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Consider the cash-flow stream � � ���, ��, ��, … , �
� � 
��. The net present value (NPV) of � is 

���� | �� � ∑ ��
��� · �1 � ����, where � � �1 is the opportunity cost of capital (often, the market rate). 

Any number �  such that of  ���� |�� � 0 is called Internal Rate of Return (IRR).  

The IRR problem. As widely known, the IRR has serious flaws: 

(i) multiple real-valued IRRs may arise 

(ii) the meaning of each IRR may be ambiguous (rate of return or rate of cost?) 

(iii) complex-valued IRRs may arise 

(iv) the IRR is, in general, incompatible with the net present value (NPV) in accept/reject decisions 

and the IRR ranking is, in general, different from the NPV ranking 

(v) the IRR decision criterion is not applicable with variable costs of capital. 

 

Since the origins of the notions (Boulding 1935, 1936; Keynes 1936), the IRR drawbacks have stimulated an 

immense bulk of contributions over the decades investigating this issue and searching for some solution (see 

references in Gronchi 1987 and in Magni 2010a).  

We here present two autonomous solutions which solve the IRR problems completely. As a pleasant 

byproduct, a further problem is solved:  
 

The accounting problem. Accounting rates of return are period rates applied to book values of firms or 

projects. In accounting, an accounting rate of return (ARR) is considered a “false” return rate as opposed to 

the “true” yield, represented by the IRR. Numerous accounting scholars have been focusing for decades on 

the relations between ARRs and the IRR and, in particular, between some mean of ARRs and the IRR (see 

Magni 2009a). The search for a significant relation is still under scrutiny in the accounting literature. 

First solution. For a one-period project � � ���, ��� the rate of return is unambiguously defined as  

�: � �� � ��
���

. 
It may be viewed as the unique solution of �� � ���1 � !��� � ���� | !� � 0. The IRR equation for a 

multi-period project is just a generalization of the latter. Unfortunately, while unanimously accepted for 75 

years, this generalization is ill-fated, for all the problems stem from the very equation. We dismiss the IRR 

equation and propose a more “natural” way of generalizing the notion of rate of return. Note that 
 

� � "�
#�

                                                                                                �1� 

with "�: � �� � �� and #�: � ���. That is: rate of return means “interest on capital”. In a project, the capital 

#��� invested in [$ � 1, $] and interest "� are related in the following way: #� � #��� � "� � ��, $ � 1,2, … &, 

#
 � 0. The total capital in the span of the project life is ∑ #���
� , and the total interest is ∑ "�
� . Therefore, a 

natural generalization of (1) is just “total interest on total capital”: 



�': � "
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with " ) ∑ "�
�  and ( ) ∑ #���
� .  We call eq. (2) Purely Internal Rate of Return (PIRR). To check for 

project acceptability, the investor should compare the PIRR with an appropriate cost of capital. To this end, 

note that the investor may replicate � by investing #� in the market and withdrawing �� in each period. In this 

case, the capital invested in the interval *$ � 1, $+ is #�, � #���, � "�, � �� with #�, � ��� and  "�, � �#���, . The 

total capital invested is (, ) ∑ #���,
� , which differs, in general, from (. This implies that if the project is 

undertaken, the investor incurs two opportunity costs: she renounces to investing ( at the rate � and to 

investing the extra capital (, � ( at the rate �. The cost of capital � must then be corrected to account for the 

excess capital foregone. For any euro of capital invested in the project, the investor renounces to invest (,/( 

euro in the market. The comprehensive cost of capital (CCOC) is then 

.': �    �   /
01234�  21�4 
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where ", ) ∑ "�,
� . Note that both PIRR and COCC do not depend on capitals but on total capital: �' � �'�(� 

and .' � .'�(�. Using (2) and (3) and making appropriate algebraic manipulations one finds �' � .' �
���� | ���1 � ��
/(, so that the following theorem holds: 

Theorem 1 (PIRR 1). For any ? � �#�, #�, … , #
��� � 
 such that #�  � ���, if ( � 0  �@� the project 

should be accepted (i.e. NPV � 0) if and only if �' � .'  �@�. 

