024 0.36 0.0288 0.0079510−1 0.92 0.0153 0.0023 0.34 0.0317 0.00859100 0.54 0.0762 0.0163 0.27 0.0478 0.0135101 0.10 0.0627 0.0325 0.08 0.0469 0.0241102 0.012 0.0112 0.0097 0.01 0.010 0.00897

Theconvergence rate of the series decreases as 𝛾 increases.
For 𝛾 > 10, the rate of convergence for the coefficients 𝐶𝑛
becomes faster. The symmetric loading case exhibits higher
convergence speed than the skew-symmetric case.

Under symmetric loading (Figure 2(a)), the longitudinal
strain of the substrate (Figure 4) exhibits high sensitivity with
respect to the governing parameter only for large value 𝛾;
instead, for small value of 𝛾, no significant impact on the

strain behaviour is detected. For 𝛾 < 10−4, the film behaves
like a rigid body. Similar to the strain field, the longitudinal
displacement increases as the film’s compliance increaseswith𝛾 (Figure 5). For low values of 𝛾, the film displacement varies
linearly and attains a maximum value 𝑎Δ𝜀 at the film edges.
For large values of 𝛾, the axial stress of the film displays an
oscillatory behaviour induced by the low convergence rate of
the Chebyshev coefficient and by the high gradient of stress
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Figure 4: Longitudinal strain field for symmetric loading case.

field in the neighbourhood of the film’s edges (Figure 5).
As 𝛾 increases, the magnitude of shear stress field increases
and its gradient decreases at the film edge (Figure 2(a)). This
behaviour is explained by the stress intensity factor 𝐾II at
the films edge which monotonically decreases as 𝛾 increases
(Figure 6).

For the symmetric loading case, the stress intensity factor
is defined as proposed by [5]:

𝐾II (±1) = lim
𝜉→±1

𝜏 (𝜉)√2𝜋 (𝜉 ∓ 1)
= √𝜋 ∞∑
𝑛=1,3,...

𝐶𝑛𝑇𝑛 (𝜉)𝐾𝑆 .
(13)

In agreement with the asymptotic solution for isotropic
materials in [28], for inextensible films, one finds

lim
𝛾→0

∞∑
𝑛=1,3...

𝐶𝑛𝑇𝑛Δ𝜀 = 𝐶1Δ𝜀 = 1, (14)

and the stress intensity factor then becomes

𝐾II (𝜉 = ±1) = ±√𝜋Δ𝜀𝐾𝑆 (15)

in agreement with the value found in [5, 42] for isotopic
constitutive law. By scaling, the term√2𝜋 from the definition
of the stress intensity factor (13) provides 𝐾II(𝜉 = ±1) =0.707, corresponding to the mode II stress intensity factor at
crack tip, induced by the stress component 𝜏(𝜉 = ±1) which
may cause crack propagation along the ±𝜋/4 direction.

The same conclusion drawn about the stress and displace-
ment fields under symmetric loading conditions could be
extended to skew-symmetric loading condition (Figures 7
and 8) with the exception of the convergence rate and the
stress intensity factor witch are less sensible to the parameter𝛾.

Differently from the symmetric loading case, the singu-
larity of the shear stress field is proportional by theChebyshev

constant 𝐶0 (7). The mode II of the stress intensity factor of
the stress intensity factor assumes the following form:

𝐾II (𝜉 = ±1) = lim
𝜉→±1

𝜏 (𝜉) √2𝜋 (𝜉 ∓ 1)𝐶0
= √𝜋Δ𝜀𝐾𝑆 (1 +

∞∑
𝑛=0

𝐶𝑛𝑇𝑚 (𝜉)𝐶0 ) .
(16)

In the case of an inextensible film, namely, as 𝛾 → 0,
the sum in (16) becomes vanishing small. As a consequence
for this asymptotic case, the stress intensity factor displays
the same behaviour of the symmetric loading case (13) as
reported in Figure 6.

5. Conclusions

The contact problem of a homogeneous orthotropic half
plane covered by thin film has been analysed here (for the
behaviours of nonhomogeneous nanobeams and nanoplates,
see [43–45]). The interfacial singular shear stress has been
approximated through a series expansion of Chebyshev poly-
nomials. The governing singular integral equation derived
from the compatibility condition between the half plane
and thin film has been transformed into a linear algebraic
system for the unknown coefficient 𝐶𝑛 of the series. Once the
Chebyshev coefficients have been calculated, the strain field,
contact shear stress, and displacement field have been found
in dimensionless form in terms of Chebyshev polynomials of
the first and second kind.

The governing parameter 𝛾 assumes specific values for
real applications. The rate of convergence of the proposed
method displays high or low speed for low [10−6, 10−3] or
high [10−1, 103] values of 𝛾, respectively.The relation between
the parameter 𝛾 and the field of practical application (Table 2)
suggests the appropriateness of the proposed method for
geometries and material properties typically involved in
MEMS or steel joints design.
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Figure 5: Longitudinal displacement, longitudinal stress, and shear stress field of symmetric loading case condition for high (left (a), (c), and
(e)) and low (right (b), (d), and (f)) values of 𝛾, respectively.
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Figure 7: Longitudinal strain field for symmetric loading case.

