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Abstract. This paper shows that the Internal-Rate-of-Return (IRR) approach is unreliable, and 

that the recently introduced Average-Internal-Rate-of-Return (AIRR) model constitutes the 

basis for an alternative theoretical paradigm of rate of return. To this end, we divide the paper 

into two parts: a pars destruens and a pars construens. In the “destructive” part, we present a 

compendium of eighteen flaws associated with the IRR approach. In the “constructive” part, we 

construct the alternative approach from four (independent) economic intuitions and put the 

paradigm to the test by showing that it does not suffer from any of the flaws previously 

investigated. We also show how the IRR, as a rate of return, is absorbed into the new approach. 
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1. Introduction 

The determination of a project’s economic profitability is a matter of central importance in 

economics, finance and accounting for both ex ante decision-making and ex post evaluation. 

Generally speaking, there are two camps, one of which favors Internal Rate of Return (IRR) and 

one which favors Net Present Value (NPV). Some serious weaknesses of IRR have been debated 

in academia long since; corporate finance textbooks (e.g. Brealey et al. 2011; Ross et al. 2011) 

and some engineering economy textbooks (e.g. Hartman 2007; Blank and Tarquin 2012) warn 

against its use, endorsing the Net Present Value (NPV) as a correct decision criterion; yet, 

despite some evidence of an increasing use of NPV, a substantial majority of practitioners still 

favor IRR (Remer et al. 1993; Burns and Walker 1997; Graham and Harvey 2001; Ryan and 

Ryan 2002). One of the reasons seems to lie with the greater intuitive appeal of a relative (i.e. 

percentage) measure as opposed to an absolute (i.e. money) measure (Evans and Forbes, 1993; 

Yung and Sherman 1995). Perhaps, given that a relative measure (cost of capital) is necessary 

for assessing wealth creation, a comparison between two relative measures (IRR and cost of 

capital) seems more intuitive to many than the computation of an absolute amount (NPV) 

which depends on a relative measure (cost of capital). No doubt, IRR is a fascinating metric 

and, as such, the academic literature on the IRR never ceases to produce new contributions and 

some important results have been found in recent years, especially dealing with multiple IRRs 

and complex-valued IRRs (Hazen 2003;  Hartman and Schafrick 2004; Pierru 2010; Osborne 

2010).  

This paper is divided into two parts: a pars destruens and a pars construens. In the first 

part, we discuss eighteen flaws associated with the IRR approach, which leads to a refutation of 

the IRR approach as a general approach to rate of return. In the second part, we build upon 

Magni (2010) to constructively show that the Average-Internal-Rate-of-Return (AIRR) model is 

the basis of an economically significant paradigm of rate of return, which is intuitive and 

computationally simple, and it is not subject to the flaws previously investigated. 

The remainder of the paper is structured as follows. In section 2 we present some 

notational conventions and definitions. In section 3, the pars destruens, we discuss the eighteen 

flaws of the IRR (most of them new in the literature) and, for each of them, we provide at least 

one illustrative example. This section naturally leads to a refutation of the IRR model as a 

general approach to rate of return. The remaining sections make up the pars construens. In 

particular, section 4 presents the alternative theory in a simple way, showing that it can be 

derived from any of four economic intuitions; in this section, we also introduce the “economic 

AIRR”, a rate of return directly derived from market valuation theory. In section 5, we put the 

new theory to the test and show how it overcomes each and every fallacy. Section 6 

underscores the connections between the IRR and the AIRR approach, showing when and how 

IRR can be used as an appropriate rate of return. Some concluding remarks end the paper. 

 

2. Notational conventions and definitions 

In general, let   (             ) with      be the cash-flow stream of a project P, and let   

be the cost of capital (COC), also known as the required rate of return or the minimum 

attractive rate of return. The COC should reflect the expected rate of return of an equivalent-

risk asset traded in the market. The project’s net present value is     ∑   
 
     ,  

  (   )  .  
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We will use the terms “return”, “interest” and “income” as synonyms. The relation linking 

interest, capital and cash flow is a most important one in economics and finance: 

                                                                              (  ) 

where    is the return and    denotes capital,         ,  with        being the initial 

investment. We assume, as usual, that cash flows and returns are generated at the end of the 

period. Equation (1a), which we call the “fundamental economic relation”, can be framed, 

recursively, as  

                                                                               (  ) 

Essentially, the end-of-period capital value is equal to the beginning-of-period capital     , 

increased by the return    and decreased (increased) by the cash flow generated by (injected 

in) the project. If      for every    , the project’s period rates of return    are well defined:  

   
  

    
 

          

    
                                                                    ( ) 

so that (1b) becomes 

       (    )                                                                      ( ) 

A project is economically profitable (and, therefore, acceptable) if wealth is created for the 

investors. Wealth creation occurs if and only if      . Among a bundle of competing 

projects, the one with the highest NPV will be preferred, for NPV maximization means wealth 

maximization.  

We will also make use of the net present value of the capital stream   (            ): 

  ∑     
   

 

   

                                                                    ( ) 

Eq. (4) represents the overall capital invested in the project. 

An IRR is a solution of the equation ∑   
 
   (   )      We will call the latter the ‘IRR 

equation’. (Abusing notation,   will denote either the unknown of the equation or a solution, 

depending on the context.) The recursively defined amount  

  ( )      ( )(   )                                                             ( ) 

is here called the “internal value”. One can also define the internal value prospectively as 

  ( )  ∑   (   )    
     . The internal value is also known as “Hotelling” value in the 

accounting literature, though Hotelling (1925) used the cost of capital to discount cash flows, 

not the IRR: “It might be more appropriate to refer to Hotelling depreciation as Preinreich 

depreciation in recognition of the fact that it appears to be Preinreich (1938) who suggested 

that the present value of the future cash flows should, in general, be calculated using the rate of 

profit [=IRR], rather than the cost of capital as in Hotelling (1925).” (Stark 1989, p. 75, endnote 

1). We denote as  ( )  (     ( )       ( )) the vector of internal capitals. Note that (5) is 

only a particular case of (3): it represents the interim capital invested in the project under the 
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assumption that capital increases, within each period, at a constant growth rate equal to  . 

Likewise, the amount  ( )  ∑     ( )       
     is a particular case of (4). 

According to the IRR criterion, a project is economically profitable if     and, among 

competing projects, the one with the greatest IRR should be preferred (IRR maximization).  

If cost of capital is variable across periods, the NPV becomes     ∑   
 
       , where 

      ∏ (    )
   

               and    is the market (forward) rate holding in the  -th 

period (between time     and time  ). Throughout the paper, we assume that the cost of 

capital (either constant or variable) is fixed exogenously. 

Profitability index (PI) is the ratio of NPV to initial investment: 

   
   

  
                                                                               ( ) 

It gives expression to wealth increase for each unit of initial investment. It is then a “bang for 

the buck” measure. The benefit-cost ratio (BC) is the ratio of the discounted value of total 

inflow    ∑             to the discounted value of total outflow     ∑            

(henceforth, total investment cash flow): 

   
  

  
                                                                                ( ) 

It provides a measure of efficiency of total invested cash flow. Benefit-cost ratio and 

profitability index are sometimes exchanged for one another or considered synonyms; some 

other times, slightly different definitions are given. For example,  Blank and Tarquin (2012) 

define the PI as    
∑    

  
   

  
   

   

  
; Kellison (2009) uses the term “profitability index” for 

both eq. (6) and eq. (7); Ross et al. (2011) use both expressions for eq. (6), as well as Hartman 

(2007), but the latter reserves the term “benefit-cost ratio” to investment made by government 

entities. Rao (1992) calls eq. (7) “profitability index”. Park (2011) defines profitability index as 

the ratio of benefits net of operating costs to capital expenditure (see also Newnan et al., 2009, 

Brealey et al. 2011). We explicitly distinguish the two indexes, as they convey different pieces 

of information. 

Excess return (ER), also known as residual income, is defined as the difference between the 

actual return in a period and the return that would accrue if the investor invested the 

beginning-of-period capital at the return rate   . It therefore measures the wealth increase in a 

given period: 

   (       )       (     )                                                           ( ) 

 

3. Pars destruens — Refutation of the IRR approach 

Refutation of the IRR approach is based on the following eighteen fallacies (labeled F1-F18). 

F1 — Multiple rates of return 

A project may have multiple real-valued IRRs. While multiple IRRs seem to be uncommon (see 

Ben-Horin and Kroll 2012 for some results), engineering projects may have a considerable 
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length and several changes in sign may occur in the cash-flow stream. This occurs, for example, 

in investments with disposal/remediation costs, phased expansion, natural-resource 

extraction (see Hartman 2007). The multiple-IRR problem may also be encountered when ex-

post economic performance is assessed for an ongoing activity (such as a firm or a business 

unit) in a given interval of time, if dividends and new investments alternate. A third case is 

given by investment funds, where the investor’s choices about deposits and withdrawals can 

determine several changes in sign. Further, multiple IRRs can easily arise even in the most 

regular circumstances, when a levered project is studied or a portfolio of investments and 

borrowings is considered.  

Regardless of the frequency of multiple IRRs, the issue is relevant, for they signal a 

theoretical anomaly of the IRR approach. At first sight, none of the IRRs can be given a clear 

role. However, after scholars painstakingly strived for decades to find a solution to this 

conundrum, Hazen (2003) shed an important light on the issue, showing that any IRR can be 

used for assessing value creation: NPV can be framed as 

     ( )  
(   )

   
                                                              ( ) 

so the project is interpretable as an overall investment of  ( ) dollars (or an overall borrowing 

of the same amount if the discounted sum is negative) at the excess rate of return    . This 

implies that a project is acceptable if and only if 

                  ( )                                                              (  ) 

(see Hazen 2003, Theorem 4). Eq. (10) can be applied to any one of   multiple IRRs, the 

decision being the same. 

This solution sweeps away the old (technical) multiple-IRR problem, but raises a new 

(economic) multiple-IRR problem: if, technically, any one out of the   IRRs can be used for 

assessing value creation, which one of them is, economically, the “correct” rate of return? 

Which IRR should be used for ranking projects or for ranking managers’ performances? Which 

one should be used by a regulator to set prices and tariffs? Which one should be used by a 

policy maker to impose a tax on returns? Which one for compensation plans based on rates of 

return? (See Carey 2012, on this problem.) And which one should be used for determining the 

amount of capital invested in the project? In all such cases, the use of a rate of return as 

opposed to another one may change the analysis and the related decisions, so one may not rely 

on any IRR. Put differently: the cardinal value as well as the ordinal value of a rate of return is 

at stake, so the determination of the correct capital is essential. 

Example 1. Consider    (                   ) with a COC equal to      . The IRRs are 

 ( )       ( )       ( )      (see Park 2011, p. 350) and the NPV is negative 

(          ) so the project should be rejected. Any IRR can be used for accept/reject 

decision: for example,  ( )       is a rate of return on  ( ( ))       (investment), so the 

project is not acceptable since          Conversely, 30% is a rate of cost on  ( ( ))  

      (borrowing), which leads to the same decision conclusion, owing to (9) (analogously 

with 50%, which is associated with  ( ( ))       ). But eq. (10) gives no clue on which one 

IRR should be used by an evaluator to rank   among other projects, or which IRR should be 

used to reward a manager, or which IRR a regulator should use to impose a tax. Finally, 

consider that the given cash-flow vector can be the result of a very conventional situation. 

Suppose the investor invests in a project whose initial outlay is $      and subsequent cash 
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flows are equal to $1000, $107, $214.5 at time 1, 2, 3 respectively. To undertake the project, 

the investor borrows $1200, repayable with two level installments equal to $610. The resulting 

equity cash-flow vector is just   (and there are infinite such levered projects which result in  ). 

