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Abstract

The paper focuses on analytical models of two-machine one-buffer Markov lines including

waste production. The aim is to compute the probability of producing good parts, referred as

effectiveefficiency, when waste production is related to stoppages ofthe first machine. This

problem is common in industrial fields where parts are generated by a continuous process, e.g. in

high speed beverage packaging lines.

Two innovative models including waste production are presented: theWP-Basic Model ex-

tends the model of a basic two-machine one-buffer transfer line; theWP-RP Model extends the

model of a two-machine one-buffer transfer line with a restart policy operating on the first ma-

chine (i.e., when the first machine is blocked because the buffer is filled, it is not allowed to

resume production until the buffer becomes empty). The two previous models are improved by

distinguishing, at any time step the first machine is operational, whether it is producing a good or

a bad part.

The probabilities of the system being in any feasible state are analytically derived for both the

WP-Basic Model and theWP-RP Model. Then, the obtained probabilities are used to determine

the performance measures of interest, i.e., waste probability and effectiveefficiency. Finally,
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some numerical results are provided to illustrate the effectiveness of theWP-Basic Model and the

WP-RP Model.

1 Introduction

This paper presents an analytical method for calculating theeffectiveefficiency of two-machine one-

buffer lines with Markovian machines having equal and constant processing times. Theeffective

efficiency is defined as the probability of producing a good part in any time step.

Parts produced in the manufacturing system of interest may be either “good” or “bad”. It is

assumed that bad parts, i.e., parts that do not meet the required quality standards, are produced by

the first machine of the line under specific conditions. Then,both bad and good parts pass through

the buffer and enter the second machine that is supposed to ensure a defect-free process.

1.1 Problem formulation and motivation

In this work, the condition under which bad parts are produced is the occurrence of stoppages of the

first machine. Such stoppages can be caused by two disjoint sets of events: (i) operational failures

and (ii) blocking events. While the former refers to the internal behaviour of the machine (depending

on the machine time-to-failure distribution); the latter concerns a more complex phenomenon related

to the interactions with the rest of the line (i.e., the buffer and the second machine). Specifically, a

blocking event occurs when the downstream buffer is full so as there is not enough storage space to

keep incoming parts. This situation may occur if the second machine is down while the first one is

still operational, depending on the buffer level and the maximum buffer size. This paper assumes

that when the first machine is repaired (according to the repair probability of the very machine) or

leaves the blocking condition (according to the repair probability of the second machine and the

buffer level), it produces a certain and constant number of bad parts. Hence, waste production not

only depends on internal machine failures but also on eventsoccurring in other parts of the line.

This scenario is common in practice in the food and beverage industry. Let us consider the first

machine of an automatic packaging line, called “filling machine”, that fills packages with liquid

diary products or soft drinks. Such a machine takes in packaging material and liquid food. The

production process is a continuous and aseptic process where the packaging material passes through

a heated hydrogen peroxide bath. If the process is interrupted for any reason (e.g. a failure or a

blocking event) a portion of the packaging material remainsin contact with the hydrogen peroxide

for too long. As a consequence, the first packages produced when the stoppage is removed must be
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rejected as waste. It can be assumed that the number of waste packages per stoppage is constant. The

filled packages released by the filling machine (“good” or “bad”) pass to an accumulation conveyor

and then to the rest of the line. Since the most important feature of this accumulation conveyor, from

the point of view of the issue addressed in this paper, is its storing capacity, we refer to it simply as

a finite FIFO buffer (see Li and Meerkov, 2009).

The machines in the buffer downstream are inspection stations and packaging machines (e.g.

straw applicators, film wrappers, etc.) that do not compromise the integrity of the filled packages.

Thus, it is acceptable to assume that the machines followingthe filler machine in the line ensure a

waste-free process. This is an interesting industrial application of a manufacturing system where a

number of bad parts are produced in the event of any stoppagesof the first machine.

Note that in many automatic manufacturing lines parts of different sizes and shapes are produced

at a very high speed. For example, the filling machine of an automatic packaging line produces

thousands of packages per hour. Thus, an important production issue is the risk of jamming, sliding

or tumbling. When a “jamming” occurs a manual intervention of an operator is needed to restore

the operational state of the machine. In this paper jamming is treated as failures. This is correct

if it assumed that a machine may only fail when it is operating. In general, we can distinguish

betweentime dependentandoperation dependentfailures (Buzacott and Hanifin, 1978). The former

depend only on the amount of time since the last repair, and the latter depend only on the number of

operations that have been performed since the last repair. In semiconductor industry, for example, the

majority of interruptions are time-based (SEMI, 1992). Nevertheless, in order to address automatic

manufacturing lines where jamming may interrupt the production flow, the assumption of operation

dependent failures is adopted in this paper.

Even if the occurrence of a specific failure is unpredictable, we can represent the time to the next

failure (time to failure, TTF) by means of mass probability functions. To facilitate mathematical

tractability, TTF is commonly assumed to be distributed according an exponential law, that is, to

consider the failure occurrence process as it were completely memory-less. The same is assumed

to model the time needed to restore the operational state of amachine (time to repair, TTR) once

the failure occurred. Although those assumptions could be felt invasive, practical evidence showed

that TTF and TTR assume distributions very close to the exponential, especially when automated

machines are considered (Perrica et al., 2008). Hence, bothfailure and repair processes can be

conveniently modelled as memory-less processes.

