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Università degli Studi di Trento
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Abstract

In this paper we prove a certain regularity property of configurations

of immiscible fluids, filling a bounded container Ω and locally minimizing

the interface energy
∑

i<j cij‖Sij‖, where Sij represents the interface

between fluid i and fluid j, ‖ · ‖ stands for area or more general area-

type functional, and cij is a positive coefficient. More precisely, we show

that, under strict triangularity of the cij ’s, no infiltrations of other fluids

are allowed between two main ones. A remarkable consequence of this

fact is the almost-everywhere regularity of the interfaces. Our analysis

is performed in general dimension n ≥ 2 and with volume constraints

on fluids.

1 Introduction

When a small quantity of oil is added to a glass of water, one sees at first
some small oil drops floating on the water surface, that progressively tend to
aggregate into bigger drops. This is a simple example of immiscible fluid system
that tries to evolve towards a stable equilibrium configuration. In general
one could consider mixtures of m fluids and ask whether some equilibrium
configurations, or even configurations attaining the minimum of the total free
energy, exist and (hopefully) have some regularity properties.

From a theoretical point of view, this corresponds to analyzing models of
fluid systems, where the energies are essentially of interface type, i.e. depending
upon the interfaces separating the various fluids in the mixture. The problem
can thus be viewed as follows: given a container Ω, a set of fluids {f1, . . . , fm}
and prescribed volumes vi ≥ 0 so that

∑

vi equals the volume of the con-
tainer Ω, find an absolute minimizer of the interface energy subject to volume
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constraints, i.e. a partition of Ω into regions Fi, i = 1, . . . , m such that the vol-
ume of Fi equals vi and the energy of the interface set {Sij = ∂Fi ∩ ∂Fj ∩ Ω}
is minimum.

Probably the easiest formulation of an energy model for immiscible fluids
is

E(F = {F1, . . . , Fm}) =
∑

i<j

cij · area(Sij),

where cij > 0 for all i < j. This represents an isotropic surface energy, where
each interface Sij has a cost equal to cij times its (Euclidean) area, and thus
depending upon the pair (fi, fj) of fluids touching along it. Of course, one
could take into account other contributions to the total free energy of the
system, such as gravity or other external forces; moreover, the energy could
also depend upon surface orientation, as happens for crystals and polycrystals
(see [6]).

In this paper we prove a regularity property for minimizing configurations
of immiscible fluids, under strict triangularity of the interface coefficients cij
(see Theorem 3.1). It has been shown by L.Ambrosio and A.Braides in [2], and
independently by B.White in [22], that the triangle inequality cij ≤ cik + ckj is
necessary and sufficient for the lowersemicontinuity of the energy functional E
(see also the paper by F.Morgan [19]). White announces in [22] some regularity
results obtained under strict triangularity of the cij ’s, in particular an elimi-
nation property saying that, if any locally minimizing configuration is weakly
close, in a ball Br, to a configuration with only two fluids separated by a flat
interface, then in a smaller ball it consists of exactly those two fluids: this
means that no infiltration is permitted between two fluids that are shaped (at
least locally) in an almost flat configuration.

Here we prove a stronger elimination-type result (Theorem 3.1), under the
same hypothesis as in White’s paper. This result points out that the flatness
of the configuration does not really matter, the absence of infiltrations be-
tween two fluids being a pure consequence of energy minimization. The proof
uses (1) a Decay Lemma (Lemma 3.2) that incorporates the elimination re-
sult (the original technique was developed by I.Tamanini and G.Congedo in
[21]), (2) a technical Balancing Lemma (Lemma 3.3) where the main estimate
needed to make (1) work is deduced from the “cooperation” of two weak energy
estimates, and finally (3) a representation of the immiscible fluid configura-
tion as a network (see [19]), on which we apply classical graph-theory results
(“maxflow-mincut” and flow decomposition) to obtain one of the two weak en-
ergy estimates (the most hidden one). Thanks to the elimination property, one
can then apply classical regularity results (see [15]) ensuring that the interface
set is made of smooth surfaces with constant mean curvature, plus a singular
set of zero (n− 1)-dimensional Hausdorff measure.
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2 Basic definitions

By Rn we denote the real Euclidean space of dimension n, and always take
n ≥ 2. Br(x) denotes the open Euclidean n-ball centered at x ∈ Rn with
radius r > 0; Br is used in place of Br(0). We denote by ωn the volume
(Lebesgue measure Ln) of the unit ball of Rn. Then, the volume of Br is
|Br| = ωnr

n (the notation |A| is preferred to Ln(A)). We also denote by Hn−1

the (n− 1)-dimensional Hausdorff measure in Rn.
Given two sets A and B, we define their symmetric difference by

A△B := (A \B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B).