 

F2 — No rate of return 

As widely known, the IRR may not exist if a project ends with an outlay. In this case, the 

evaluator has no information to use. Hazen (2003) proposed to heal the flaw by taking account 

of the real parts of the complex-valued interim capitals. However, although complex-valued 

rates may be given economic significance (Pierru 2010), the appeal of real-valued rates in real-

life applications is overwhelming, suggesting that there is a strong need of an approach which 

always provides reliable real-valued rates of return. As low as the frequency of no-IRR projects 

can be in real life, the consequences are devastating when such cases occur. Also, a theoretical 

paradigm which does not guarantee existence of a real-valued rate of return should be treated 

with suspicion. (Osborne 2010 interestingly shows that the absolute value of the NPV per unit 

of dollar is the product of the absolute values of all the roots, real-valued and complex-valued, 

of the polynomial). 

Example 2. Consider a transaction whereby a person makes a payments of $10 immediately 

and $25 at the end of two years, in exchange for a payment of $30 at the end of one year. The 

cash-flow vector is   (          ). A real-valued IRR does not exist and the complex-

valued solutions          are unappealing to managers and practitioners.  

Note that this problem is typical of common situations such as performance dynamic analysis. 

Consider an investment of    dollars in an asset and consider a dynamic analysis such that, at 

every date  , the investor measures performance in the interval [   ]. If      for          , 

the IRR is does not exist, for the cash-flow stream is (        ). (The evaluator can try to 

overcome the problem by selecting a terminal value for the project at time  , but this does not 

prevent him from incurring the fallacy of intertemporal inconsistency. See F14). 

 

F3 — Varying costs of capital 

If the COC varies across periods (e.g. the term structure of interest rates is not flat), the IRR 

rule breaks down, for there is no clear way of comparing a project’s rate of return with a 

sequence (          ) of costs of capital. This situation can be encountered in several 

circumstances. For example, a notable one is the case of investment portfolio management: the 

cost of capital is usually given by the rate of return of a benchmark fund, which is variable over 

time. 

Example 3. An investor deposits $10,000 in a fund at time 0, then withdraws $2,000 after one 

period, injects an additional $3,000 at time 2 and liquidates the investment at time 3. The 

fund’s beginning-of-period market values (after due consideration for withdrawals and 

deposits) are $6,000 at time 1, $13,000 at time 2. The market value of the investment at time 3 

is $18,000. This implies that the investment’s cash flows vector is   

  (                            ). To measure wealth creation, suppose that the fund’s 

performance is set against a benchmark whose period rates of return are           

         . The fund’s performance (in thousands) is  
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(    )(    )
 

      

(    )(    )(    )
          

which suggests a profitable investment.  The unique IRR is        and is not clearly 

comparable to any of the COCs to signal wealth creation.  

 

F4 — Arbitrage strategies 

An arbitrage strategy is formally represented as a sequence of cash flows   (          ) 

such that      for all   and there exists some   such that     . The IRR is not capable of 

measuring the rate of return of an arbitrage strategy, for a necessary condition for IRR to exist 

is that there are at least two cash flows different in sign (we assume     ). 

Example 4. A bank is able to borrow $10,000 for one year at 5% and lend $9,375 to a client at 

12%. The vector of net cash flows is   (     ). The IRR of this arbitrage strategy cannot be 

computed, since       (   )    for every    . 

 

F5 — Mutually exclusive projects and project ranking 

The IRR criterion ignores investment scale. No rational investor would prefer an investment of 

10 dollars at 100% to an investment of 10,000 dollars at 10% if the appropriate cost of capital 

is 5%. Yet, according to the IRR criterion, the former is the preferable one. The reason why the 

approach fails is that any rate of return, taken in isolation, is uninformative about wealth 

creation. As Hazen (2003, p. 46) puts it, “The magnitude of the internal rate by itself carries no 

further information … So the fact that one internal rate has greater magnitude than another … 

indicates that the corresponding net investment [=invested capital] has smaller magnitude. 

There are no other economic implications”. In order to provide information about wealth 

created, a standardized rate of return allowing for scale is needed. But the IRR approach 

cannot provide such an index. 

Consider a bundle of      projects, whose cash-flow vectors are denoted as 

   (  
    

       

 )           . If every project has a unique IRR equal to   , the IRR 

ranking is not consistent, in general, with the NPV ranking; the reason is just that the various 

IRRs refer to different investment scales, so to compare them is like comparing apples and 

oranges. On the other hand, if some project has multiple IRRs, it is not clear which one among 

the multiple IRRs should be used for ranking purposes or for choosing between mutually 

exclusive projects (choice between mutually exclusive alternatives is equivalent to the ranking 

of     projects).  

 The use of incremental IRR is sometimes advocated in these cases (e.g., Blank and 

Tarquin 2012), but incremental IRR may not exist, in which case, the choice between two 

alternatives cannot be accomplished (multiple incremental IRRs may exist as well, but Hazen’s 

rule, eq. (10), can be used in such cases). Also, in favorable cases, the procedure is tedious and 

time-consuming if the number of projects is high (the maximum number of pairwise 

comparisons in a bundle of   projects is  (   )  ). Furthermore, even when ranking is 

possible and   is low, this method gives no information about the magnitude of the relative 

wealth created by one project with respect to the other ones. 

Example 5. Consider    (                ) ,    (                  ) ,    

(                  ) ,    (          ) and      so that                     

                     . The NPV ranking is        . The IRRs are, respectively, 
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                                       , so the IRR ranking is incorrect: 

       . The aggregate investments in the four projects are, respectively,   (  )  

      ,  (  )        ,  (  )        ,  (  )       and they are the capital bases to 

which the IRRs are applied. 

 
F6 — Rate of return on initial capital (or total investment cash flow) 

The IRR does not measure a return per unit of initial investment; nor does it inform about the 

return per unit of total outflow. The IRR measures the rate of return on the overall capital  ( ) 

(see eq. (9)). From this point of view, the profitability index (PI) and the benefit-cost ratio (BC) 

do a better job, in a rather explicit way (see eq. (6) and (7)).  

Example 6. Consider   (                            )  with      . An IRR is 

22.4%, which is the rate of return on an overall investment of        ; it is not a rate of 

return on the initial investment of    100 nor on the total investment cash flow of    207.6. 

(The profitability index is        , the benefit-cost ratio is        ). 

 

F7 — Framing effects: present value vs. future value 

A rational decision maker abides by the principle of description invariance, according to which 

evaluation of a given situation and the related decision do not change if the same situation is 

presented in a different (but logically equivalent) format. Violations of description invariance 

are known as “framing effects” (Tversky and Kahneman 1981; Kahneman and Tversky 1984). 

The IRR equation is a present-value equation, for all elements of the equation are referred to 

time 0. However, one expects that the result should not change if the elements are referred to 

any future date    . Multiplying both sides of  ∑   
 
   (   )      by (   )  one gets the 

future-value equation ∑   
 
   (   )     ; if    , the solution      holds irrespective 

of the cash flows, which absurdly signals the loss of 100% of the invested capital for any 

project. Further, if      and      for           (i.e., the investor loses the entire capital 

initially invested) the present-format equation becomes     , which has no solution. As a 

result, IRR either never or always signals a loss of the entire capital, depending on how the 

equation is framed. 

Example 7. Consider the four-year project   (                ). In time-0 terms, the IRR 

is 10%, but, in time-4 terms, the IRR is      . If, instead,   (            )  the IRR will 

either signal or not signal the loss of the invested capital, depending on whether the future-

value- or the present-value-format is used.  

 

F8 — Framing effects: expected value of stochastic IRR vs. IRR of expected investment 

Consider an investment with stochastic cash flow-stream  ̃  (    ̃   ̃     ̃ )  ̃             

let   ( ̃)  (    ( ̃ )  ( ̃ )    ( ̃ )) be the expected investment and denote its IRR as 

 ( ( ̃)). Consider now  ( ̃), the stochastic IRR of  ̃, and let  ( ( ̃))  be its expected value. It is 

easy to see that, in general, 

 ( ( ̃))   ( ( ̃))  
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Which is the right order to compute the investment’s IRR? Should one compute expectations of 

cash flows and then compute the IRR of the expected investment or should one compute the 

IRR for each possible cash-flow stream and compute the expected value of the stochastic IRR? 

The different framings lead to different IRRs. 

Example 8. Table 1 collects the stochastic cash flows of a project, assuming three states of the 

world (optimistic, base, pessimistic), and presents the resulting IRRs and the expected cash 

flows.  We have  ( ̃)  (             )  so that  ( ( ̃))        , whereas  ( ̃)  

(                ) so that  ( ( ̃))     (     )     (     )     (    )       . 

 

Table 1. IRR with stochastic cash flows 

Time 0 1 2 3 Prob IRR 

Case       

Optimistic  100 70 80 100 0.3 59.5% 

Base  100 50 50 50 0.5 23.4% 

Pessimistic  100 30 0 0 0.2  70.0% 

Expected value  100 52 49 55  25.75% 
 

However, it is not clear which one is the “correct” project’s IRR: 25.75% or 15.5%?  

In the above case, assuming     , the NPV is 52.9, and both IRRs exceed the COC, but it may 

well occur that the COC lies between the two values. For example, assume that the cash-flow 

stream is  (               )  in the optimistic scenario, (            )  in the base 

scenario, and (           ) in the pessimistic scenario. We have 

 ( ( ̃))            ( ( ̃))         

so the accept-reject decision itself is impaired. 

 

F9 — Framing effects: value additivity 

One of the most important ideas in finance is value additivity (Brealey et al., 2011, ch. 34, give a 

list of the seven most important ideas in finance: value additivity is the fourth one of the list). If 

a portfolio consists of a bundle of assets whose values amount to $100, then the portfolio’s 

value must be $100; in general, value additivity means that “[t]he value of the whole is equal to 

the sum of the values of the parts.” (Brealey et al. 2011, p. 901).  

Value additivity is not preserved by the IRR approach. Consider   projects labeled         

with cash-flow vectors    (  
    

       

 )            and consider a portfolio   ∑   
    of 

those   projects. By additivity, the resulting cash-flow vector is  

    ∑  

 

   

 (  
    

      
 ) 

where   
  ∑   

  
              and      [          ]. Denoting as    the (assumed 

unique) IRR of project   and as    the (assumed unique) IRR of the portfolio, the internal value 



 

10 
 

of project   is   
 (  )      

 (  )(    )    
 
, while the internal value of the portfolio is  

  
 (  )      

 (  )(    )    
 
  However, the sum of the projects’ internal values at time   is  

∑   
 
(  )

 
   .  It is easy to see that, in general,   

 (  )  ∑   
 
(  )

 
     This implies that, if one 

makes use of the IRR notion, the interim value of the portfolio changes depending on the way it 

is computed: (i) first, by summing the project’s cash flows and then computing the internal 

value or (ii) first, by computing the projects’ internal values and then summing them. 

Obviously, the infringement of value additivity occurs at the aggregate level as well: 

  (  )  ∑     
 

(  )      

    is the IRR-implied aggregate value of project            The 

IRR-implied aggregate value of the portfolio depends on the way it is computed: 

  (  )  ∑    
 (  )    

 

   

 ∑∑    
 (  )    

  

   

 

   

 ∑  (  )

 

   

 

Example 9. Consider     (          )    (    )    (        ). The three IRRs are  

                      , and the portfolio’s IRR is              It is 

straightforward that 

  (  )    (    )    (     )  (                )  (                 )        (     ) 

and, assuming     , 

  (  )    (    )    (     )                    (     )  

 

 

F10 — Project’s operating life 

The IRR approach neglects the whole operating and economic life of a project. To see how, 

suppose two firms are incorporated to undertake a project: firm A operates until time  , then 

ceases operations and liquidates; firm B continues to operate until time    . Suppose the 

two projects have the same cash flows up to time  ; from time     on, firm B generates an 

income which is equal to the change in capital value: that is,           . This implies that 

cash flows are zero  for            . The respective cash-flow vectors are    

(          ) and    (                  ⏟    
  zeros

). The IRR approach disregards the operating 

activity of firm B in the last   periods; implicitly, it is assumed that the operating activity of B 

has ceased at time   and nothing economically significant occurs in the interval [     ]: 

allegedly, no capital is invested and no income is generated, for the mere fact that cash flow is 

zero. In other words, the IRR forgets, so to speak, that, as a matter of fact, firm B continues to 

use materials, plants, equipment, working capital, human capital, and operates for other   

periods during which net incomes continue to accrue.  In simple terms: the IRR is a rate of 

return which considers actual cash flows but neglects actual returns which derive from 

operations and economic transactions. 