The above considerations justify the modelling approach adopted in this paper. Specifically, the

system under study can be modelled as atransfer linewith Markovian machines decoupled by finite
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buffers.

1.2 Literature review

Extensive reviews on transfer/production line modelling are provided by Dallery and Gershwin

(1992), Papadapoulos et al. (1993) and Gershwin (2002).

For reason of mathematical tractability, exact analyticalmodels of this kind of manufacturing

systems are available only for short lines, i.e., lines madeup of two machines decoupled by an

intermediate buffer. Thus, also the analytical models presented in this paper address the simple con-

figuration of two-machine one-buffer lines. Although this may seem restrictive, the contribution of

the present study is of practical relevance even when longerlines are under analysis. Note that if

the line under analysis is a long line with only one buffer, the first machine and/or the second ma-

chine of the model could be equivalent machines representing series of machines in the real system.

In case of more complex lines (with several buffers decoupling adjacent machines), approximated

techniques can be adopted. The interesting point is that themost widely used methods for analysing

long lines, e.g. decomposition techniques (see Gershwin, 1987; Dallery et al., 1989; Levantesi et al.,

2003), are based on the evaluation of a series of two-machineone-buffer sub-systems. Thus, the

development of accurate analytical models for short lines is of great practical importance to advance

the understanding of more complex and longer lines.

In recent years, transfer/production line models including quality control and quality require-

ments have been developed. The reader may refer to works suchas Colledani and Tolio (2000), Kim

and Gershwin (2005), Aksoya and Gupta (2005), Li and Huang (2007), Colledani and Tolio (2009).

These models treat a system where any part has a certain probability of having a quality defect.

On the other hand, this paper addresses a different kind of problem where waste production is

related to the occurrence of specific events, i.e., stoppages of the first machine. Note that stoppages

of the first machine are due to not only internal failures but also events occurring in other parts of

the line causing the blocking of the first machine itself.

A similar problem is addressed in Liberopoulos et al. (2007)by developing analytical expres-

sions for important performance measures of an automatic transfer line where the quality of the

material trapped in the stopped workstations deteriorateswith time. Nevertheless, the study does

not consider storage buffers along the line. A first attempt to address waste production into a two-

machine one-buffer transfer line is presented in Gebenniniet al. (2009) and Gebennini et al. (in

press). Nonetheless, theeffectiveefficiency is evaluated by means of an approximate formula, valid

only under certain conditions (e.g. low values for both the failure probability and the amount of
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waste per stoppage).

Hence, this study contributes to the current literature by analytically expressing the probability

of waste production and, as a consequence, by providing theeffectiveefficiency of a two-machine

one-buffer line. The new models presented in this paper extend the results from the well-known

basic two-machine one-buffer model (refer to Gershwin, 2002) and from the two-machine one-

buffer model with restart policy in Gebennini et al. (2009).The improvement consists in evaluating

whether a good or a bad part is produced at any time step by considering both internal machine

failures and machine-machine interactions, partially mitigated by the intermediate finite buffer. The

rational is to take the aforementioned previous models without waste production, easier to be solved,

as a starting point, and to “disaggregate” the states as needed.

The remainder of the paper is organized as follows. Section 3introduces some notation and

discusses the new modelling approach with waste production. The results from Section 3, i.e., the

probabilities of being in any state with the first machine producing a good or a bad part, are used

in Section 4 to derive the expressions of the performance measures of interest, i.e., waste probabil-

ity andeffectiveefficiency. Section 5 presents some numerical results in order to demonstrate the

robustness of the new models. Section 6 draws some conclusions and outlines future work.

2 Modeling approach

The manufacturing system under study is a two-machine one-buffer transfer line with Markovian

machines.

If waste production is not taken into consideration and the behaviour of each machine only

depends on its own failure/repair probability and on the level of the intermediate buffer, the transfer

line can be studied by means of a discrete-time discrete-state Markov model. Specifically, we refer

to two previous models:

• the model of the simplest line acting as follows (for major details see Gershwin, 2002): when

the buffer is neither full nor empty both machines may fail and be repaired according to

their own failure/repair probabilities and, accordingly,the buffer level rises or falls; when the

buffer is empty the second machine is “starved”, i.e., thereare no parts to work on; when

the buffer is full the first machine is “blocked”, i.e., thereis no storage space to hold parts

in the downstream. Starvation and blocking are negative phenomena resulting in a loss of

production capacity (the machine is operational but prevented from processing parts). This

model is calledBasic Modelin the following;
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• the model with “restart policy” acting as follows (for majordetails see Gebennini et al., 2009):

the machines may become blocked and starved as in theBasic Model, nevertheless the first

machine is not allowed to leave the blocking state as soon as the buffer level starts to decrease.