If Ω is an open set, we say that A is relatively compact in Ω (and write A ⋐ Ω) if
the closure of A is a compact subset of Ω; we say that A is a compact variation
of B in Ω if A△B is relatively compact in Ω.

Given a Borel set E ⊂ Rn and α ∈ [0, 1], we define the set of points of density
α of E as follows:

E(α) :=

{

x ∈ Rn : lim
r→0+

|E ∩ Br(x)|

ωnrn
= α

}

.

Clearly, E(α) ⊂ ∂E for all α ∈ (0, 1). Moreover, we have that E(1) is the
Lebesgue set of E, hence |E(1)△E| = 0 (see e.g. [20]). Another remarkable
density set is E(1

2
), as will be better shown in the following.

We recall the notion of Caccioppoli set, i.e. set of (locally) finite perimeter,
and of Caccioppoli partition. For E, A ⊂ Rn, with A open and E Borel, the
perimeter of E in A is defined as follows:

P (E,A) := sup

{
∫

E

div g(x) dx : g ∈ C1
0(A;R

n), ‖g‖∞ ≤ 1

}

.

It can be shown that P (E, ·) extends to a Borel measure, by setting

P (E,B) := inf {P (E,A) : B ⊂ A, A open }

for all Borel set B ⊂ Rn. When A = Rn, we use P (E) instead of P (E,Rn).
We say that E is a set of locally finite perimeter (or a Caccioppoli set) if
P (E,A) < ∞ for every bounded open set A ⊂ Rn.

We recall some properties of the perimeter of E in B:

• P (E,B) = P (Rn \ E,B);

• P (E,B) = P (F,B) whenever |(E△F ) ∩ B| = 0;
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• P (E△F,B) ≤ P (E,B) + P (F,B);

• P (E ∪ F,B) + P (E ∩ F,B) ≤ P (E,B) + P (F,B);

For these and additional properties we refer to [11] and [14].

Given a Borel set E, its characteristic function is denoted by χE(x), taking the
value 1 if x ∈ E and 0 otherwise. When E is a Caccioppoli set, we consider
the traces (from outside and from inside) of E on ∂Br (see [14] for general
definitions and properties), denoted by χ+

E and χ−
E , respectively. These are

functions of L1(∂Br) and coincide for L1-almost all r > 0, in which case they
are simply denoted by χE . Moreover, we have

P (E, ∂Br) =

∫

∂Br

|χ+
E(x)− χ−

E(x)| dH
n−1(x)

for all r > 0.

We quote the well-known isoperimetric inequality. Let E ⊂ Rn be of finite
perimeter in Rn, then

min(|E|, |Rn \ E|)
n−1
n ≤ cnP (E), (2.1)

where cn = (nω
1
n
n )−1 (for the proof, see [9] or [17]).

Given a Caccioppoli set E, one can consider the so-called reduced boundary
∂∗E of E, which is a subset of E(1

2
) where a certain measure-theoretical, unit

normal vector νE exists: for the precise definition, see e.g. [14].
The following properties are of crucial importance (for the proof, see [10], [14]):

(a) ∂∗E ⊂ E(1
2
) and Hn−1(E(1

2
) \ ∂∗E) = 0;

(b) P (E,B) = Hn−1(∂∗E ∩ B) = Hn−1(E(1
2
) ∩B).

A finite Caccioppoli partition of an open set Ω is a finite collection F = (Fi)
m
i=1

of Borel subsets of Ω, such that

(i) Fi has locally finite perimeter in Ω;

(ii) |Fi ∩ Fj| = 0 whenever i 6= j;

(iii) |Ω \
m
⋃

i=1

Fi| = 0.
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Theorem 2.1 (Structure) Let F = (Fi)
m
i=1 be a Caccioppoli partition of Ω.