Example 10. Suppose    (          ) has interim capitals equal to $100, $70, $0 at time 0, 

1, 2 respectively, and    (                )  has interim capitals equal to $100, $70, $40, 

$50, $70, $0 at time 0, 1, 2, 3, 4, 5 respectively. Under an IRR perspective, it is as if firm B did 

not operate in the last three periods, since investors do not receive nor invest any more cash 

flow. Therefore, the rate of return would be   16.5% for both firms. However, in the interval 
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[   ],  firm B does operate by deploying economic resources; using (1a), the returns are $10 at 

time 3, $20 at time 4, $ 70 at time 5.  

 

F11 — Concocted capital 

Scholars often interpret internal value (sometimes called “project balance”) as the capital 

which is invested in the project (e.g. Spies 1983; Lohmann 1988; Hazen 2003; Crean 2005; 

Blank and Tarquin 2012). This value is derived in an automatic way: the solution of the IRR 

equation is put into equation (5), which is solved for   ( ) recursively. As anticipated, (5) is 

only a particular case of (3) where it is assumed that, in every period, the capital grows at a 

constant rate of return. However, this assumption is, in general, false, so internal capitals do 

not represent the capital employed in the project: they are not consistent with the economic 

resources actually deployed by the investor and bear no relation with either market values or 

accounting values or estimated capitals or any other pattern of interim values having some 

recognizable economic referent. Therefore, internal values are concocted (see also Altshuler 

and Magni 2012). As a result, the IRR can be conceived of (at the very best) as a period return 

repeatedly applied to concocted interim capitals which misrepresent true capitals.  

Example 11a. Consider the simple case of an investor who has invested $100,000 in an 

investment fund. Suppose the portfolio’s market value has increased to $130,000 at time 1 and 

to $180,000 at time 2, then decreased to $133,100 at time 3, when the investment is liquidated. 

Assuming zero interim cash flows and a COC equal to     , the investment has created value 

(            ). The IRR is 10% and internal values at time 1 and 2 are   (   )         , 

  (   )         . Yet, the actual invested capitals at the beginning of the second and third 

period are            and           , respectively. Therefore, the internal values do not 

adequately represent the economic milieu faced by the investor; they only represent an 

automatic byproduct of the IRR procedure itself, which picks a solution of a polynomial 

equation (10%) and puts it into a recurrence equation where the capital is implicitly assumed 

to increase, within every period, at a constant growth rate just equal to the solution itself 

(10%). 

Example 11b. Consider a real estate investment of $1,500,000: a building is purchased at time 0 

and rents will be collected for seven periods, after which the asset will be sent. Estimated rents 

and selling price are collected in Table 2, which also presents the estimated marketplace values 

of the building. With a 3% COC, the NPV is $1,507,451.7. The IRR is 14.46% and the 

corresponding internal values are evidently biased against the estimated market values. 

Example 11c. A company has the opportunity of undertaking a five-year project which entails a 

capital expenditure of $5,000,000 and an investment in working capital of $4,000,000. Pro 

forma income statements and balance sheets are constructed where estimation of incremental 

sales, costs, invested capitals are shown year by year (a 33% tax rate is assumed). Table 3a 

collects all the relevant data, among which are the estimated invested capital, the Net 

Operating Profit After Taxes (NOPAT), and the Return on Investment (ROI). Table 3b converts 

the estimated accounting data into free cash flow (FCF) by making use of the fundamental 

economic relation (1). The IRR is         and the NPV is $5,830,581 (     is assumed). 

The internal values, which are collected in Table 3b, manifestly contradict the estimated 

invested capitals made by the company, on the basis of which the prospective cash flows have 

been computed. Also, the IRR manifestly contradicts the fact that estimated capital does not 

increase at a constant force of return (see the ROI line in Table 3a). 
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Table 2. Real estate investment 

Time 

 

Project’s cash  

flows 

Proceeds from 

sale 

internal value 

(        ) 

Estimated market 

values 
     

0    1,500,000  1,500,000 1,500,000 

1 50,000  1,666,969 1,550,000 

2 45,000  1,863,091 1,600,000 

3 42,000  2,090,580 1,800,000 

4 70,000  2,322,976 2,000,000 

5 60,000  2,598,986 2,500,000 

6 50,000  2,924,920 3,000,000 

7 48,000 3,300,000   

 

Table 3a. Pro forma balance sheets and income statements* 

Time 0 1 2 3 4 5 

Balance Sheet 
      

Gross fixed assets 5,000 5,000 5,000 5,000 5,000 5,000 

-cumulative depreciation 0                                    

Net fixed assets 5,000 4,000 3,000 2,000 1,000 0 

WCR 4,000 1,000 2,000 800 2,000 0 

Invested capital 9,000 5,000 5,000 2,800 3,000 0 

       

Income Statement       

Sales  4,000 6,000 4,900 5,500 4,200 

Cost of sales  1,600 1,700 1,800 1,900 2,000 

Depreciation  1,000 1,000 1,000 1,000 1,000 

EBIT (Earnings Before Interest 

and Taxes) 

 1,400 3,300 2,100 2,600 1,200 

Taxes  462 1,089 693 858 396 

NOPAT  938 2,211 1,407 1,742 804 

ROI  10.42% 44.22% 28.14% 62.21% 26.8% 

*Numbers in thousands 

 

Table 3b. Converting accounting constructs into cash flows* 

NOPAT  938 2,211 1,407 1,742 804 

–Capital expenditures  5,000 0 0 0 0 0 

+Depreciation  1,000 1,000 1,000 1,000 1,000 

–change in Working 

Capital 
 4,000 3,000  1,000 1,200  1,200 2,000 

FCF  9,000 4,938 2,211 3,607 1,542 3,804 

IRR 25.54%      

internal value 9,000.0 6,360.6 5,774.2 3,641.9 3,030.1 0.0 

*Numbers in thousands 
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F12 — Ad hoc consistency with NPV 

Hazen (2003) makes use of the internal values to establish consistency of IRR with NPV (see 

eq. (10) above). However, consider the capital defined as    
   (   )

   
  Owing to (9), one gets 

 ( )     and, owing to (10), this implies that  

                                                                                (   ) 

Eq. (10 ) is equivalent to (10), but the latter makes it clear that IRR can detect wealth creation 

with no need of making recourse to  the internal values. In other words, formal consistency of 

IRR with NPV does not depend on the internal sequence  ( ). In fact, the IRR is univocally 

associated with the aggregate capital  , not with a specific sequence of interim capitals. This 

implies that, to ensure formal consistency of IRR and NPV, one does not need assume that 

capital grows at   in each period: consistency is necessarily obtained from  , not from  ( ). 

This seems to be good news, given that, as we have just seen, internal values do not represent, 

in general, the actual invested capital. Unfortunately, not even   has anything to do with the 

actual overall invested capital, for it bears no relation to the actual economic milieu met by the 

investor. Indeed, one can impose formal consistency of any arbitrary number   with NPV. 

Consider, for any fixed   ,   , and    , the consistency equation 

    
  (   )

   
                                                                  (  ) 

if one plugs the fictitious capital   (   )    (   ) into it, one obtains a rate of return 

which is formally consistent with NPV. But this evidently does not warrant labeling   as a 

meaningful economic rate of return nor considering   the actual capital invested. Choosing 

   , one just finds    ; as a result,   is only a plug which bears no relation to anything an 

economist would recognize as meaningful values of economic resources. Therefore, the 

IRR is an ad hoc rate of return on a distorted capital base which is forced to enjoy NPV 

consistency.  

Example 12. Consider example 11a. The IRR is 10%. The overall invested capital is 

                 (    )          (    )              (in thousands), but this 

capital does not guarantee consistency of the IRR with the NPV:             (    

    )(    )                      . If one distorts the actual capital by imposing the 

equality           (        )(    )  , one finds             ; thus, the IRR can only be 

given formal consistency with NPV if one plugs   into the consistency equation, setting aside 

the actual capital  . Evidently, with this very line of reasoning, we might conclude that, say, 

      is the correct project’s rate of return, associated with             , just by 

invoking the consistency equality                     (         )(    )  . 

 

F13 — Multiple project balances, multiple excess returns 

The IRR-implied capital   is uniquely associated with the IRR. However, there are infinitely 

many capital sequences   (            ) such that        and  ∑     
 
         , the 

internal sequence  ( ) being only one of them. Any such vector gives rise to a sequence of 

holding period rates    and the mean of such rates weighted by the discounted interim capitals 

as a proportion of the IRR-implied aggregate capital is just the IRR itself: 

                              
     

   

 
    

          

    
                 (  ) 
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(Magni 2010, Theorem 3). Therefore,  ( )  is sufficient to generate the IRR (by assuming 

constant force of interest) but not necessary: any sequence   generates the IRR. Hence, the IRR 

is not a period rate of return but a weighted arithmetic mean of period rates and the IRR 

approach does not even supply an unambiguous stream of project balances. An implication of 

this result is that the equality 

    
 (   )

   
 

∑     (    ) 
   

   
                                              (  ) 

does not unambiguously identify the project’s excess returns (residual incomes): for every  ,  

  (       )      (     ) is not unique. As a result, the IRR cannot provide a reliable 

economic analysis of the project, for the use of the IRR always leads to a problem of multiple 

interim capitals and multiple excess returns. 

Example 13. Consider Example 11c,  where      is assumed. Table 4a arbitrarily selects four 

(from infinite) IRR-implied streams of project balances, each associated with its own sequence 

of holding period rates   ( )  such that the net present value for each sequence is           , 

which implies that the weighted average of the holding period rates is just    25.54% no 

matter what capital stream is selected. Table 4b presents the corresponding excess returns 

obtained by application of eq. (8). An IRR approach obviously cannot tell us which sequence of 

interim capitals and corresponding excess returns should be appropriate for economic 

analysis. 

Table 4a. Multiple project balances 

       ( )   (  ( ))   ( )   (  ( ))   ( )   (  ( ))   ( )   (  ( )) 

0  9,000 9,000 9,000 9,000 9,000 

1 4,938 6,360.6 (25.54%) 5,549.0    (16.52%) 6,787.5 (30.28%) 10,032.8  (66.34%) 

2 2,211 5,774.2 (25.54%) 8,287.0    (     %) 5.500.2 (13.61%) 4,120.5 ( 36.89%) 

3 3,607 3,641.9 (25.54%) 2,429.4 ( 27.16%) 3,500.5 (29.22%) 2,125.9    (39.13%) 

4 1,542 3,030.1 (25.54%) 2,500.0    (66.38%) 3,000.0 (29.75%) 2,333.3    (82.29%) 

5 3,804 0  (25.54%) 0     (52.16%) 0   (26.80%) 0      (63.03%) 

NPV 5,830.58 26,643.18 26,643.18 26,643.18 26,643.18 

IRR (weighted 
average of   ’s) 

25.54% 25.54% 25.54% 25.54% 

 

Table 4b. Multiple excess returns 

 

 
   (    ( )   ( ))     (    ( )   ( ))     (    ( )   ( ))     (    ( )   ( )) 

 

1 2,028.6  2,028.6  2,028.6  2,028.6 

2 1,433.7  1,250.8  1,529.9  2,261.4 

3 1,301.5  1,867.9  1,239.8  928.8 

4 820.9  547.6  789.0  479.2 

5 683.0  563.5  676.2  525.9 

 

 NPV     5,830.58  5,830.58  5,830.58  5,830.58 
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F14 — Intertemporal inconsistency 

Consider an investment of    dollars and suppose a performance dynamic analysis is carried 

out such that, at every date  , the investor computes the rate of return in the past interval [   ]. 

