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Abstract—This paper proposes a system for people trajectory
shape analysis by exploiting a statistical approach which
accounts for sequences of both directional (the directions of
the trajectory) and linear (the speeds) data. A semi-directional
distribution (AWLG - Approximated Wrapped and Linear
Gaussian) is used with a mixture to find main directions and
speeds. A variational version of the mutual information crite-
rion is proposed to prove the statistical dependency of the data.
Then, in order to compare data sequences, we define an inexact
method with a Kullback-Leibler-based distance measure and
employ a global alignment technique is to handle sequences
of different lengths and with local shifts or deformations. A
comprehensive analysis of variable dependency and parameter
estimation techniques are reported and evaluated on both
synthetic and real data sets.

Keywords-Semi-directional statistics; trajectory analysis;
video-surveillance

I. INTRODUCTION AND RELATED WORKS

Recently, one of the most addressed topics in video
surveillance research is the extraction and analysis of fea-
tures for behavior understanding. Among the possible fea-
tures, trajectories represent a rich source of information
which can be robustly extracted from single or multiple fixed
cameras [1]. Morris and Trivedi in [2] proposed a recent
survey on state-of-art techniques for modeling, comparing
and classifying trajectories for video surveillance purposes.

In most of the approaches, the trajectories are modeled
as a sequence of < x, y > coordinates on the ground
plane and different statistic-based inferences are exploited.
For instance, in [3] the EM framework is adopted to learn
a set of motion models’ parameters; Panozzo et al.in [4]
suitably modified the iterative Altruistic Vector Quantization
algorithm to robustly cluster trajectories with representative
prototypes; in [5], Junejo et al. applied graph cuts to cluster
trajectories using the Hausdorff distance; in [6] a system
for learning statistical motion patterns is presented using
a two-stage fuzzy k-means: first, trajectories are clustered
in the spatial domain, then each cluster is subclustered
in the temporal domain and new trajectories are classified
using Bayes rule; finally anomaly detection is performed by
thresholding resulting probability. Accordingly, also in this
work we aim to propose an unsupervised classification of
trajectories in order to find clusters of similar frequent trajec-
tories, and a second step of classification against the clusters
to detect possible abnormal or infrequent trajectories. The
main novelty is the analysis of trajectory shape instead of

trajectory points. In this manner we search for similarity of
movements of people in large open space, invariant to the
spatial position and thus the starting point. For a human
observer, people that are walking straight have the same
behavior even if their path is more at right or at left side of
a corridor, or people staying together and moving in circle
have another similar behavior.

To describe trajectory shape, the sequence of directions
between two consecutive tracking samples can be adopted
[7]), and the obtained representation is independent on
the starting point. The use of a sequence of directions
to model the trajectories requires the adoption of the so-
called circular or directional statistics [8] since modelling
periodic variables, such as angles, by using linear statistics
is inappropriate. Since often pure shape is not sufficiently
discriminative in surveillance scenarios, (e.g. the same path
covered by a walk or by a run has a different meaning in
terms of behavior) in this work we propose to add the speed
to the shape description to provide a more complete analysis
of the trajectory. The introduction of the speed, which is
not periodic, requires to account for the different nature of
these features, the angle θ, directional, and the speed v,
linear. Using a statistical model, the resulting bivariate joint
probability p (θ, v) can be easily modelled as the product
p (θ) · p (v) if and only if the two variables result to be
independent for the considered application. If they are not,
the joint probability must be modelled by using a directional
(univariate) pdf for θ and a linear (univariate) pdf for v. The
estimation of the covariance matrix for this bivariate joint
pdf can be quite challenging since the dependency between
θ and v must be modelled properly. When a directional or
periodic variable is combined with a linear one the term
semi-directional is often used.