Then

Hn−1

[

Ω \

(

⋃

i

Fi(1) ∪
⋃

i<j

[Fi(
1
2
) ∩ Fj(

1
2
)]

)]

= 0.

For the proof, see [8].

Summing up, according to Theorem 2.1, a Caccioppoli partition of Ω yields
a decomposition of Ω into “solid components” Fi(1) ∩ Ω, along with a set of
“interfaces” Sij = Fi(

1
2
)∩Fj(

1
2
)∩Ω separating Fi and Fj inside Ω (i 6= j), and

a Hn−1-negligible set containing e.g. “multiple points” where three or more
components meet. Moreover, we are allowed to redefine the interface Sij to be
∂∗Fi∩∂∗Fj∩Ω, owing to property (a) above, this becoming our default setting
from now on. Finally, to simplify the notation, we shall write ‖S‖ instead of
Hn−1(S).

3 Statement of the problem and preliminary

lemmas

Let Ω ⊂ Rn be a nonempty, bounded open set and let F = (Fi)
m+2
i=1 be a

Caccioppoli partition of Ω with (m + 2) components of finite perimeter in Ω
(here, m ≥ 1). Hence (recall Section 2) the Fi’s are Borel subsets of Ω, such
that

(i) Fi has finite perimeter in Ω for all i;

(ii) |Fi ∩ Fj| = 0 whenever i 6= j;

(iii) |Ω \
m+2
⋃

i=1

Fi| = 0.

We shall refer to such F as a generic configuration of fluids. We also prescribe
the volume of each fluid, that is, we fix v1, v2, . . . , vm+2 ≥ 0 so that |Ω| =

∑

vi,
and call F admissible if |Fi| = vi for all i. We will be concerned about regularity
properties of configurations G minimizing the energy functional

E(F) =
∑

i<j

cij‖Sij‖ (3.1)

among all admissible configurations F. Here, cij ≥ 0 represents the energy
density associated with the interface Sij = ∂∗Fi ∩ ∂∗Fj ∩ Ω separating fluids
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Fi and Fj. We also consider the localized energy

E(F, O) =
∑

i<j

cij‖S
O
ij‖,

where O is a generic open subset of Ω and SO
ij = Sij ∩ O. In case O = Br, we

write Sr
ij instead of SBr

ij .

Let us start by localizing within a fixed ball BR ⊂ Ω and by considering
a fixed pair G1, G2 of fluids of a minimizing configuration. Our aim is to
see if infiltrations can be excluded by imposing suitable hypotheses on the
coefficients cij. We would eventually like to prove the following result: if there
exists a radius r < R such that G1 and G2 fill a sufficiently high percentage of
Br, then G1 and G2 completely fill 1

2
Br.

This result can be viewed as a “2 against m” version of an elimination-
type theorem proved by I.Tamanini and G.Congedo in [21] (see also [16]):
in that paper, the authors consider “general” Caccioppoli partitions (even
with countably many components) minimizing the simple perimeter functional
(cij = 1, for all i 6= j) plus higher-order volume-type terms. The technique
of [21] fails when, as in our case, more general hypotheses on the cij’s are
assumed, and has to be integrated with additional results involving, among
other things, some tools from graph theory.

A similar result, with extra assumptions on the minimizing configuration,
has been announced by B. White in [22], for an immiscible fluid energy like
(3.1). More precisely, White considers the following property (P): if a mini-
mizing configuration is weakly close, in a small ball B(x, r), to a configuration
consisting of fluid i and fluid j separated by a hyperplane H through x, then
in a smaller ball B(x, r/2) the configuration consists exactly of fluid i and fluid
j separated by a smooth hypersurface. Then, he claims that (P) holds if and
only if a strict triangularity hypothesis is assumed on the coefficients cij , in
addition to the following standard requirements:

(i) cij ≥ 0 and cij = 0 if and only if i = j;

(ii) cij = cji.