If      for           , the IRR does not exist in the given interval (see F2), so neither the 

one-period rates              nor the associated capitals    exist. Suppose that, at some 

time  , a cash flow    is released. The IRR in [   ] is equal to   (     )
      which is the 

average of the internal period rates                     , associated with the interim 

capitals   . But this contradicts the fact that, at every date    , it was established that such 

rates and relative capitals did not exist. 

To overcome this awkward result, one may reasonably consider, for each date   , a 

terminal capital   , exogenously selected. Hence, the rate of return in [   ] can be computed as 

 [   ]  (     )
     ,            . At time  , one finds that the IRR is   ((   

  )   )
     , which implies that the interim capital at time   is               . But, in 

general,      ,  so the evaluation of the capital at time   changes depending on the time when 

the evaluation is made. This means that the IRR equation accomplishes a retrospective revision 

of the interim capitals. Such a retrospective evaluation has no economic rationale, yet, it is an 

inevitable byproduct of the IRR equation. 

Example 14. An IRR-minded investor purchases a bond at time 0 at a price of $100 and aims to 

accomplish a performance dynamic analysis. At time 1, the investor makes recourse to the 

market value of the asset to overcome the no-IRR problem. Assume the market value is 

       so that  [   ]     . At time 2, the market value is 121 and the bond is sold. 

Assuming a 2% COC, the NPV is     . The investor’s IRR is      , which necessarily implies 

that the internal capital at time 1 is        and the period rate is       , which contradict 

the previous choice of        and  [   ]     , respectively. 
 

F15 — Accounting variables 

Despite considerable efforts of economists and accounting scholars, it is well-known that a 

firm’s IRR is not capable of summarizing accounting information provided by accounting 

variables, in particular by accounting rates of return (Kay 1976; Peasnell 1982a,b; Fisher and 

McGowan 1983; Franks and Hodges 1984; Peasnell 1996). Surprisingly, accounting scholars 

interpret this fact as a flaw of accounting rates of return rather than a flaw of the internal rate 

of return. In fact, the former are obtained from capital values which consist of recognizable 

resources and transactions, whereas the IRR-implied capital   has no empirical referents. In 

particular, in corporate investment decisions, cash flows are often estimated on the basis of 

pro forma financial statements and then converted to forecasts of cash flows (e.g., Brealey et al. 

2011; Titman and Martin 2011). This implies that cash flows are second-order variables, 

whereas accounting constructs are first-order variables: “accounting variables are the 

‘independent’ variables and net dividends the ‘dependent’ variable, not the other way around” 

(Brief 1996, p. 28). Formally, let      Working capital,       Net Fixed Assets,        

 Net Operating Profit After Taxes, and let     denotes variation. The fundamental economic 

relation boils down to 

    
⏞

  

      ⏞    
  

 (          )⏞          
       

                                               (  ) 

which implies that the IRR equation boils down to 

∑
                 

(   ) 

 

   

                                               (   ) 



 

16 
 

or  

 

∑
     (            )            

(   ) 

 

   

                              (   ) 

 

where             (            ) is the well-known ‘Return On Investment’ (ROI) 

and (            ) represents the beginning-of-period invested capital (     ). Equation 

(15b) shows that the IRR is a function of the ROIs and the invested capitals. In general, if the 

estimation of accounting constructs changes, the IRR changes as well. So, those scholars who 

consider the IRR a correct measure of economic profitability, while considering ROI an 

incorrect measure, are trapped in a paradox: if one considers IRR economically significant, one 

cannot consider the estimated ROIs as incorrect, for the former is just computed on the basis of 

the latter. 

One would rather expect that a suitable aggregation of the estimated ROIs should result 

in a significant index of wealth creation. Decades of research in accounting have shown that the 

IRR is not such an index (see Brief and Peasnell 1996) and we have just seen that the IRR is an 

arithmetic capital-weighted mean of concocted period rates    which have nothing to do with 

the estimated ROIs. This implies that the way the IRR equation aggregates ROIs is not the 

appropriate one. 

Example 15. Consider again Example 11c. Note that the IRR is derived from a stream of FCFs 

which have been derived from a vector of estimated NOPATs and a vector of estimated 

invested capitals (see Tables 3a and 3b). In particular, the vector of invested capitals (in 

thousands) is   (                                    ), which is different from any IRR-

implied sequence of project balances  . The vector of estimated ROIs is different from any IRR-

implied sequence of holding period rates   , and the estimated aggregate invested capital is  

             [(    )   (    )  ]       (    )        (    )             

whereas the IRR-implied invested capital is   (    )  
         

           
          . Hence, the IRR 

is the result of an aggregation of estimated accounting variables (see eq. (15)), but the IRR 

approach aggregates them in an incorrect way: it implicitly devises an artificial capital   which 

denies the estimations made by the investor. Such a capital    is related to incorrect (and 

ambiguous) period rates that contravene the very ROIs (and therefore, the very interim 

capitals) from which the IRR itself is derived. 
 

F16 — Makeham’s formula 

In the nineteenth century, the actuarian W. Makeham devised a formula which divides the 

value of a loan into two parts: the value of interest and the value of principal repayments. In a 

loan, interest is obtained as           where      is the principal outstanding of the loan 

(economically, it represents the capital invested by the lender at the beginning of the period) 

and    denotes the interest rate holding in the  -th period. The principal repayments are 

          .  The value of interest is defined as the present value of interest payments: 

  ∑    
  

   . The value of principal repayments is analogously defined as the present value of 

principal repayments:   ∑   
 
     . The cash flows for the lender are            

       . Assume now that the loan’s interest rate is constant across periods. This means that 

             is the lender’s IRR, since the terminal condition      guarantees that 
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   ∑   (   )   
    is satisfied, where        is the amount committed by the lender. 

Makeham’s formula can be written 

  
 

 
(    )                                                                       (  ) 

(Makeham 1874; Glen 1893; Broverman 2008). While introduced for actuarial purposes, and 

never used by engineering economists nor financial theorists for capital investment analysis, 

the formula evidently holds for any sequence of cash flows. Dealing with capital investment 

projects,   is interpretable as the interest income,   represents that part of the committed 

capital    which is recovered by the project. Therefore, the difference      represents an 

unrecovered capital.  Intuitively, a project is worth undertaking if and only if the overall return 

  generated by the project exceeds the unrecovered capital:       . This is confirmed by 

the relation       (    ) which stems from the definition of   and  . Also, by (16), 

    (    ) (
 

 
  )                                                         (  ) 

We can then introduce the following 

Makeham’s criterion.  A project is  acceptable if and only if 

 

 
                      

Makeham’s criterion is NPV-consistent by (17). Further, it formally (but not economically) 

solves the multiple-IRR problem. To see it, let  ( )   ( ) be any two IRR of a project and let 

  ( )    ( ) the corresponding recovered capitals. From (17), 

(     ( )) (
 ( )

 
  )  (     ( )) (

 ( )

 
  )  

which implies that any one IRR can be used for making the correct accept-reject decision. This 

criterion is logically equivalent to Hazen’s (2003) in eq. (10). 

If the loan has varying interest rates, then the ratio of the IRR to the valuation rate   is 

no longer adequate to express the project’s relative profitability and Makeham’s formula fails 

to capture the value of interest:   
 

 
(    ) (more so if the valuation rate   itself is varying 

across periods, in which case it is not clear how to replace the constant  ). The reason for this 

failure is that IRR does not adequately summarize the information derived by the varying 

interest rates.  

Example 16.  Consider a loan of $154.8, with varying interest rates, repayable with four 

installments (see Table 5). Assuming     , the value of interest is         and the IRR is 

        ;  equation (16) is not fulfilled: 

 
      

  
 (            )               
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Table 5. Makeham’s formula and varying interest rates 

Time                

0  154.8 154.8    

1 20 140.99 6.19 13.81 4% 

2 25 127.27 11.28 13.72 8% 

3 15 125 12.73 2.27 10% 

4 20 125 20 0 16% 

5 150 0 25 125 20% 

Present 

values 

     57.31    648.63    70.03    142.08 
 

 

F17 — Changes in capital 

Just because IRR is a cash-flow-based measure which neglects the actual operations involved in 

a project, it remains constant under changes in capital. That is, any two projects with the same 

cash flows have the same IRR, no matter what the invested capital actually is. 

Economically speaking, the same vector of cash flows can result from different economic 

policies, which result in different capitals invested and different returns. For example, consider 

two firms, A and B, each investing    in an  -period investment. Given the different way the 

investments are managed, the projects are economically different, with different returns 

   (  
 
   

 
     

 ) and different interim capitals     (     
 
   

 
       

 ),      .  Suppose 

that the difference in returns is compensated by the difference in capital depreciation: 

  
    

  [    
    

 ]  [    
    

 ] 

so that the cash-flow streams coincide:   
    

     for          .  The two projects are 

empirically characterized by different economic activities, which result in different invested 

capitals and returns: a proper approach to rate of return should acknowledge this difference, 

whereas the IRR forces both projects to share the fictitious capital  , despite the empirical 

evidence against  . As a result, the two different projects are made to collapse into the same 

asset, whence the same rate of return is obtained. 

Example 17. Consider the two projects described in Table 6 and assume     . 

Table 6. Different projects, equal IRR 

 Project A Project B Cash flows 

Time 
Invested 

capital 

Income and 

rate of return 

Invested 

capital 

Income and 

rate of return 

 

0 150  150   150 

1 80  20  (13.33%) 50  50 (33.33%) 50 

2 40  5  (6.25%) 30 15       (30%) 35 

3 40 30     (75%) 50 50 (166.6%) 30 

4 0 50   (125%) 0 40       (80%) 90 
 



 

19 
 

The cash flows are the same but the projects are economically different: they derive from 

different operations and the magnitude and the distribution of incomes and interim capitals 

are different. With different invested capitals, different incomes, and different period return 

rates, one would expect that the overall rate of return of the two projects should be different. 

Yet, the IRR approach cancels out any economic difference between the two projects, and the 

rate of return is made to coincide: the IRR is 12.31% and is the return on an inputted capital 

equal to         , which is incorrect, since the overall capitals invested is different: 

respectively,          (    )     (    )     (    )          and        

  (    )     (    )     (    )         . To employ the IRR approach means to 

disregard the fact that, while wealth creation depends on cash flows, rate of return depends on 

the capital base. 

 

F18 — Computational issues 

While advanced software solving polynomial equations is in principle available to anyone 

(Matlab, Mathematica etc.), it is well-known that the average practitioner is not willing or is not 

capable of engaging in difficult-to-use and costly tools for computing a rate of return. 

Managers, professionals, financial advisors need a handy tool for measuring rate of return. The 

use of spreadsheet functions (most notably, IRR and XIRR in Excel) is ubiquitous and 

overcomes the problem of manually computing an IRR. However, Excel makes use of an 

iterative procedure whose starting point depends on a choice left to the evaluator. Once a 

solution has been found, Excel stops and multiple IRRs are therefore not detected. (Strictly 

speaking, this may not be considered a fallacy, but only a practical limitation). 

Example 18. Consider Example 1. With no guess, Excel individuates 10% as the IRR (it is just 

the default value for Excel), but with a different guess, either 30% or 50% are detected, 

depending on the guess, in a rather irregular way (see Table 7). 

 

Table 7. Computation of IRR with Excel for 

  (                     ) 

  

Guess of the user Computed IRR 

  

No guess 10% 

10% 10% 

18% 10% 

19% 50% 

20% 30% 

30% 30% 

40% 50% 

50% 50% 

60% 50% 
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4. Pars construens: A simple genesis for an alternative theory of rate of return 

What is a rate of return? One can answer the question by resting on four simple intuitions.  