The use of a Gaussian pdf for the linear variable v is
straightforward, while the choice of the pdf for θ is less
obvious. One of the most used (due to the properties it
shares with the Gaussian) is the von Mises (vM) distribution
[9], also known as circular normal. However, in the case of
semi-directional statistics, the use of a wrapped Gaussian
[8] distribution is preferable because, due to the closeness
to its linear counterpart, it is possible to adopt a linear
approximation of the variance parameter even for circular
variables. The linear variance approximation allows the
employment of the Gaussian maximum likelihood estimator
to calculate, with a feasible precision, the covariance matrix



in the case of joint linear and periodic multivariate variables.
Nevertheless, parameter estimation in the case of wrapped

Gaussian is not easy. For this reason, Bahlmann [10] pro-
posed to adopt a multivariate semi-directional distribution in
handwriting recognition by using an approximated wrapped
Gaussian (AWG) pdf for the directional variable (the tangent
slope of a written segment) and the use of a linear Gaussian
for the linear variable, by defining a semi-wrapped Gaussian
distribution which we will refer to hereinafter as AWLG
(Approximated Wrapped and Linear Gaussian). Eventually,
both directional and linear data can be modelled with multi-
modal distributions, for example using parametric mixtures
of the corresponding pdfs.

Starting from these premises, this paper presents a new
proposal to use semi-directional statistics (specifically a
mixture of AWLG) to model and analyze people trajectory
shapes in order to classify paths shape and motion models.
The AWLG model results to be the more appropriate since
we present results of a method based on mutual information
[11] for testing the dependency between the directional and
linear variables. Since exact mutual information is hard
to compute in the case of mixtures of pdfs, a variational
approximation of it is derived. Finally, an approach for
comparing sequences of semi-directional data is provided: it
exploits the global alignment of sequences of symbols with
a distance based on Kullback-Leibler divergence. Finally, a
complete system for the classification of people trajectories
is proposed and experiments on both synthetic and real data
are provided to demonstrate its accuracy. Some hours of
unconstrained acquisition of people walking around in an
open space are evaluated.

II. SEMI-DIRECTIONAL DISTRIBUTIONS

Among the possible pdfs from directional statistics to
model angles, the wrapped Gaussian (WG) and its approxi-
mation, named approximated wrapped Gaussian (AWG), are
two of the most used since they derive from the Gaussian and
can be thus easily treated. Both these distributions start from
the wrapping of a Gaussian N (x) obtained tiling different
pdfs shifted by multiple of 2π and with the variable change
θ = x mod 2π. In the case the linear pdf is a univariate
Gaussian distribution, the corresponding wrapped Gaussian
(WG) can be written as:

WG (θ|θ0, σ) =
+∞∑

w=−∞
N (θ − w2π|θ0, σ) (1)

WG (θ|θ0, σ) is unimodal with a single local maximum and
symmetric about θ0.

Due to the presence of the summation in equation (1), WG
parameters are hardly estimated, especially when a mixture
of WG must be considered and possibly estimated with a
EM algorithm. Bahlmann [10] proposed an approximation
of the wrapped Gaussian by only one, but the most mean-
ingful wrap of it. He demonstrated that, in the presence of

sufficiently small variances (σ . 1), the sum of wrapped
distributions can be approximated with a single periodic
distribution since the overlap of neighboring Gaussian wraps
is negligible.

The proposed AWG pdf results as:

AWG (θ|θ0, σ) =
1√
2πσ

e−
((θ−θ0) mod 2π)2

2σ2 (2)

where the operation “mod” represents the remainder of the
division and resulting angle must be in the interval (−π, π].
Being the input angle θ is in the interval (−π, π], also the
“mod” operator maps in the same interval.

The mixture of AWG (MoAWG) is, as usual, obtained as
a weighted sum of AWG pdfs:

MoAWG (θ|π,θ0,σ) =
K∑
k=1

πk
1√

2πσk
e
− ((θ−θ0,k) mod 2π)2

2σ2
k

(3)
The formulation of the EM algorithm for MoAWG is not

simple since the mod operator is not derivable. However,
thanks to the use of a mathematical artifice, the following
update equations can be derived:

θ0,k = arctan


n∑
i=1

γik sin θi
n∑
i=1

γik cos θi

 (4)

σ2
k =

n∑
i=1

γik ((θi − θ0,k) mod 2π)2

n∑
i=1

γik

(5)

Please note that the update equation for the responsabilities
is omitted because it is the same than other mixtures. The
complete derivation of these equations can be obtained as a
special case of the EM algorithm for MoAWLG reported in
the supplementary material.