Strict triangularity is simply the following:

cij < cih + chj ∀ i, j and ∀ k 6= i, j (ST)

or, equivalently:

cij ≤ cik + ckj − δ ∀ i, j and ∀ k 6= i, j (ST2)

6



for a suitable constant δ > 0.
Let us first consider a simple example: suppose that three fluids f1, f2, f3

fill some container Ω (we always assume absence of external forces and of sur-
face tension with walls of Ω) and that two of them (say, f1 and f2) meet along
some flat interface. If the tension coefficients cij did not satisfy a strict tri-
angle inequality, and in particular if even c12 > c13 + c23, then it would be
energetically advantageous to let a thin layer of fluid f3 flow between f1 and
f2, in such a way that these two fluids do not touch anymore. Clearly, this
corresponds to a loss of lower semicontinuity of the energy functional, which
could be macroscopically observed as a “relaxation” of the energy densities cij
(i.e. the fluid system behaves as if c12 = c13 + c23). Absence of infiltrations
appears to be quite related to lower semicontinuity of the energy functional:
indeed, it is shown in [2], as well as in [22], that the (simple) triangle inequal-
ity is necessary and sufficient for the lowersemicontinuity of the fluid energy
(3.1) (for a more general and detailed study of the semicontinuity of fluid-type
energies, see [2], [3] and [19]). This justifies, in some sense, the choice of (ST)
as a sharp condition to prevent infiltrations between pairs of fluids.

White also announces in [22] results regarding both the regularity of the
interfaces Sij and the estimate of the dimension of the “singular set” of a
minimizing configuration of fluids. Some other problems remain unsolved, like
the validity of a lower volume-density estimate for each fluid at every boundary
point (see [7]).

Here we state our main result for a pair (G1, G2) of fluids in a locally
minimizing configuration (of course, any other pair will do the same): its
proof will need some intermediate lemmas and, as anticipated before, the use
of graph theory techniques.

Theorem 3.1 (Elimination). Suppose G = (Gi)
m+2
i=1 is a locally minimizing

configuration of immiscible fluids inside BR ⊂ Ω, and that the coefficients cij
verify the previous standard requirements (i), (ii) along with the strict trian-
gularity condition (ST). Then G has the elimination property (EP), i.e. there
exists a positive constant η and a radius r0 < R such that, if V = G3∪. . .∪Gm+2

(the so-called “infiltration”) and 0 < ρ < r0, then

|V ∩ Bρ| ≤ ηρn ⇒ |V ∩ Bρ/2| = 0.

The need of performing compact variations of a given configuration of fluids
(i.e. variations that are localized in small balls and preserve boundary data)
suggests us to define the concept of cut. A cut K (relative to the pair (F1, F2))
is a bipartition (K1, K2) of the index set {1, . . . , m+ 2} such that i ∈ Ki,
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i = 1, 2. It gives a way of “refilling” Ω by using the first two fluids (F1, F2).
Precisely, starting with some configuration F, some cut K, and a fixed radius
0 < r < R, we can define a new configuration Fr ≡ FK,r as follows:

F r
i =



















Fi \Br if i > 2,

Fi ∪
⋃

j∈Ki

(Fj ∩ Br) otherwise.

Clearly, Fr is a compact variation of F inside BR. At this point, we introduce
some more notation: by ∆E we mean the energy change E(Fr, BR)−E(F, BR)
and by ∆rE we mean E(Fr, Br)−E(F, Br). Finally, we define A

K

r (improperly
called the area of K inside Br) as follows:

AK

r =
∑

h ∈ K1

t ∈ K2

(h, t) 6= (1, 2)

‖Sr
ht‖,

where as usual Sr
ht = ∂∗Fh ∩ ∂∗Ft ∩Br.

Let G be an admissible fluid configuration which is “locally minimizing”
inside a ball BR, that is, E(G) ≤ E(F) for all compact variations F of G inside
BR. Actually, we should be more careful when considering compact variations
of a fluid configuration, since most of such variations will not preserve volumes
and will thus not be admissible anymore. However, thanks to an argument
originally due to F.Almgren (see [1] VI.2(3), and [18] Lemma 13.5), any (small)
volume change ∆v can be adjusted at a cost proportional to ∆v itself (hence,
infinitesimal of higher order when compared with an area-type change). This
fact is extremely important, since it allows us to virtually ignore the problem
of adjusting volumes after a small change of the fluid configuration.