Intuition 1: A rate of return  ( ) of any asset is, by definition, an amount of interest earned per 

unit of capital invested in the asset. (A rate is a “fixed relation (as of quantity, amount or 

degree) between two things … a quantity, amount or degree of something measured per unit of 

something else” (Webster’s Third New International Dictionary, 1961). In a rate of return, 

“something” is return and “something else” is capital). For example, if capital invested is 150 

and return is 15, then the rate of return is 15/150=0.1. Therefore, a project’s rate of return 

should be formalized as a ratio: 

 ( )  
 

 
                                                                        (   ) 

with    return,    invested capital. Intuitively, in a multiperiod project, the invested capital 

  is the sum of all interim capitals invested, and the return   is the sum of all period returns. 

Therefore, taking into account the time-value of money,   ∑      
    

    and   ∑    
    

    

so that (18a) boils down to 

 ( )  
∑    

    
   

∑          
   

                                                          (   ) 

Intuition 2: A rate of return  ( )  should summarize (and therefore be compatible with) 

information which is already included in the asset’s period return rates   . Therefore, one 

would expect that the overall rate of return should be a suitable weighted average of the period 

rates of return: 

 ( )                                                                     (  ) 

The weights    should not only fulfill the coherence condition ∑   
 
      but also be 

economically meaningful:    should represent the capital invested in the  -th period as a 

proportion of the total capital invested. The choice          
       just fulfills this condition 

as well as the coherence condition.  

Intuition 3. The project’s NPV represents the investors’ incremental wealth with respect to the 

minimum attractive alternative. Therefore, the ratio 
   

 
  represents the incremental wealth 

per unit of overall capital invested over and above the cost of capital. This index might then be 

conceived of as an interest rate which marks up the cost of capital to the project’s rate of 

return. Denoting the latter as  ( ): 

(   )  (  
   

 
)     ( ) 

so that  

 ( )  (   )  (  
   

 
)                                                        (  ) 

In this view, the project’s rate of return is therefore obtained by “grossing-up” the cost of 

capital by the relative incremental wealth. 
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Intuition 4. Given that the value of a project is the sum of the NPV and the initial capital 

invested   , one might define the overall value of a project as the sum of the NPV and the 

overall capital invested. Let          denote such a value and let    be the project’s 

overall market value at time 1: the investors invest overall capital   and receive, after one 

period, an asset whose overall market value is   . The rate of return is then 

 ( )  
    

 
                                                                    (  ) 

As it turns out, the four rate intuitions give rise to the same rate of return. Owing to the 

definition of    and the choice          
      , one finds  ( )   ( ) . As for (20), just consider 

that    (   )  ∑ (        ) 
  

    (    ) so that, applying (18), the equality  ( )   ( ) 

is obtained. Finally,      (   ) so that  ( )  
(     )(   )  

 
  ( )  

Equations (18)-(21) make it clear that a project rate of return is a capital-based notion, not a 

cash-flow-based one: wealth creation does depend on cash flows, but a rate of return depends 

on capital. We denote as   the project’s rate of return on capital  . Given that    ( ) for 

every           , we can state the following 

Definition 1. The rate of return of a project is alternatively defined as 

(i) Return on invested capital – eq. (18) 

(ii) Weighted average of holding period rates – eq. (19) 

(iii) “Grossed-up” cost of capital – eq. (20). 

(iv) Market-determined interest per unit of overall invested  capital– eq. (21) 

The rate of return   is called Average Internal Rate of Return (AIRR). The expression “Average 

Internal Rate of Return” stems from the fact that the holding period rate    can be viewed as a 

one-period IRR for the project (           ). The AIRR is the weighted average of such IRRs.  

 

Although equation (20) refers to overall invested capital  , one can use the same 

schema for drawing other pieces of information, namely the return on any desired capital base. 

To this end, consider the ‘AIRR function’  ( )  (   )  (  
   

 
)    which can be written as 

 ( )    
   (   )

 
                                                          (  ) 

Equation (22) represents the rate of return corresponding to a capital base of   dollars (if 

   , then  ( )   ); geometrically, it is an indifference curve which supplies the same NPV 

for any combination (   ) of capital and rate. For this reason, we call such a curve the iso-value 

line.  In such a way, one can draw economic information about return on overall capital 

invested (   ), return on initial investment (    ), return on total investment cash flow 

(    ), return on average capital (    ̅, where   ̅ is any desired average of interim 

capitals) or any other economically meaningful capital base (see  Figure 1). Equation (22) 

implies that any  ( ) can be directly derived from the four economic intuitions above described 

by using   as the invested capital. 
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The AIRR decision criterion is then straightforward. 

Accept/reject decisions. For any capital base  , a project is acceptable if and only if 

 

 ( )                    

(see also Magni 2010, Theorem 2). 

 

A common idea is that a project   should be defined as a vector of cash flows. However, to any 

vector of cash flows there corresponds a set   of rates of return (for nonzero-NPV projects, 

    { }). This indeterminacy is solved if the usual conception is changed by introducing a 

more appropriate definition of project. 

Definition 2.  A project   is a vector of cash flows and capitals: 

  (   )  (                       )               

where   represents the end of the operating activity. 

Definition 2 does not give any problem of indeterminacy, for, in order to determine a rate of 

return, the evaluator has to fix capitals as well as cash flows. The vector ( 
 
          ) should 

represent the economic resources actually deployed in the project. The estimation of the 

appropriate capital base is an empirical matter, not a mathematical one, just as is the 

estimation of cash flows. And it depends on the purpose of the analysis, on the economic milieu 

met by the investor, and on the information available.  

In particular, the type of projects is relevant in choosing the appropriate  . For example, 

     ̅                    
            

  (  ) 

    

  ( )  

  (  ̅) 

  (  ) 

 ( ) 

Figure 1. The iso-value line of a positive-NPV project. To each capital 
base there corresponds a unique rate of return. (If some capital base 
were negative, the left arm of the hyperbola would be involved as well). 
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  Type of project   Appropriate capital 
 
  Loan     Principal outstanding 

  Security or 
  financial portfolio   Market value 
 
  Capital investment (industrial,   

engineering project)   Estimated value of net assets 
 

Real estate investment  Marketplace value (selling price) 
 

The choice of the capital base also depends on the purpose of the analysis. For example, if the 

investor is willing to know the rate of return on initial investment or total investment cash 

flow, then the capital base will be    or   , respectively.  

What if information on interim capitals is not available and the evaluator is not willing or not 

capable of engaging in estimation? In these cases, a natural and compelling choice is the 

economic value   , which is defined as the price at which the project (or a replicating portfolio) 

would be traded in an efficient market where   is the equilibrium rate of return: 

   ∑
  

(   )   

 

     

                                                                 (  ) 

whence  

     ∑     

 

   

    ∑ ∑
  

(   )   

 

     

   

 

   

  

Therefore, if only cash flows are available, the project is 

  (   )  (                       )                

The rate of return, which we call “economic AIRR”, is  

     
   (   )

   ∑       
   

                                                        (  ) 

Practically, equation (24) is a fast and frugal procedure for computing a rate of return. 

Theoretically, its significance derives from finance theory and can be gleaned by noting that, in 

an efficient market, whenever a firm undertakes a project which is positively evaluated by the 

market, the firm finds itself in a temporary state of disequilibrium. Consequently, the share’s 

price increases so that shareholder’s wealth is generated as a windfall gain equal to 

         . A project creates wealth for shareholders if and only if     , where   is the 

share’s equilibrium price before acceptance of the project and    is the revised share’s 

equilibrium price after acceptance of the project. For example, assuming the project is financed 
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with new equity, the equilibrium firm values before and after acceptance of the project are, 

respectively,        and    (    )    , where   is the numer of firm’s shares before 

acceptance of the project, and    is the number of additional shares issued at price   . The net 

present value of the project is                  . Given that         , then 

     (    ), which means that price increases if and only if the NPV of the project is 

positive (see also Rubinstein 1973, footnote 10, and Magni 2009, Appendix 1). In such a way, 

equilibrium is established again. Assuming all expectations are fulfilled, the value of the firm at 

the end of the first period will be   , which implies that shareholder’s rate of return in the first 

period is    (        )   . Note that   (    )     (     )  represents shareholder 

value creation; in the following periods, the firm will be in equilibrium and only the 

equilibrium return rate   will be earned by shareholders:     (          )/       for 

    (shareholder value creation is zero). Therefore, the economic AIRR is a weighted average 

of     and  : 

        (   )                          
  

   ∑     
  

   
. 

 

Note that  (  )  (        )    (Magni, 2010, pp. 167-169) so that       (  )  

(   )   : the rate of return on initial capital represents the shareholder’s rate of return in 

the first period, when disequilibrium has occurred. This confirms the economic significance of 

 (  ).  

The difference between  ( ) and   is the project’s excess AIRR function, which we 

denote as  ( )   ( )    
   (   )

 
 . Obviously,  ( ) has the same (opposite) sign as the NPV 

if     (  ), so the comparison between  ( ) and   boils down to checking the sign of  ( ). 

Relations with PI and BC ratio. Using (6) and (22) one gets 

   
 (  )   

   
 

 (  )

   
           (  )    (   )                                   (  ) 

so the profitability index is but a discounted excess AIRR on initial investment. Using (7) and 

(22) one gets to 

     
 (  )   

   
 

 (  )

   
          

   (  )

   
                                (  ) 

so the benefit-cost ratio essentially captures the (discounted) excess AIRR on total investment 

cash flow. In other words,    (  ) is the ending value of one dollar of total investment cash 

flow and the BC ratio is the corresponding economic value. If one defined the benefit-cost ratio 

as    
   

   
     

    (i.e. as a profitability index as expressed per unit of total investment cash 

flow), then one would get     
 (  )  

   
  

Owing to (25), one can also link economic AIRR and profitability index:  

         (   )  

Variable COCs. To extend the accept/reject criterion to the case of variable COCs, consider that 

    ∑ (         ) 
    

   . Some algebraic manipulations lead to the following adjustment 

for AIRR and COC: 
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 (̅ )  ∑    

 

   

                ̅( )  ∑    

 

   

                                            (  ) 

where     
        

 
,      

       
           

   . We have       ( (̅ )   ̅( )) 

whence  

 (̅ )   ̅( )  
   

 
                                                                (  ) 

In such a way, the accept/reject criterion is generalized by replacing the triplet (     ) with the 

triplet  (   (̅ )  ̅( )). 

The criterion for choosing between mutually exclusive alternatives is simple. Consider project 

   and project    (in the sense of Definition 2). We have       (     ), so, a comparison 

between the two projects boils down to accepting or rejecting the incremental alternative 

     . 

Choice between mutually exclusive alternatives. Project     is preferred to project    if 

      is acceptable. 

Choice between mutually exclusive alternatives is, actually, a particular case of project ranking. 

The latter task can then be accomplished by a pairwise application of the above criterion but, 

as previously noted, the task is cumbersome and can be time-consuming. The project’s AIRRs 

as such cannot be contrasted, for they refer to different capital bases. However, we can 

compute a standardized AIRR for each project.   The AIRR function is such that 

      ( ( )   )    (   ) 

for every  . Let   be the benchmark capital which is to be used to standardize the AIRR. Then, 

there exists a unique rate of return, denoted as  ( ), that would result from employing   

capital that is on the same iso-value line: 

 ( )    
 

 
(   )                                                            (  ) 

Project ranking. Ranking projects with the standardized AIRR is equivalent to ranking projects 

with the NPV. 