Remark. In his famous book, Keynes (1936, 1967) unconsciously offers the reader a clue to solve the 

problems he himself has generated. The author introduces the notion of user cost: denoting user cost with D� 

and carefully formalizing Keynes’s sentences, it may be shown that user cost is just D� � #�, � #�. This 

implies that depreciation of user cost is D��� � D� � �#�, � #�� � �#���, � #����. Summing over $, one finds 

∑ �D��� � D��
� � ∑ "�
� � ∑ "�,
� � ���� | ���1 � ��
 . Dividing by (, PIRR 1 is found back (Magni 2009b, 

2010b). 

Given that the NPV is unvaried under changes in ?, one may choose whatever sequence ?  of outstanding 

capitals to economically describe the project.  Hence, by (PIRR 1) and eq. (3), the market rate itself may 

serve as the COCC. 

Corollary 1. Choose any vector ? such that ( � (,. Then, if (, � 0  �@� the project should be accepted (i.e. 

NPV � 0) if and only if �' � �  �@�. 

 

Let �E and �F be two competing projects whose length is &G and &H respectively. We have 

����E | �� � (G��' G � .' G��1 � ���
I  and ����F | �� � (H��'H � .'H��1 � ���
J , with obvious meaning 

of the symbols. By choosing outstanding capitals #�  so that (G�1 � ���
I � (H�1 � ���
J , one finds 

Theorem 2. (PIRR 2). Consider competing projects �K, �L, … , �M. Choosing the same discounted capital for 

all projects, project ranking via the margin ��' � .'� is equal to the NPV ranking.  

An IRR is actually nothing more than a particular case of PIRR. Let #���� � #�������1 � �� � �� be 

the capital associated to an IRR and let N: � ∑ #������
�  be the total capital invested corresponding to that 

IRR. We have � � �'�N�. There are infinitely many sequences ? such that the total capital is N. All such 

sequences constitute a Hotelling depreciation class (after Hotelling 1925). Given that the PIRR is unvaried 

under changes in ?, as long as total capital is unvaried, the following result holds. 



Theorem 3 (PIRR 3). An IRR is a PIRR corresponding to a Hotelling depreciation class. 

(See also Magni, 2009a). The PIRR theorems contribute to solve the accounting problem as well. Let O��� be 

the book value of a project or a firm. The ARR is P� � �O� � �� � O����/O��� and is known in finance and 

accounting as Return On Equity or Return On Asset, depending on whether O� is the book value of equity or 

the book value of total assets. Weighing the ARRs by the book values, the average accounting rate of return 

(AARR) is 

AARR � P�O� � P�O� � S � P
O
��
O� � O� � S � O
��

. 

Given that the PIRR theorems hold for any sequence of capitals outstanding, it is obvious that the AARR is a 

PIRR where the outstanding capital is the book value (#� � O�� and interest is the accounting income of the 

firm ("� � P�O���). That is: AARR � �'�T�, T ) ∑ O���
� . Thus, (PIRR 3) tells us that an IRR is only an 

average of ARRs obtained from a Hotelling depreciation class. Therefore, while accounting scholars are 

involved in finding the relations between ARRs and the IRR, such a line of research is misdirected: the 

appropriate line of research involves finding the relations between ARRs and AARR. 

Second solution. Consider Makeham’s (1874) formula, conceived for loans: the original formula is  #� �
UV

W �X � X�1 � ��Y � X�1 � ���
, where #� is the amount financed,  X is the capital receivable (nominal 

value including any bonus), Z is the rate of interest on X), � is the yield to the purchaser (i.e., IRR). As 

known, such a formula may be modified to account for any cash flow stream �. In particular, let [�: �
#��� � #� be the capital repayment, \��� ) ∑ [��1 � ����
�  be the value of capital, ]��� ) ∑ "�
� �1 � ���� 

be the value of interest. Then, the value of t � is ���� � ]��� � \��� and the value of interest is ]��� �
W
2 �#� � \����. But such a formula is inapplicable if an IRR does not exist. A fruitful generalization is the 

following one. Let �'2 ) �]���/�#� � \���� so that   
 

���� | �� � ���� � #� � ^#� � \���_ `�'2
� � 1a.                                               �4�. 