The following decay lemma incorporates the main engine that gives rise to
the elimination property (EP):

Lemma 3.2 (Decay). Suppose G = (Gi)
m+2
i=1 is locally minimizing inside BR

and that there exists a constant C > 0 such that, for almost all 0 < r < R,
there is at least one cut K for which

∆rE ≤ −C P (V,Br), (3.2)

where V =
⋃

j>2Gj is the infiltration. Then G has the elimination property
(EP), i.e. there exists a positive constant η and a radius r0 < R such that, if
0 < ρ < r0 and |V ∩Bρ| ≤ ηρn, then |V ∩Bρ/2| = 0; moreover, we can choose

η = ωn

(

C
2(C1+C)

)n

, with C1 = max
i,j

cij.
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Proof. Define α(r) = |V ∩ Br|. The function α(r) is monotone increasing,
with

α′(r) =

∫

∂Br

χV (y) dH
n−1(y) (3.3)

for almost all r ∈ (0, R). Since for almost all r and all i, j it holds ‖∂Br∩Sij‖ =
0, we can write

E(G, BR) = E(G, BR \Br) + E(G, Br) (3.4)

for almost all r ∈ (0, R). Fix now r0 = R (had we taken into account the
small cost due to possible volume adjustments, r0 should have been chosen
sufficiently small and η changed a little bit...) and take ρ ∈ (0, r0) such that
α(ρ) ≤ ηρn.

By contradiction, suppose that α(ρ/2) > 0, so that in particular α(r) > 0
for all ρ/2 < r < ρ. Given r ∈ (ρ/2, ρ) for which (3.3) and (3.4) are verified,
we obtain

0 ≤ ∆E = E(Gr, BR)− E(G, BR)

≤ ∆rE+ C1α
′(r),

(3.5)

thanks to the minimality of G. The isoperimetric inequality (2.1) gives

P (V,Br) = P (V ∩ Br)− α′(r) ≥ nω
1
n
n α

n−1
n (r)− α′(r),

thus, by (3.2) and (3.5),

Cω
1
n
n

C1 + C
≤

1

n
α

1
n
−1(r)α′(r) =

(

α
1
n

)′

(r)

for almost all r, hence by integration between ρ/2 and ρ we get

α
1
n (ρ/2) ≤ α

1
n (ρ)−

Cω
1
n
n

2(C1 + C)
ρ ≤ η

1
nρ−

Cω
1
n
n

2(C1 + C)
ρ = 0,

that is, a contradiction.

The next lemma shows how to get (3.2) starting from the weaker estimate
(3.6).

Lemma 3.3 (Balancing). Suppose there exists a positive constant δ > 0 and
a cut K, such that

∆rE ≤ − δ AK

r , (3.6)
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where AK

r is the “area of the cut inside Br” (see above). Then there exists a
positive constant C = C(δ, C0, C1), with C0 = min

i<j
cij, C1 = max

i<j
cij, such that

∆rE ≤ −C P (V,Br),

where V =
⋃

j>2Gj is the infiltration.

Proof. Let us estimate

∆rE = c12A
K

r −
∑

i < j

(i, j) 6= (1, 2)

cij‖S
r
ij‖

≤
∑

h ∈ K1

t ∈ K2

(h, t) 6= (1, 2)

(c12 − cht)‖S
r
ht‖ −

∑

j∈K1

c1j‖S
r
1j‖ −

∑

j∈K2

c2j‖S
r
2j‖

≤ (C1 − C0)A
K

r − C0

(

∑

j∈K1

‖Sr
1j‖+

∑

j∈K2

‖Sr
2j‖

)

.

(3.7)

On the other hand, it is not difficult to check that, by Theorem 2.1,

P (V,Br) ≤ AK

r +
∑

j∈K1

‖Sr
1j‖+

∑

j∈K2

‖Sr
2j‖,

that is,

−

(

∑

j∈K1

‖Sr
1j‖+

∑

j∈K2

‖Sr
2j‖

)

≤ AK

r − P (V,Br).