From a computational point of view, there is no need of computing the project’s AIRRs: 

equation (29) can be evidently replaced by 

 ( )    
   (   )

 
                                                          (  ) 

It is worth noting that the excess standardized AIRRs  ( )   ( )    supply correct 

information about the relative magnitude of the wealth created, given that 

  ( )

  ( )
 

    

    
 

for any pair of projects    and    and for any benchmark capital    
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5. Part costruens: Corroboration of the theory 

We now put the AIRR paradigm to the test and show that it defies each and every flaw 

associated with the IRR approach.  

F1 — Multiple rates of return 

In example 1, the project’s cash-flow vector is   (                   ) with      . As 

seen in Definition 2, any project should be linked with an appropriate capital base. Having no 

information on capital, the appropriate choice is the economic values determined by the 

market:                                so that             (    )   

      (    )         is the overall invested capital. Hence, the project is 

  (   )  (                                      )  

Using (20), one gets the economic AIRR:          
      (    )

    
        The project is 

equivalent to an investment of 2.521 at a 6.967% return; the project is not acceptable since 

           (note that 2.521 (6.967% 14%)/(1+0.14)  0.156    . The multiple IRRs 

arise because, in the IRR approach, a project’s rate of return is not found by exogenously fixing 

the capital base but, rather, by solving a polynomial equation which gives rise to multiple 

solutions and, therefore, to multiple invested capitals. Given that different rates of return are 

related to different capital bases (see the iso-value line), then different IRRs are reflected by 

different points on the iso-value line. 
 

F2 — No rate of return 

Consider example 2 where we assume      . To get the rate of return, one must fix a capital 

base. Assume, as before, that no information is available on capital. Eq. (23) leads to  

          so that           (   )          . Hence, the economic AIRR is 

       
     (   )

     
        (the project is not worth undertaking).  

 

F3 — Varying costs of capital 

As seen, the overall cost of capital is itself an arithmetic mean of the varying COCs. Consider 

example 3. Using (27), one finds  ̅( )       , with            . Using (28), one gets 

 (̅ )        
        

         
       . The excess AIRR is  ( )   (̅ )   ̅( )         , so the 

project is worth undertaking. Applying the excess AIRR to the invested capital, the NPV is 

found as        (        )         . 

 

F4 — Arbitrage strategy 

Arbitrage strategies are naturally encompassed in the AIRR approach. Consider example 4 

where   (     ). The NPV is 625 regardless of the COC. It is rather natural to set 

          so that the project is 

 (   )  (            ) 

and  (    )    
   (   )

    
      . The cash-flow stream represents a net borrowing of 

$625 whereby the borrower (the bank) pays interest at a negative rate of      . Which 

means that the borrower has made money out of a borrowing (it has earned the entire 

borrowed capital).  
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F5 —Mutually exclusive projects and project ranking 

Consider example 5. Wealth creation depends on both rate and capital, so wealth maximization 

cannot be captured by rate of return alone, just because, by definition, it neutralizes the 

investment scale. Therefore, to compare AIRRs as such is like comparing apples and oranges. 

As seen, the AIRR model enables one to standardize the AIRRs. Consider the average 

investment cash flow as the benchmark capital  . The total investment cash flows are, 

respectively,         for the first project,         for the second one,       for the third one, 

and       for the fourth one. The (simple) average is then          . Equation (30) provides 

the standardized AIRRs. Denoting as   ( ) the standardized AIRR of project  , one gets the 

correct ranking: 

  (       )       
   (    )

       
        

  (       )       
     (    )

       
        

  (       )       
     (    )

       
        

  (       )       
     (    )

       
         

We can use the excess standardized AIRRs to disclose information about the relative wealth 

created. For example, 

  (      )

  (      )
 

         

         
        

means that project 2 supplies 96.42% of the wealth created by project 1. Analogously, 

  (      )   (      )        means that project 3 supplies 72.7% of the wealth created by 

project 1 (for project 4, one finds 36.65%). (It is worth reminding that the choice of   does not 

affect the relative wealth created). 

 

F6 — Rate of return on initial capital (total investment cash flow) 

From the AIRR function, it is easy to get the rate-of-return counterparts of PI and BC ratio. 

Consider Example 6, such that        and          . Picking         in the AIRR 

function, one gets the rate of return on initial investment:  (   )         (note that 

   
          

   
     ). Picking           in the AIRR function, one gets the rate of return on 

total investment cash flow:   (      )         (note that              =1.19).  

 

F7 — Framing effects: present value vs. future value 

Consider the basic definition of AIRR in eq. (18). Referring the elements of the ratio to any 

future time  , the ratio does not change, for 

∑    
    

   

∑          
   

 
∑    

      
   

∑            
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Consider   (                ) in Example 7. Assume, for instance, that      and no 

information is given about capitals, so that economic values are employed. One finds 

            ,             ,        , as well as                            

    . Applying (18) and using         , one gets  

   
                                  

                                  
                                

With   (            ), picking          and considering      for    ,  so that 

        ,           , one gets 

  
                        

   
                                

The  AIRR correctly signals the entire loss of the capital. 

 

F8 — Framing effects: expected value of stochastic IRR vs. IRR of expected investment 

Let  ( ̃)       ( ̃)(   )   be the project’s stochastic AIRR, referred to a capital base of   

dollars. It is easy to see that the expected AIRR is unambiguously defined:  

 ( ( ̃))   ( ( ̃))   

For example, consider again Table 1 and assume the capitals are estimated at            . 

This implies 

 ( ( ̃))    
   ( ( ̃)) (   )

 
      

    (    )

     
         

Also,  ( ̃)  (              ) , which implies  ( ( ̃))     (   )     (   )  

   (      )        . 

As for the second example in F8, assuming the decision maker requires the rate of return on 

initial capital, it is easy to check that  ( ( ̃))   ( ( ̃))       . 

 

F9 — Framing effects: value additivity 

The capital invested in a portfolio of   projects is, by value additivity, equal to the sum of the 

capitals invested in the projects:  ∑   
    ∑    

   . The pitfall of the IRR lies in the fact that the 

portfolio’s invested capital is obtained endogenously (i.e. automatically) from the portfolio’s 

cash-flow vector, rather than exogenously from the projects’ capital streams. The AIRR 

approach does not incur this problem, just because capital is fixed exogenously. In Example 9, 

consider the economic values for        : using (23) for the three projects and the portfolio, 

one gets 

Time Project 1 Project 2 Project 3 Portfolio 

     

1  5.77  0.00  5.81 11.58 

2  3.88  0.00  3.92 7.8 

3  1.96  0.00  0.00 1.96 
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The sums of discounted values at      are         ,     ,          and the 

portfolio’s overall capital is just             . The latter is also equal to         . 

 

F10 — Project’s operating life 

The existence of a project is evidenced empirically by the existence of an on-going operating 

structure (plants, equipment, working capital, human capital), not by the appearance of cash 

flows. From operations, incomes and capitals are generated and the new definition of project 

(Definition 2) just takes account of this. 

Let us back to example 10, and let us assume      . Firm A’s invested capital is 

       
  

   
         and the return is       

  

   
      , so the return on capital is  

   
     

      
         

The firm B’s income is        
  

   
 

  

     
  

     
   

          . The invested capital is 

       
  

   
 

  

     
  

     
  

           , so 

   
     

      
         

The smaller rate of return is easily explained by the fact that the prosecution of the operations 

causes firm   to earn an additional income equal to            . To produce this 

incremental return, firm   utilizes a greater capital             . The resulting 

incremental return on capital is 11.84/118.4   10%. Firm B’s performance is a weighted 

average of firm A’s performance and the incremental performance, so the resulting rate of 

return is smaller than firm A’s. In general, 

     (   )          

where   
  

   and       . In this case,                            . 

It may be of some interest to note the fact that, whereas the AIRRs are different, the firms’ 

NPVs are equal. That is, NPV disregards temporal information. In contrast, the AIRR notion is a 

measure of worth which differentiates on length of time (AIRR depends on the invested capital, 

which in turn depends on the project’s operating life). For a given NPV, it seems more natural 

to prefer the project which generates that NPV in a shorter time. If so, AIRR maximization 

might be an appropriate decision criterion for ranking equal-NPV projects in several 

circumstances. The conditions under which this rule works deserve to be investigated (thanks 

are due to Joseph Hartman for this insight). 

 

F11 — Concocted capital 

The AIRR paradigm is based on the idea that the correct rate of return depends on an 

exogenous choice of the appropriate interim capitals, which are then summed so as to supply 

the overall capital  . In Table 8, we collect the overall invested capitals and the corresponding 

AIRRs based on the input data provided in Examples 11a-c. In the same table we also derive 

the distortion of the invested capital made by the IRR approach, which in turn produces a 
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distortion of the projects’ rate of return. In Example 12a, the IRR approach overestimates the 

invested capital, which induces an underestimation of the project’s rate of return. In Examples 

12b-c the reverse holds: an underestimation of capital leads to an overestimation of the rate of 

return. In terms of the iso-value line, the IRR is identified by the point (   ) on the iso-value 

line, which is biased with respect to the point (   ) (see Figure 2 in the next section). 

Table 8.  Under- and over-estimation of invested capital by IRR approach 

 

 Example 11a Example 11b Example 11c 

Invested capital ( ) 400,461.36 12,606,211.64 23,795,206.27 

AIRR ( ) 8.48% 15.32% 28.24% 

IRR-implied capital error (   ) 76,316.8  936,942.33   ,847,979.77 

IRR-implied return error (   )  1.52% 0.85% 2.7% 
 

F12 — Ad hoc consistency with NPV 

As seen, in the IRR approach, the capital is obtained by picking  ( )    and reverse-

engineering the relation  ( )       (   )  . With this approach, the capital is made to 

depend on the rate of return, which is incorrect: it is the rate of return which depends on 

capital. Consider Example 12 (= Example 11a): the point (               ) on the iso-value 

line is detected by solving the IRR equation and then computing    (   )            . But 

the point (              )  has the same economic status as, say, the point 

(               ), which is  found by arbitrarily imposing that 25% is the rate of return. An 

economically meaningful point on the AIRR function is (                 ), as seen in Table 

8, which is found by exogenously choosing the actual invested capital:        (          ). 

 

F13 — Multiple project balances, multiple excess returns 

Multiple project balances associated with any IRR arise owing to the reverse engineering 

procedure which generates  ; in contrast, the AIRR procedure exogenously starts from one 

single vector of interim capitals (which is intrinsic in the new definition of project), so 

ambiguity is not possible: 

AIRR IRR 

       ( ) 

 

      ( )                      

 

Consider Example 13 (= Example 11c). Table 3 collects a unique stream of interim capitals: the 

project is  

  (   )  (                                                                    )  

Applying eq. (8) with               and                (         )  one gets 

the unique excess return 

   (       )          (            )  (            )(      ) 

(see Table 9). In this case, the COC is the well-known Weighted Average Cost of Capital. 
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Table 9. Unique excess returns* 

  

 

 

 

   (       ) 

 

 

 

1 668  

2 2,061  

3 1,257  

4 1,658  

5 714  

 

NPV 5,830.6  

            *Numbers in thousands 

 

F14 — Intertemporal inconsistency  

In the AIRR approach, an evaluator is not forced to retrospectively revise the capitals: the latter 

can be estimated in a timely fashion and those values can be frozen. In such a way, the 

evaluator can use, at time  , the very data which have been used at any time    . This avoids 

intertemporal inconsistency. Consider example 14. At time 1, the evaluator fixes the interim 

capital at        and the AIRR is 60% (in one period, the AIRR coincides with the holding 

period rate). At time 2, the analyst does not revise the evaluation and makes use of the same 

interim capital to compute the AIRR of the entire investment: 

  
   (   )  (        )(   )(    )  

       (    )  
        

 

F15 — Accounting variables 

The AIRR approach is capable of aggregating accounting variables in an appropriate way, 

which testifies of the major role accounting constructs can play in expressing economic 

profitability. The overall capital is equal to the present value of the estimated interim capitals, 

and the AIRR is equal to the estimated average ROI: 

     ̅̅ ̅̅ ̅  
∑      (            ) 

    
   

∑ (            )     
   

 

which can be written as  

 

   ̅̅ ̅̅ ̅    
   (   )

∑ (            )     
   

  

 

In particular, in the example depicted in Table 3, one gets    ̅̅ ̅̅ ̅     
        (    )

         
       , 

which is the project’s rate of return. The project should be accepted (28.24% 3%) and 

             (         )(    )           .  
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F16 — Makeham’s formula 

With varying interest rates, Makeham’s formula does hold if   replaces  . To show it, we first 

show that   
    

 
(   ). From            it follows             , whence  

  (          )  (        )  (       )              

Manipulating algebraically, 

     (      )  (          
 )    (               ) 

which means 

     
   

   
    

    

   
      

    

   
  

 As       (   ),  

     
   

 
(   )     

    

 
(   )       

    

 
(   )  

whence, finally, 

  
           (       

        )

 
(   )  

    

 
(   )  

Using this result and the equality    (   )    (   ), one gets     
    

 
(   ) . As 

          ,  

  
 

 
(    )                                                                    (  ) 

We call (31) the generalized Makeham’s formula (Makeham’s formula being only one particular 

case of it). We can then introduce the following NPV-consistent decision criterion. 