The difference #� � \��� is the capital sacrificed by the investor who undertakes project �, so the difference 

cW'd
2 � 1e represents a (scaled) excess return. It may be shown that  �#� � \����/� � (2/�1 � ��, where 

(2 ) #� � #��1 � ���� � S � #
���1 � ���
��, which implies  

  

�'2 � "2
(2

                                                                                     �5� 

 

where "2: � "� � "��1 � ���� � S � "
�1 � ���
��.  Equation (5) is a rate of return which we name Average 

Internal Rate of Return (AIRR). From (4) and (5),  �'2 � � � ���� | ���1 � ��/(2, whence 

Theorem 4 (AIRR 1). For any ? � �#�, #�, … , #
��� � 
 such that #�  � ���, if (2 � 0  �@� the project 

should be accepted (i.e. NPV � 0) if and only if �'2 � �   �@�. 

Using the same argument as for Theorem 2 and Theorem 3, one finds 
 

Theorem 5. (AIRR 2) Consider competing projects �K, �L, … , �M. Choosing the same discounted capital (2 

for all projects, the ranking of the projects via �'2 is equal to the NPV ranking. 

 Theorem 6. (AIRR 3) An IRR is an AIRR corresponding to a Hotelling depreciation class. 



(See also Magni 2009a). The AIRR is evidently a function of (2: �'2 � �'2�(2�. Also, if the outstanding 

capital is the book value, then, weighing the ARRs by the present value of the book values, the average 

accounting rate of return is  

AARR2 � P�O��1 � ���� � P�O��1 � ���� � S � P
O
���1 � ����
���

O� � O��1 � ���� � S � O
���1 � ����
��� . 

Then, AARR2 � �'2�T2�, T2 ) ∑ O���
� . Moreover, AIRR 3 warrants again that the IRR is but an average of 

ARRs. Furthermore, we have " � "� and ( � (� so that �' � �'�. Note that the AIRR depends on the market 

rate as well as on capital, and the market rate affects each term of the triplet �(2, �'2, ��; conversely, the PIRR 

is genuinely internal and only the last term in the triplet �(�, �'�, .'� is affected by the market rate. However, 

in order to rank projects, the PIRR must be used in association with the COCC, whereas the ranking of AIRR 

suffices to rank projects. Note that, choosing ( ) #� and using the fact that " � ∑ ��
� , a (seemingly heretic) 

heuristic may be drawn from the PIRR function to compute a project’s rate of return:   

Subtract outflows from inflows and divide by initial capital invested. 

All results may be generalized for a variable market rate ��, $ � 1,2, … , &. Let g�: � *�1 � ����1 � ��� · … ·
�1 � ���+��. As for the PIRR, it suffices to define COCC as .:h � ∑ ��#���,
� / ∑ #���
� ; as for the AIRR, it 

suffices to replace �'2/� in (AIRR 1) with �'2/�', where �': � ∑ ��#���g���
� / ∑ #���g���
�  is an average of 

market rates. 

The results obtained radically revise the way we think about investments and rates of return, and 

finally unlock the chains economists have imposed upon themselves: (i) the PIRR and the AIRR represent a 

major link between economics, finance and accounting: these indexes evidence that the “true” rates of return 

are means of accounting rates; (ii) a rate of return in itself is uninformative: each term of the triplet (total 

capital, rate of return, cost of capital) is essential in conveying information about economic profitability; 

(iii) any IRR is only one among infinitely many AIRRs or PIRRs: decision makers may safely use it (if at 

least one exists), provided that the PIRR theorems and the AIRR theorems are complied with; (iv) an 

unambiguous (and useful) definition of investment/financing does not relate to cash flows, but to (the sign 

of) total capital: surprisingly as it may be, any project may be seen as either an investment or a financing at 

the decision maker’s discretion. 
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