Through the superposition of the two loading conditions
here studied, it becomes possible to reproduce the case of a
single force acting at the film edge.The stress intensity factors
for both symmetric and skew-symmetric loading conditions
exhibit opposite behaviour with respect to the dimensionless
parameter 𝛾. The results found here agree reasonably well
with the solution reported in [5, 42] for the particular case
of an isotropic half plane.

In order to take into account voids, defects, and inclusions
that can occur during the deposition process of a film onto a
substrate, the analysis will be extended to a nonhomogeneous
half plane in a forthcoming paper (for a detailed study
concerning nonhomogeneous bodies, see [46]).

Appendix

A. Elastic Parameters

Denotingwith 𝑐𝑖𝑗 the elastic stiffness coefficients, with𝐸 and ]
being the Young modulus and the Poisson ratio, respectively,

from [16], the horizontal component of strain of the half plane
surface is known in closed form:

𝜀𝑆 (𝑦) = 𝛽22√𝐶ℎ + 4
𝜆𝜋 ∫+𝑎

−𝑎

𝜏 (𝑡)𝑦 − 𝑡𝑑𝑡, (A.1)

where the elastic parameters read

𝛽22 = 𝑐11𝑐11𝑐22 − 𝑐212 ,

𝜆 = 4√𝑐11𝑐22 ,

𝐶ℎ = (𝑐̃12 + 𝑐12) (𝑐̃12 − 𝑐12 − 2𝑐66)𝑐̃12𝑐66 ,

𝑅 = (𝑐12 − 𝜆2𝑐22) (𝑐12 + 𝑐66)[𝜆4𝑐222 + 𝜆2𝑐12𝑐22 (𝐶ℎ + 2) + 𝑐212] 𝑐66 ,
𝑐̃12 = √𝑐11𝑐22,

(A.2)
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Figure 8: Longitudinal displacement, longitudinal stress, and shear stress field of skew-symmetric loading case condition for high (left (a),
(c), and (e)) and low (right (b), (d), and (f)) values of 𝛾, respectively.
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and, in turn, the film and half plane compliances can be
defined as

𝐾𝐹 = 𝛽22,𝐹𝛿 ,
𝐾𝑆 = √𝐶ℎ + 4

𝜆 𝛽22,𝑆.
(A.3)

In case of isotropic half plane, the elastic parameters and
compliances reduce to

𝛽22 = 1 − ]2𝐸 ,
𝜆 = 1,

𝐶ℎ = 0,
𝑅 = (1 − 2]) (1 + ])𝐸 ,
𝑐̃12 = 𝐸,
𝐾𝑆 = 2 (1 − ]2𝑆)𝐸𝑆 ,
𝐾𝐹 = 1 − ]2𝐹𝐸𝐹𝛿 ,

(A.4)

and the half plane longitudinal strain reads [47]

𝜀𝑆 (𝑦) = (1 − ]2𝑆)𝐸𝜋 ∫+𝑎
−𝑎

𝜏 (𝑡)𝑦 − 𝑡𝑑𝑡. (A.5)

B. Useful Integral Involving Chebyshev
Polynomials

The Chebyshev polynomials of the first and second kind,𝑇𝑛(𝑡) and 𝑈𝑛(𝑡), are defined as

𝑇𝑛 (𝜉) = cos [𝑛 arccos (𝜉)] ,
𝑈𝑛 (𝜉) = sin [(𝑛 + 1) arccos (𝜉)]

sin [arccos (𝜉)] . (B.1)

In Section 2, the following identities have been used:

∫𝑎
−𝑎

𝑇𝑛 (𝑡)(𝑡 − 𝑥)√1 − 𝑡2

=
{{{{{{{{{{{{{

0, if 𝑛 = 1, |𝑥| < 𝑎
𝜋𝑈𝑛−1 (𝑥) , if 𝑛 ̸= 1, |𝑥| < 𝑎
−𝜋[𝑥 − sign (𝑥)√𝑥2 − 1]𝑛

sign (𝑥)√𝑥2 − 1 , if 𝑛 ≥ 0, |𝑥| > 1

∫1
𝑥

𝑇𝑛 (𝑡)√1 − 𝑡2 𝑑𝑡 =
{{{
1𝑛𝑈𝑛−1 (𝑥)√1 − 𝑥2, if 𝑛 ̸= 0
arccos (𝑥) , if 𝑛 = 0

∫+𝑎
−𝑎

𝑈𝑛−1 (𝑡) 𝑈𝑚−1 (𝑡) √1 − 𝑡2𝑑𝑡 = 𝜋2 𝛿𝑛𝑚,

∫𝑎
−𝑎
𝑈𝑛−1 (𝑡) 𝑑𝑡 = {{{

2𝑛 , if 𝑛 odd
0, if 𝑛 even

∫+𝑎
−𝑎

𝑇𝑛 (𝑡)√1 − 𝑡2 ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥𝑎 − 𝑡󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑡 =

{{{
−𝜋 ln (2) , if 𝑛 = 0
−𝜋𝑛𝑇𝑛 (𝑥) , if 𝑛 > 0.

(B.2)
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