Generalized Makeham’s criterion. A project is acceptable if and only 

                      

The sign of the unrecovered capital      signals whether the asset is an investment or a 

borrowing: in case of a borrowing, the recovered capital   exceeds the committed capital    so 

the AIRR is a borrowing rate and wealth creation is generated if     .  

The example presented in Table 5 can now be easily coped with. The AIRR is  (      )  

       and  

        
      

  
 (            )  

F17 — Changes in capital 

The actual economic unfolding of the project and the actions made by investors, summarized in 

income and capital, are relevant in computing the rate of return. So, projects with the same 

cash flows have, in general, different rates of return. In example 17 (see Table 6) all data are 

available to compute the AIRR (average ROI) for the two projects.  One gets    ̅̅ ̅̅ ̅         

and    ̅̅ ̅̅ ̅        . The cash flows are the same, but the projects are empirically different. 
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F18 — Computational issues 

As seen, the AIRR has no computational problems for no equation is involved. Indeed, there are 

essentially three ways to compute it which can be used depending on the data available: 

incomes and capitals (eq. (18)); period rates and capitals (eq. (19)); cash flows and capital base 

(eq. (20) or eq. (21)). Even in those occasions where interim capitals are not available and the 

evaluator is not willing to engage in estimation of interim capitals, the problem is easily 

overcome by picking the economic values   , which are easily computed from prospective cash 

flows. There is no need for advanced software: a pocket calculator will suffice for any situation. 

 

6. Relations with IRR 

Refutation of the IRR approach as a general approach to rate of return extends to any 

modification of such an approach which computes interim values automatically, without any 

value judgment. For example, XIRR, which is a financial function canned in Excel, , is the 

solution of an IRR equation where the coefficients represent daily cash flows (if, at day  , 

project generates no cash flow, then the coefficient of the  th-degree term in the polynomial is 

zero). The same applies to the well-known Modified Internal Rate of Return (MIRR): its interim 

values are concocted values of a modified project. 

Refutation of IRR approach does not mean refutation of IRR as a rate of return. The set of a 

project’s IRRs is a subset of   (the class of all project’s AIRRs). Any IRR is then graphically 

identified by a point on the iso-value line. However, in the IRR approach, the causation effect is 

reversed: rather than requiring an exogenous estimation of the capital in order to determine 

the rate of return, the IRR approach requires that the rate of return is first determined via the 

IRR equation; the related capital is automatically and implicitly obtained as the IRR’s 

counterimage:      ( ) where    ( ) denotes inverse function (see Figure 2).  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This reversed procedure imposes its own concocted values, so preventing the evaluator to 

make value judgments, which are essential in establishing whether a given AIRR is indeed the 

   

Figure 2. Any IRR belongs to the set   of the project’s AIRRs, and, as such, it 
lies on the iso-value line. (The figure represents the case of a positive-NPV 
project with unique IRR and positive IRR-implied aggregate value.) 

    

  

        

  ( ) 

  ( ) 

   ( )    
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appropriate rate of return for the project at hand. However, just because the real-valued IRR 

(or IRRs) of a project represents an element of  , it can be an appropriate rate of return in 

those situations where it is economically meaningful. There may be some cases where   is the 

appropriate capital: for example, in a loan with constant interest rate, it is rather natural to set 

the principal outstanding as the capital invested by the lender, which implies that the invested 

capital grows at a constant force of return, which in turn means that   is the appropriate 

capital and, therefore, the appropriate AIRR is exactly the IRR:  ( ). The same applies for those 

financial securities where the interest rate is constant. 

  

Technically, the AIRR paradigm does help IRR in several senses: 

Project ranking.  To compare projects’ IRRs is illegitimate (this is not a flaw of the IRR, but a 

flaw of those scholars who insist in comparing rates of return referred to different capital 

bases). However, one can compute an adjusted IRR allowing for scale: letting   the benchmark 

capital, 

 

 ( )    
 

 
(   )                                                          (  ) 

Maximization of  ( ) is equivalent to NPV maximization, so the adjusted IRR is a correct 

relative measure to be used in ranking projects.  
 

No rate of return. If a project has no IRR, a quasi-IRR can nonetheless be computed, which is 

quasi an IRR of the project in the sense that it is the IRR of the (twin) project which most 

closely resembles the original project. Such a quasi-IRR represents an AIRR of the original 

project, associated with the IRR-implied capital of the twin project (see Pressacco et al. 2011). 

Reinvestment assumption. The IRR has sometimes been criticized as it allegedly implies the 

assumption of reinvestment of cash flows at the IRR. We have shown that the IRR is a weighted 

average of holding period rates applied to the invested capitals   , not to reinvested cash flows: 

reinvestment plays no role in the AIRR paradigm.  

Varying costs of capital.  One can use (27) along with any sequence   to cope with varying 

COCs. The project is acceptable if and only if the IRR exceeds an appropriate average COC, 

which is itself an AIRR of an equivalent-risk asset: 

   ̅                                                                 (  ) 

where         
      with      

       
           

   . 

 

Use of IRR in conjunction with other AIRRs. In those cases where some interim capital 

values are known and some others are not, IRR can be incorporated in the computation of the 

appropriate AIRR. Consider some convenient unit of time; let    {          }  [   ] be 

the set of dates where the investment’s values    
 are available. The estimated interim value at 

time   (       ) can be computed as the economic value: 

 

   ∑   (   )   

    

     

      
(   )                                              (  ) 
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where   is the COC referred to the unit of time selected. Alternatively, if there is some reason 

supporting the assumption of constant growth between the dates    and     , one may replace 

COC with IRR to get the internal values 

  ( )  ∑   (   )   

    

     

      
(   )                                      (  ) 

where   now denotes the internal rate of return of the cash-flow stream 

(    
                         

      
)  and where     

 and       represents a constructive 

purchase and a constructive sale, respectively. That is,  

      
 ∑   (   )    

    

      

      
(   )         

For example, consider       at time 0, $40 after six months, $20 after one year, $70 after one 

year and a half, so that   (             ). Suppose the interim value after one year is 

     , while    (interim value after half a year) is unknown. One can use either (34) or (35) 

to compute the missing value. For example, if (35) is used, we have      
  

   
 

     

(   ) 
  

whence          Therefore, the internal value is   (     )  
  

      
       , so that 

 (   )  (                          ) . Assuming     , the NPV of the capitals is 

      
     

    
 

  

             Hence, the project rate of return:             

    (    )       . Evidently, if there is more than one segment where interim values are 

unavailable, one can even use a different AIRR for each segment (provided there is an 

economic  rationale for each choice). 

It is worth stressing that the IRR cannot be retrieved acritically and cannot be detached 

from the AIRR approach: (i) the use of the adjusted IRR just denies the IRR approach, because 

 ( )   ( ) and because it implies the exogenous choice of the appropriate benchmark capital 

base (average capital? Average total investment cash flows? Other bases?); (ii) the choice of the 

quasi-IRR is just the choice of a project’s AIRR, (iii) given that (33) holds for any  , the 

evaluator needs choose one among infinitely many possible  ’s in order to single out the 

appropriate average COC; (iv) if an IRR is selected whenever interim capitals are not available, 

then there must be some good reason to prefer IRR over economic AIRR (or another AIRR); 

that is, there must be some good reason to believe that the project’s internal values are more 

economically meaningful, as invested capitals, than the project’s economic values. 

Therefore, in all those cases where IRR can be retrieved as a legitimate rate of return, 

(capital) value judgments are necessary, which means that the IRR can be legitimately used 

only if it is embraced in the AIRR realm. 

As a matter of fact, IRR is not the only rate of return that can be retrieved: the AIRR 

paradigm is capable of rescuing any other approach to rate of return, either appeared in the 

past literature or to appear in the future: letting   be any possible rate of return derived by any 

model, it will represent the AIRR which corresponds to an invested capital of   (  

 )    (   ). Therefore, any (past or future) rate of return is some AIRR, and, for this 

reason, it is both technically reliable and NPV-compatible. As with IRR, the problem is whether 

the rate of return advocated is economically meaningful, that is, whether it indeed expresses 
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the relative growth of the capital actually invested in the project. The answer to this question is 

domain-specific and must be supported by sound economic reasoning and empirical evidence 

capable of providing the rate of return with the appropriate economic informational content.  

 

Conclusions 

This paper is a refutation of the IRR approach and a corroboration of the (recently introduced) 

AIRR approach as a general approach to investment decisions and economic profitability. As 

such, it calls for a paradigm shift in the conceptualization of the rate-of-return notion.  

In the pars destruens, the paper discusses eighteen fallacies of the IRR approach: 

F1. Multiple IRRs may occur 

F2. No IRR may occur 

F3. IRR cannot cope with varying COCs 

F4. IRR cannot measure the rate of return of an arbitrage strategy 

F5. Choice between mutually exclusive projects and project ranking are not consistent 

with the NPV rule 

F6. IRR cannot measure the rate of return on initial investment or on total investment 

cash flow 

F7. IRR either never or always signals a loss of the entire capital, depending on how the 

equation is framed 

F8. IRR of the expected investment is not equal to the expected IRR of the investment 

F9. The IRR approach does not fulfill value additivity: the value of a portfolio of projects 

is not equal to the sum of the project’s values 

F10. The IRR neglects the project’s operating life 

F11. The interim capitals implied by the assumption of constant force of return (internal 

values) have nothing to do with the actual capital values, based on empirical 

available data 

F12. The IRR-implied overall capital invested is a plug which imposes formal consistency 

with the NPV rather than deriving it from actual economic referents 

F13. The IRR-implied interim capitals are not unique; the IRR-implied excess returns are, 

therefore, not unique 

F14. If an on-going analysis of ex post performance is accomplished, the IRR equation 

generates a retrospective revision of the interim capitals fixed at preceding dates, so 

that intertemporal inconsistency cannot be avoided 

F15. The IRR, which is based on cash flows, is not capable of summarizing accounting 

information provided by those very accounting variables which the investor uses to 

estimate cash flows 

F16. The use of the IRR in Makeham’s formula makes the latter incorrect in those cases 

where interest rate is variable over time (e.g., capital investments, variable-interest 

loans, investment funds) 

F17. The IRR is constant under changes in capital, so it does not signal that any two 

projects are empirically different 

F18. Ordinary spreadsheet functions such as IRR/XIRR in Excel do not inform investors 

about multiple IRRs. Excel’s choice of an IRR depends on the investor’s guess. 
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In the pars construens, we constructively show that a project’s rate of return can be 

alternatively obtained by (i) dividing return by invested capital, (ii) computing the capital-

weighted arithmetic mean of period rates, (iii) grossing-up the cost of capital by the investors’ 

relative wealth increase, (iv) calculating the market-based interest per unit of overall capital 

invested.  These definitions make the AIRR-based paradigm economically significant (it 

explicitly links wealth increase, return and capital), intuitive (it stems from simple intuitions), 

user-friendly (no equation is involved, only basic arithmetic operations), empirically-driven 

(choice of the capital is domain-specific, based on available economic referents), consistent 

with corporate financial theory and, in particular, with the net-present-value notion (a direct 

formal and conceptual link with NPV is provided), inclusive of other financial indexes 

(profitability index, benefit-cost ratio and IRR itself). We put the AIRR approach to the test and 

show that it is devoid of each and every flaw that plagues IRR.  