Therefore, from (3.7) we deduce

∆rE ≤ C1A
K

r − C0 P (V,Br). (3.8)

At this point we use the following inequality (its proof is straightforward). Let
δ, C0, C1 be positive constants, then for any A, P ∈ R

min {−δA, C1A− C0P} ≤ −
δC0

C1 + δ
P. (3.9)

By combining (3.9), (3.8) and (3.6), we conclude that

∆rE ≤ −
δC0

C1 + δ
P (V,Br) = −C P (V,Br),

as was to be proved.
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4 Network Representation

In this section we will use graphs to represent fluid configurations and employ
typical graph-theory results to deal with region-merging procedures and to get
estimates on the energy changes. First, we recall some basic definitions and
results about directed graphs and networks.
A directed graph G is a finite set of vertices (or nodes) vi, i = 1, . . . , n that
are connected by oriented arcs. The arc going from node vi to node vj is
represented by the ordered pair (vi, vj), or eij for short: in this case, vi is
called the tail and vj the head of eij . The set E of all arcs of G is, in general,
a subset of G×G. A graph G is said to be weighted if a certain non-negative
coefficient pij is associated with each arc eij, representing its capacity. This
last kind of graph is quite often called a network.

We are particularly interested in networks where each node has no connec-
tion (arc) to itself and where each pair of nodes vi 6= vj is connected by both
arcs eij and eji. Therefore, the arc set E coincides with G×G \∆ (where ∆ is
the diagonal of G×G), and hence our networks are completely connected, that
is, each pair of different nodes has exactly two connecting arcs (with opposite
orientation); on the other hand, the capacities pij are chosen to be symmetric
(pij = pji) and are allowed to be zero.

Definition 4.1 Given a network (G, p), and chosen a pair of nodes s, t, we
say that a function f : E → [0,∞) is a “flow” from the source s to the sink t
if

(1) (capacity constraint) f(eij) ≤ pij for all i 6= j;

(2) (conservation condition) if φ : G → R is the “node function” associ-
ated to f , i.e.

φ(vi) =
∑

j 6=i

f(eij)− f(eji),

then φ(v) = 0 for each v 6= s, t and φ(s) = −φ(t) ≥ 0. We will also
denote by ‖f‖ the “intensity” of the flow f , that is, ‖f‖ = φ(s).

Definition 4.2 Let s and t be, respectively, the source and the sink in a net-
work (G, p). A bipartition K = (K1, K2) of G is called a “cut” if the source
s and the sink t are contained, respectively, in K1 and K2 (compare with the
definition given in Section 3). The “size” of the cut is then defined as

σ(K) =
∑

i ∈ K1

j ∈ K2

pij.
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Now some results follow (for their proof, see [5]):

Theorem 4.3 If f is a flow between s and t, and K is a cut with respect to s
and t, then

‖f‖ ≤ σ(K).

Let us say that f is a maximum flow if there is no other flow f ′ such that
‖f ′‖ > ‖f‖. Simmetrically, let us say that K is a minimum cut if there is
no other cut K′ such that σ(K′) < σ(K). We recall that an algorithm has
been developed by Ford and Fulkerson (see [12]) to find a maximum flow in a
network. This algorithm is essentially contained in the proof of the following
fundamental result:

Theorem 4.4 (Max Flow – Min Cut). If f is a maximum flow and K is
a minimum cut, then

‖f‖ = σ(K).

We now recall a flow-decomposition result, better known as conformal de-
composition (see [4]), saying that any flow can be decomposed as a “sum” of
flows along paths. First of all, we give a definition of “path”.

Definition 4.5 An ordered n-tuple of arcs γ = (ej0j1, ej1j2 , . . . , ejn−1jn) is called
a “path” from v to w if the vertices vji are all distinct, with vj0 = v and vjn = w.

Theorem 4.6 (Flow decomposition). Given a flow f on a network (G, p)
between s and t, there exist paths γ1, . . . , γh from s to t and non-negative
constants f1, . . . , fh representing the flow through each path, such that

(i) ‖f‖ =
h
∑

i=1

fi;

(ii)
∑

i:erk∈γi

fi ≤ f(erk) ≤ prk, for all arc erk.