When dealing with semi-directional data, a joint pdf must
be found in order to account, if existing, also for the mutual
dependency between directional and linear variables. The
pdf is modelled with a AWLG, defined as:

AWLG (X|µ,Σ) =
1√

2π · |Σ|
e−

1
2 (X−µ)TΣ−1(X−µ) (6)

Here X =
[
θ
v

]
is the observation, µ =

[
θ0

v0

]
is the mean,

X − µ =
[
(θ − θ0) mod 2π

v − v0

]
is the “difference” between

them, Σ =
[
σθ,θ σθ,v
σv,θ σv,v

]
is the covariance matrix and |Σ|

denotes its determinant. This expression is similar to a
bivariate Gaussian pdf, but one of the two dimensions is
represented by a AWG.



The corresponding mixture can be written as:

MoAWLG (X|π,µ,Σ) =
K∑
k=1

πkAWLG (X|µk,Σk)

(7)

At the best of authors’ knowledge, a complete EM for
MoAWLG has not been proposed yet. The followin equa-
tions can be derived:

θ0,k = arctan


n∑
i=1

γik sin θi
n∑
i=1

γik cos θi

v0,k =

n∑
i=1

γikvi

n∑
i=1

γik

Σk =

n∑
i=1

γik (Xi − µk)T (Xi − µk)

n∑
i=1

γik

(8)

For the sake of readability and page limits, the complete
derivation is reported in the supplementary material.

III. VERIFYING INDEPENDENCE

In summary, two possible approaches can be used to
model people trajectories as sequences of semi-directional
data. The first approach should be chosen whenever the di-
rection θ and the speed v are independent and the probability
p (θ, v) is computed as the product of a circular pdf by a
linear pdf. For the considerations reported in Section II, a
mixture of AWG (MoAWG) distributions can be used for
θ, while a standard mixture of Gaussians for v. Conversely,
in the case of dependent variables, the MoAWLG described
above can be used for modelling p (θ, v).

In order to evaluate the degree of dependency of θ and v,
the mutual information I of p (θ, v) must be computed [11]:

I [θ, v] ≡ KL (p (θ, v) ‖p (θ) p (v))

= −
∫ ∫

p (θ, v) ln
(
p (θ) p (v)
p (θ, v)

)
dxdy (9)

where KL is the Kullback-Leibler divergence.
Unfortunately, in our case p (θ, v) is a mixture, as well

as the numerator of the log in eq. (9) is the product
of two mixtures, thus the KL divergence is not analyt-
ically tractable, nor does any efficient computational al-
gorithm exist. However, many approximated approaches
have been proposed [12]. Among the approaches pro-
posed, the most suitable (since it preserves the majority
of the KL properties) is based on the variational compu-
tation of the lower bound of the log likelihood. In fact,
given two generic mixtures f(x) =

∑
a
πafa(x|Pa) and

g(x) =
∑
b

ωbgb(x|Pb), with fa and gb the unimodal dis-

tributions and Pa and Pb their corresponding parameters,

the KL divergence can be written as:

KL(f |g) =
∫
f(x) ln f(x)dx−

∫
f(x) ln g(x)dx

= Ef(x) [ln f(x)]− Ef(x) [ln g(x)] (10)

Being Lf (g) ≡ Ef(x) [ln g(x)] = Ef(x)

[
ln
∑
b

ωbgb(x)
]

the log likelihood, we can use a variational approach to find
a (more tractable) lower bound. Introducing the variational
parameters φb|a > 0 such that

∑
b

φb|a = 1, we obtain the

following equations:

Lf (g) ≡ Ef(x)

[
ln
∑
b

ωbgb(x)

]

≥ Ef(x)

[∑
b

φb|a ln
ωbgb(x)
φb|a

]
≡ Lf (g, φ) (11)