Why does the AIRR paradigm succeed where the IRR approach fails? The reason just lies in the 

founding idea (admittedly, a tautological one) that a rate of return is an amount of return per 

unit of capital invested and that a project is more properly described as a stream of  cash flows 

and capitals. Epistemologically, this implies that no rate of return for a project can be singled 

out without selecting, implicitly or explicitly, the capital base. The IRR approach lets an 

automatic procedure implicitly select an artificial capital which misrepresents the project’s 

actual capital. In contrast, the AIRR model lets the evaluator exogenously select the proper 

capital base on the basis of the type of projects, the available economic information and the 

piece of information required (rate of return on overall capital, on initial investment, on total 

investment cash flow etc.).   

This paper also introduces a new rate of return, the “economic AIRR”, related to the economic 

values of the project. This rate of return has two favorable features. On one hand, it is a fast and 

frugal computational shortcut, for it can be computed even if interim capitals are not available. 

On the other hand, it is based on information derived from capital markets: it stems from basic 

principles of corporate financial theory and from the assumption of a well-functioning market 

where profitable investment opportunities are soon arbitraged away. 

It should be clear that the refutation of the IRR approach does not imply that the IRR as a rate 

of return is refuted. The AIRR-based model encompasses the IRR (as well as any conceivable 

rate of return): the latter belongs to the AIRR family (it lies on the iso-value line). In those cases 

where there are empirical reasons which exogenously support the assumption that the interim 

capital grows at a constant force of return (typically, a loan with constant interest rate or a 

financial security whose value increases at a constant pace), the IRR-implied capital base is 

validated and IRR is indeed the appropriate rate of return. If, instead, no economic evidence is 

given that the IRR-implied capital represents the value of the economic resources deployed in 

the project, the IRR is interpretable as just one (out of infinitely many) inappropriate AIRRs.  

The fundamental issue is: to choose one among infinitely many AIRRs. This is not a 

mathematical issue, but an economic and philosophical one. Indeed, it has to do with the so-

called problem of underdetermination of theory by data, a well-known problem in the 

philosophy of science. We have shown that this indeterminacy problem can be solved, for a 

rate of return, by making value judgments. Only value judgments will provide a sound 

economic measure of worth; any reluctance to make explicit value judgments (i.e., the acritical 

acceptance of ineffective mathematical procedures) will prevent the achievement of the 

appropriate/correct economic rate of return. 



 

38 
 

References  

Altshuler, D., Magni, C.A. 2012. Why IRR is not the rate of return on your investment: 

Introducing the AIRR to the real estate community.  Journal of Real Estate Portfolio 

Management, 18(2), 219–230. 

Ben-Horin, M., Kroll, Y. 2012. The limited relevance of the multiple IRRs. The Engineering 

Economist 57(2), 101 –118. 

Blank, L., Tarquin, A. 2012. Engineering Economy, seventh edition. New York, NY: McGraw-Hill. 

Brealey, R.A., Myers, S.C., Allen, F. 2011. Principles of Corporate Finance. New York: McGraw-

Hill/Irwin.  

Brief, R. 1996. Using accounting data in present value models, Journal of  Financial Statement 

Analysis, 1 (Summer) 21–29. 

Brief, R., Peasnell, K.V. (Eds.) 1996. A Link Between Accounting and Finance. New York: Garland. 

Broverman, S.A. 2008. Mathematics of Investment and Credit, fourth edition. Winsted: 

Connecticut, ACTEX Publications. 

Burns, R.M., Walker, J. 1997. Investment techniques among the Fortune 500: A rationale 

approach. Managerial Finance, 23(9), 3–15. 

Carey, S. 2012. Real estate JV promote calculations:  Avoiding multiple IRRs, The Real Estate 

Finance Journal, 27(4), 5–40. 

Crean, M.J. 2005. Revealing the true meaning of the IRR via profiling the IRR and defining the 
ERR, Journal of Real Estate Portfolio Management,  11(3), 323–330. 

Evans, D.A, Forbes, S.M. 1993. Decision making and display methods: The case of prescription 
and practice in capital budgeting. The Engineering Economist, 39, 87–92. 

Fisher, F.M., McGowan, J.J. 1983. On the misuse of accounting rates of return to infer monopoly 

profits. American Economic Review, 73(1), 82–97. 

Franks, J.R., Hodges, S.D. 1984. The meaning of accounting numbers in target setting and 

performance measurement: implications for managers and regulators. Presented at the Annual 

Meeting of the American Finance Association, San Francisco, 28-30 December 1983. Reprinted 

in R. Brief & K.V. Peasnell (Eds.),  A Link Between Accounting and Finance. New York: Garland, 

1996. 

Glen, N. 1893. Actuarial Science. An Elementary Manual. Glasgow: John Smith & Sons. 

Graham, J., Harvey, C. 2001. The theory and practice of corporate finance: Evidence from the 

field. Journal of Financial Economics, 60, 187–243. 

Hartman, J. 2007. Engineering Economy and the Decision-Making Process. Upper Saddle River, 
NJ: Pearson, Prentice Hall. 

Hartman, J.C., Schafrick, I.C. 2004. The relevant internal rate of return. The Engineering 
Economist, 49(2), 139–158. 

http://web.ebscohost.com/ehost/viewarticle?data=dGJyMPPp44rp2%2fdV0%2bnjisfk5Ie46bNJtq60Trak63nn5Kx95uXxjL6nrkewpbBIrq%2beSbCwslG4p7E4zsOkjPDX7Ivf2fKB7eTnfLujr0m2rrBQr6%2b3SKTi34bls%2bOGpNrgVeDr5j7y1%2bVVv8Skeeyzsk2uqq5Lr5zkh%2fDj34y73POE6urjkPIA&hid=108
http://web.ebscohost.com/ehost/viewarticle?data=dGJyMPPp44rp2%2fdV0%2bnjisfk5Ie46bNJtq60Trak63nn5Kx95uXxjL6nrkewpbBIrq%2beSbCwslG4p7E4zsOkjPDX7Ivf2fKB7eTnfLujr0m2rrBQr6%2b3SKTi34bls%2bOGpNrgVeDr5j7y1%2bVVv8Skeeyzsk2uqq5Lr5zkh%2fDj34y73POE6urjkPIA&hid=108


 

39 
 

Hazen, G.B. 2003. A new perspective on multiple internal rates of return. The Engineering 
Economist, 48(1), 31–51. 

Hotelling, H. 1925. A general mathematical theory of depreciation, Journal of the American 

Statistical Association, 20(150) (September), 340–353.  

Kahneman, D., Tversky, A. (1984), Choices, values and frames, American Psychologist, 39, 

341⎼350. 

Kay, J.A. 1976. Accountants, too, could be happy in the golden age: The accountant’s rate of 

profit and the internal rate of return. Oxford Economic Papers, 28(3), 447‒460. 

Kellison, S.G. 2009. The Theory of Interest , third edition. New York, NY: McGraw-Hill/Irwin. 

Lohmann, J.R. 1988. The IRR, NPV and the fallacy of the reinvestment rate assumption, The 

Engineering Economist, 33(4) (Summer), 303–330. 

Magni, C. A. 2009. Correct of incorrect application of CAPM? Correct or incorrect decisions with 

CAPM? European Journal of Operational Research, 192(2) (January), 549−560.  

Magni, C.A. 2010. Average Internal Rate of Return and investment decisions: A new 

perspective. The Engineering Economist, 55(2), 150‒180. 

Makeham, W.C.  1874. On the solution of problems connected with loans repayable by 

installments, Journal of the Institute of Actuaries, 18, 132‒143. 

Newnan, D.G., Eschenbach, T.G., Lavelle, J.P. 2009. Engineering Economic Analysis. International 

Tenth Edition. New York: Oxford University Press. 

Osborne, M. 2010. A resolution to the NPV-IRR debate? The Quarterly Review of Economics and 

Finance, 50(2) (May), 234‒239. 

Park, C.S. 2011. Contemporary Engineering Economics, fifth edition. Upper Saddle River, NJ: 

Pearson, Prentice Hall. 

Peasnell, K.V. 1982a. Some formal connections between economic values and yields and 

accounting numbers. Journal of Business Finance & Accounting, 9(3), 361‒381. 

Peasnell, K.V. 1982b. Estimating the internal rate of return from accounting profit rates. The 

Investment  Analyst, April, 26‒31. 

Peasnell, K.V. 1996. Using accounting data to measure the economic performance of firms. 

Journal of Accounting and Public Policy, 15(4) (Winter), 291‒303. 

Pierru, A. 2010. The simple meaning of complex rates of return. The Engineering Economist, 

55(2), 105‒117. 

Pressacco, F., Magni, C.A., Stucchi, P. 2011. A quasi-IRR for a project without IRR. Available at 

SSRN: http://ssrn.com/abstract=1800348. 

Rao, R.K.S. 1992. Financial Management. Concepts and Applications, second edition. New York, 

NY: Macmillan. 

http://ssrn.com/abstract=1800348


 

40 
 

Remer, D. S., Stokdyk, S. Van Driel, M., 1993. Survey of project evaluation techniques 

currently used in the industry. International Journal of Production Economics, 32(1), 

103‒115. 

Ross, S.A., Westerfield, R.W., Jordan, B.D. 2011. Essentials of  Corporate Finance, seventh edition. 

New York, NY: McGraw-Hill/Irwin. 

Rubinstein M. E. 1973. A mean-variance synthesis of corporate financial theory. Journal of 

Finance,  28, 167‒181. 

Ryan, P.A., Ryan G.P. 2002. Capital budgeting practices of the Fortune 1000: How have things 

changed? Journal of Business and Management, 8(4) (Fall), 355⎼364. 

Spies, P. 1983. The great reinvestment debate: Myth and fact, The Appraisal Journal, July, 401– 
407. 

Stark, A. W. 1989. A note on the aggregation properties of Hotelling depreciation. British 

Accounting Review, 21, 69‒76. 

Titman S, Martin J.D. 2011. Valuation. The Art and Science of Corporate Investment Decisions, 

second edition. Prentice Hall. 

Tversky, A., Kahneman, D. 1981. The framing of decisions and the psychology of choice, 

Science,  211, 453⎼458. 

Yung, J.T., Sherman L.F. 1995. Investment analysis for loan decision making, Real Estate Review, 

25(3) (Fall), 16⎼22. 

 

 

Carlo Alberto Magni is an associate professor in the Department of Economics “Marco Biagi” 

at the University of Modena and Reggio Emilia. Graduated in Economics and Business, he 

received his Ph.D. in Mathematics applied to economic problems from the University of Trieste. 

He holds a Master in Business Administration from the University of Turin. Magni’s research 

areas are engineering economy and corporate finance, and include capital investment analysis, 

rates of return, residual income, relations between accounting rates of return and economic 

rates of return. His teaching activities include calculus, financial and actuarial mathematics, 

capital budgeting, mathematics for economics and finance. He is a member of ASEE (American 

Society for Engineering Education), AMASES (Association for Mathematics Applied to Social 

and Economic Sciences), EAA (European Accounting Association). He has won the 2011 

“Eugene L. Grant” Award from ASEE. 

 