Proof. (Sketch). If ‖f‖ = 0 there is nothing to do, since any path γ
from s to t together with the zero flow gives the required family, so that we
suppose ‖f‖ > 0. Let Γ be the set of all paths γ from s to t such that the
minimum value of f over the arcs belonging to γ is greater than zero. If Γ
were empty, then one could show that the flow f is a “null flow”, i.e. ‖f‖ = 0,
but this contradicts our assumption, hence Γ 6= ∅. By induction, if Γ has only
one element γ, then the pair (γ,minγ f) necessarily gives the decomposition,
otherwise we suppose that such a decomposition can be found whenever Γ has
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at most d elements, and prove that this is also true when Γ has d+1 elements
(recall that, by the definition of path, Γ is always a finite set): indeed, consider
a path γd+1 ∈ Γ and define fd+1 as the minimum (positive) value of f over γd+1.
By subtracting fd+1 from f over the arcs of γd+1, we obtain a new flow f ′ such
that its corresponding set Γ has at most d elements. Finally the decomposition
of f ′ plus the pair (γd+1, fd+1) gives the required family.

Proof of the main result

We can represent a configuration of fluids as a network, with nodes correspond-
ing to fluids, arcs representing the separating interfaces, and with capacity
equal to interfacial area. Then a suitable use of the above results will let us
prove the elimination theorem, under hypothesis (ST2) of strict triangularity
of the coefficients cij .

Proof of Theorem 3.1. We only need to show that the hypotheses of Lemma
3.3, and hence of Lemma 3.2, are all satisfied. To do this, we represent the
configuration inside Br as a network, where node vi corresponds to fluid Fi and
arc capacity pij equals ‖S

r
ij‖ (area of the interface Sr

ij separating fluid Fi from
fluid Fj inside Br). Choose v1 as source and v2 as sink, then take a minimum
cut K of size σ(K) = AK

r + ‖Sr
12‖ and consider a maximum flow f (whose

existence is guaranteed by the Ford-Fulkerson algorithm, see [12] or [5]). It is
easy to see that this maximum flow can be decomposed by Theorem 4.6, in
such a way that the path γ1 consists of the single arc e12, and the flow f1 along
γ1 coincides with the full capacity p12. Now, we estimate the corresponding
energy change by using (ST2), Theorem 4.4 and Theorem 4.6:

E(Gr;Br) = c12(A
K

r + ‖Sr
12‖) = c12‖f‖ = c12

∑

i

fi

≤ c12f1 +
∑

i>1

(

∑

h,k:ehk∈γi

chk − δ

)

fi

= c12f1 +
∑

i>1

∑

h,k:ehk∈γi

chkfi − δ(‖f‖ − f1)

=
∑

h,k

chk
∑

i:ehk∈γi

fi − δ(σ(K)− ‖Sr
12‖)

≤
∑

h<k

chkphk − δAK

r = E(G;Br)− δAK

r ,
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hence we obtain
∆rE ≤ −δAK

r ,

and, by means of Lemma 3.3 and Lemma 3.2, the proof is achieved.

Remark 4.7 - The above results are still true when ‖ · ‖φ is used in place of
‖ · ‖. Here, φ represents a generic norm on Rn and

‖S‖φ =

∫

S

φ(ν(x)) dHn−1(x),

where ν(x) is any unit normal vector to S at x. This gives rise in general to
non-isotropic energies, modeling, for instance, polycrystals.

Corollary 4.8 (Regularity). Let φ be a norm on Rn and G = {G1, . . . , Gm}
be a locally-minimizing configuration for the energy

E(F) =
∑

i<j

cij‖Sij‖φ.

Then

(a) the density-1 set Gi(1) is open in Ω for all i;

(b) Hn−1-almost every “boundary” point x0 has a neighborhood with only two
fluids inside;

(c) if φ is the Euclidean norm (or, more generally, a smooth, uniformly
convex norm) then the interface set is made of smooth surfaces with
constant mean curvature, plus an Hn−1-negligible singular set.

Proof. (a) follows immediately from the definition of Gi(1) and Theorem
3.1. To prove (b), simply observe that, thanks to Theorem 2.1, Hn−1-almost
every “boundary” point x0 belongs to the reduced boundaries of exactly two
fluids, hence x0 is a “zero-density point” for all other fluids. Therefore, by
Theorem 3.1, there exists a neighborhood of x0 with only those two fluids
inside. Finally, (c) is a consequence of well known results about the regularity
of area-minimizing boundaries with volume constraint (see [1] IV, [15] and
[13]).
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