Since the variational log likelihood Lf (g, φ) is a lower
bound of the log likelihood Lf (g), the best bound can
be found by maximizing it with respect to φ. Thus, the
following equation [12] can be derived as:

φ̂b|a =
ωbe
−KL(fa|gb)∑

b′
πb′e−KL(fa|gb′ )

(12)

Applying the same procedure for Lf (f), the KL divergence
of eq. (10) can be approximated by the following variational
KL divergence:

KLvar (f |g) =
∑
a

πa ln

∑
a′
πa′e

−KL(fa|fa′ )∑
b

ωbe−KL(fa|gb)
(13)

Please note that the KL values reported in eq. (13) are
now KL divergences between single unimodal distributions
(either fa or gb), which can be treated analytically. In our
specific case, the joint probability (denominator in eq. (9)
and f(x) in eq. (10)) is a MoAWLG and, thus, fa is a
AWLG, while the numerator of eq. (9) is the product of
a MoAWG and a MoG, which is easily demonstrated to
correspond to a mixture again with diagonal covariance, and
thus gb results to be the product of a AWG by a Gaussian.
In other words, both the AWLG and the product of AWG
by Gaussian can be assimilated to bivariate Gaussians (with
full or diagonal covariance, respectively); hence, the KL
divergences of eq. (13) can be brought back to the KL
between multivariate normal distributions.

An analytical formulation of the KL divergence be-
tween normal distributions has been reported in [12]. Given
AWLG (X|µ1,Σ1) and AWG (θ|θ0,2, σθ) · N (v|v0,2, σv),
their KL divergence is equal to:

KL (AWLG|AWG · N ) =
1
2

ln
|Σ2|
|Σ1|

− N1

2
+

+
1
2

tr
(
Σ−1

2 Σ1

)
+

1
2

(
(µ1 − µ2)T Σ−1

2 (µ1 − µ2)
)

(14)



where N1 is the dimension of Σ1, µ1 =
[
θ0,1

v0,1

]
, µ2 =

[
θ0,2

v0,2

]
and Σ2 =

[
σθ 0
0 σv

]
.

IV. COMPARING SEQUENCES

A sequence Tj of nj semi-directional
data (θ and v) can be written as:
Tj =

{
〈θ1,j , v1,j〉 , · · · ,

〈
θnj ,j , vnj ,j

〉}
. In order to

cluster or classify these sequences, a method for comparing
them by means of a suitable similarity or distance measure
is mandatory.

In order to compute the distance, we first need to decide
which statistical model is more appropriate for the data at
hand. Thus, the first step is to evaluate the dependency
between θi and vi in our specific people video surveillance
application. Supposing that a training set of people trajec-
tories is available and that it is sufficiently representative of
the scenario, the formulas (9) and (13) reported in Section
III can be employed for this purpose.

Once the dependency has been evaluated, the EM algo-
rithm of the corresponding distribution(s) can be run on each
trajectory of the training set to learn the distribution’s pa-
rameters. In the case of dependent variables, EM algorithm
for MoAWLG (see supplementary material) should be used,
whilst in the case of independent variables, two separate EM
algorithms for MoAWG and MoG should be employed for
θi and vi, respectively.

After obtaining the main components of the associated
distribution(s), it is possible to encode each data 〈θi, vi〉
with a symbol Si with a Maximum-A-Posteriori (MAP)
approach, which associates a single value to the most similar
component of the mixture distribution representing the data.
With this MAP approach each trajectory T is encoded
with a sequence of symbols T = {S1, S2, ..., Sn}. In the
case of dependent variables, Si corresponds to a AWLG
component (Si ↔ 〈(µr,Σr)〉 as in eq. (6)), where µr
and Σr are the parameters of the rth components of the
MoAWLG that maximizes the posteriori. Conversely, in the
case of independent variables, two separate MAP evaluations
must be carried out, one to find the rth1 component of
the MoAWG that maximizes the posteriori on the angle
θ, and one for the rth2 MoG component for the speed v
(Si ↔ 〈(θ0,r1 , σθ,r1) , (v0,r2 , σv,r2)〉).

This representation allows to compare sequences if a suit-
able measure Ω

(
T i, T j

)
is defined. Indeed, exact matching

between sequences of data or symbols which correspond to a
statistical distribution is not suitable due to acquisition noise,
uncertainty and temporal shifts. Additionally, trajectories can
have different lengths and thus the similarity between the
elements of the sequences must be carried out after the
alignment and warping of the sequences.

Among the various techniques, we can borrow from
bioinformatics the method for comparing DNA sequences

in order to find the best inexact matching between them,
also accounting for gaps. Therefore, we propose to adopt the
global alignment, specifically the well-known Needleman-
Wunsch algorithm [13]. A global alignment (over the entire
sequence) is preferable (instead of a local one) because the
former preserves both global and local shape characteristics.
Alternative inexact matching techniques, such as Dynamic
Time Warping (DTW) or Longest Common SubSequence
(LCSS), have been applied for comparing trajectories, in
different contexts, such as trajectory analysis [14], speech
[15] or handwriting recognition [16]. Moreover, Porikli [17]
proposes to use a HMM-based similarity measure where
each trajectory is modelled with a HMM and compared
using the cross likelihood. Though this is an interesting ap-
proach, a large amount of data is needed to avoid overfitting
in the HMM training phase.

In order to use the global alignment, a cost of the align-
ment between two symbols must be defined. Considering the
two cases listed above, the cost C (Si, Sj) can be written as:

C (Si, Sj) =
{
KL1 if dependent
KL2 ·KL3 if independent (15)

with:

KL1 = KL
(
AWLG (X|µri ,Σri) |AWLG

(
X|µrj ,Σrj

))
KL2 = KL

(
AWG (θ|θ0,ri , σθ,ri) |AWG

(
θ|θ0,rj , σθ,rj

))
KL3 = KL

(
N (v|v0,ri , σv,ri) |N

(
v|v0,rj , σv,rj

))
(16)

where ri and rj are the selected components for symbols Si
and Sj , respectively.

The KL divergences reported in eq. (16) can be computed
with the formula in eq. (14) considering that the AWG can
be assimilated to a univariate Gaussian and the formula can
be computed with σ instead of the covariance matrix Σ.

To verify the proposed approach as a classifier, we build
a complete system for trajectory classification. During an
initial off-line training step, the training set of trajectories is
analyzed and clustered into groups of similarity. The choice
of the clustering algorithm is not critical: we need only
a method without a fixed number of clusters and capable
to create clusters of different cardinality, even containing a
single sample. This allows us to not model the classes and
their number a-priori, achieving a higher flexibility. Our tests
proved that a satisfactory algorithm for clustering trajectory
shapes is the k-medoids algorithm [18]. This is a suitable
modification of the well-known k-means algorithm which
has the appreciable characteristic to compute, as prototype
of the cluster, the medoid instead of the mean, i.e. the
element that minimizes the sum of intra-class distances. In
other words, at each iteration the prototype of each cluster is
given by the member of the cluster at the minimum average
distance from all the other members. Moreover, in order to
overcome the limitation of k-medoids (as well as k-means)



clustering to have a fixed number k of clusters, we use its
iterative version [7]. The algorithm iteratively merges similar
clusters until convergence to obtain the “best” number k̃ of
clusters.

Then, during the on-line phase, whenever a new trajectory
Tnew is collected, its statistical model is computed and
compared to the cluster medoids. Based on this comparison,
the trajectory can be assigned to the class with the maximum
a-posteriori probability. However, more sophisticated classi-
fication strategies, such as the learn-and-predict approach
proposed in [7], could be employed with a minimum effort.

V. EXPERIMENTAL RESULTS

In order to verify the accuracy of our approach, we
performed extensive experiments with both synthetic and
real data. The use of synthetic data is particularly useful
since it enables the collection and evaluation of a great
amount of data together with their automatic ground truths.
In order to analyze trajectories, we specifically developed
a trajectory generator in Matlab that produces trajectories
similar to the ones collected with a real video-surveillance
system. The generator allows the user to select graphically
the sequence of angles composing the class of trajectories
and the corresponding speeds (by making the length of the
segment almost proportional to the speed) and then creates
a set of trajectories with added noise to the angles, the
speeds, and their occurrences. Additionally, the simulator
allows to shuffle the data to remove dependency between
angles and speeds, in order to provide both dependent and
independent data. Real data are obtained by a multi-camera
video surveillance system working on our campus, which
exploit multiple cameras with overlapped views to get more
robust and longer trajectories [1]. Trajectories are projected
on the ground plane and long trajectories are collected
thanks to the multiple camera setup.

Two sets of synthetic trajectories (one with dependent and
one with independent data) have been generated with the
Matlab simulator in order to evaluate both the solutions (with
dependent and independent variables). We also evaluated the
average mutual information on real data. The average value
for real data is high enough to mean that some correlation
exists between the angles and the speed in the considered
scenario. This is not true in general, but it heavily depends
on the context of application and the collected data.

The robustness of the proposed sequences’ comparison
algorithm has been tested performing two different kinds of
experimental campaigns. The first campaign evaluates the
performance of our approach in some specific situations,
where common approaches tend to fail. First, the robustness
against small fluctuations around the zero value of θ (row
“Periodicity” of Table I) has been evaluated by generating
trajectories that are composed by a unique straight almost-
zero direction with added noise. In this case, the system is

Acc. w Acc. w
Type AWLG (dep) AWG/G (indep)

Periodicity on θ dep 100% 100%
Sequence on θ dep 100% 90.3%
Sequence on v dep 100% 92.5%
Noise on θ dep 100% 87.5%
Noise on v dep 93.5% 87.3%
Classification
(230 tr./11 cl.) dep 99.6% 97.8%
Classification
(100 tr./10 cl.) indep 90.0% 95.0%
Classification
(356 tr./18 cl.) real 93.4% 90.3%

Table I
EXPERIMENTAL RESULTS IN TERMS OF ACCURACY IN THE

CLASSIFICATION. tr.=NUMBER OF TRAJECTORIES, cl.=NUMBER OF
CLASSES.

able to cluster together all the trajectories thanks to the use
of circular (i.e. wrapped) statistics to model angular data.

Subsequently, we tested the capability of the system to
handle sequences of either the same principal directions or
speeds, but given in different order (rows “Sequence” of
Table I). In this case, both the proposed statistical measure
and the alignment technique concur to filter out the noise
and to correctly cluster this kind of data. Then, a specific
test was performed to verify the robustness against severe
noise on either angular or speed values (rows “Noise”).

The second test campaign evaluates the accuracy of the
proposed approach performing sequences’ classification on
a large amount of data. Synthetic and real data are used
for testing, and two synthetic sets are provided with either
dependent or independent data (rows 6 and 7 of Table I). The
real test (row 8) is composed by 356 trajectories collected
by the system previously mentioned and manually ground-
truthed. The set of trajectories has been divided randomly in
200 trajectories in the training set and the remaining in the
testing set. Examples of the obtained classes (superimposed
to a bird-eye view of the multiple camera scenario) are
shown in Fig. 1. Please note that trajectories of the same
color belong to the same class.

By observing the results in Table I, it is evident that
both the proposed solutions achieve high accuracies in
most of the tests. It is also worth mentioning that in the
classification test with independent-generated data (row 7)
the independent model better describes the sequences of
data. Eventually, the results on the real data set confirm the
slightly-dependent nature of them, in accordance with the
consideration reported above on the mutual information. It
is remarkable that most of the classification errors are due
to not perfect convergence of the EM algorithms and can
be potentially avoided by a more sophisticated parameter
estimation technique.

In conclusion, in this paper a semi-directional distribution
is proposed to jointly model angular and linear data in



Figure 1. Examples of the achieved clustering results.

order to classify people trajectories for video surveillance
applications. Two different models are proposed to account
the cases where the input data are either statistically de-
pendent or independent. It is remarkable to see how linear
and angular variables can be treated and compared jointly
making the proposed framework particularly useful also in
other contexts, where sequences of multidimensional and
hybrid data must be handled.
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