Briefly, once the first machine gets blocked it is put into a “controlled idle state” in order to

allow the buffer level to diminish. The aim is to reduce the probability of subsequent blocking

events that can occur if the first machine resumes productionwhen the buffer level is just

below the maximum buffer size. Such a control policy is implemented in several industrial

applications, especially in case of costly machine outages. This is the case, for example, of

automatic packaging lines where it is important to keep the filling machine working with the

minimum of disruption. This model is calledRP Modelin the following.

The Basic Model and the RP Model allow to solve the Markov chains representing the system

with or without the restart policy if no waste production is taken into consideration. The states

constituting this kind of Markov chain, referred here as the“aggregate” Markov chains, depends

only on the buffer level and the condition of the two machines(up or down), without distinguishing

the production of good or bad parts.

In the present work, taking the “aggregate” Markov chains ofthe Basic Model and the RP Model

as a starting point, additional information about waste production is provided. The new models are

calledWP-Basic Model andWP-RP Model.

In both cases (with or without restart policy), waste production is assumed to be related to

specific events that may occur in the system, i.e., the interruption of the process performed by the

first machine. Such an interruption can be caused either by anoperational failure of the first machine

(situation denoted by the subscript “f” in the following) orby a blocking event (situation denoted by

the subscript “b” in the following), i.e., the blockage of the outgoing flow due to the buffer being full.

When the first machine resumes operation, since either it is repaired or the buffer level decreases,

a constant numberW of bad parts are produced before the good ones. If a further stoppage occurs

while the first machine is still producing bad parts, waste production is interrupted.

Given such a more complex system behaviour, the procedure applied in this paper and discussed

in details in Section 3.1 and Section 3.2 can be summarised asfollows:

• Verify the adoption of a restart policy in the manufacturingline under analysis and refer to the

RP Model if the restart policy is applied, to the Basic Model otherwise;

• Evaluate the “aggregate” Markov chain related to the RP Model or the Basic Model without

distinguishing between bad and good parts;
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• Develop a “disaggregate” Markov chain for considering waste production (with or without

restart policy), i.e., a new Markov chain where two more components are added: a first com-

ponent indicating whether the latest event causing waste production is an operational failure

(denoted by the subscript “f”) or a blocking event (denoted by the subscript “b”), and a sec-

ond component specifying the number of bad partsw produced since recovery from that latest

event, with 0≤ w≤ W ;

• Relate the “disaggregate” Markov chain to the “aggregate” Markov chain by identifying over-

lapping states (e.g. in the “disaggregate” Markov chain, since bad parts can be produced by

the first machine only, states with the first machine down havea non-zero probability only if

waste production is zero; these states coincide with the corresponding states in the “aggregate”

Markov chain).

Briefly, this study first evaluates the “aggregate” Markov chain, easier to be solved by applying

the Basic Model or the RP Model, and switches to the “disaggregate” Markov chain only when

it is necessary, i.e., when the system is in states where waste can be produced. This procedure is

convenient because some of the states of the “disaggregate”Markov chain coincide with those of the

“aggregate” Markov chain whose solution is easily providedby the Basic Model and the RP Model.

For example, when the first machine is down there is no need to distinguish between bad or good

parts.

In the following, after a description of the model assumptions, the basic case without restart

policy is addressed in Section 3.1 which describes theWP-Basic Model. Then, Section 3.2 discusses

how some probabilities change for theWP-RP Model when a restart policy is adopted.

2.1 Notation and assumptions

The system state is defined as(n,α1,α2,w), where:

• n= 0, . . . ,N is the buffer level, beingN the maximum buffer size;

• αi = 0,1 is the condition of machinei, with i = 1,2: if αi = 0 machinei is down, if αi = 1

machinei is operational;

• w indicates the bad part the first machine is processing given that a total ofW bad parts are

expected to be produced as a consequence of the last stoppage: w= 0 if the first machine is

processing a good part;w= 1, . . . ,W if the first machine is processing a bad part (specifically,

the bad partw of theW bad parts related to the last stoppage).
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The probabilistic model of the system is studied in steady state.

Let pw(n,α1,α2,w) be the probability of state(n,α1,α2,w).

Let p̄(n,α1,α2) be the probability of a state defined only by the machines’ conditions and the

buffer level if waste production is not taken into account. We assume that̄p(n,α1,α2) is given by

solving the “aggregate” Markov chain of the aforesaid two-machine systems without waste pro-

duction, i.e.,p̄(n,α1,α2) is obtained by the Basic Model in Gershwin (2002) if no restart policy is

adopted or by the RP Model in Gebennini et al. (2009) if there is a restart policy.

The main assumptions of the Basic Model and the RP Model without waste production are

retained here. For the sake of clarity, the most important ones are briefly recalled in the following:

• If the buffer is full the first machine is said to beblocked, if the buffer is empty the second

machine is said to bestarved;

• The two machines have equal and constant processing times and start their operations at the

same instant;

• Time is scaled so that processing one part takes one time step;

• Both machines have geometrically distributed times between failures and times to repair: the

constant parameterspi andr i represent the failure and the repair probability of machinei, with

i = 1,2;

• Operational failures are assumed to be operation dependentaccording to the discussion in

Section 1;

• Repairs and operational failures occur at the beginnings ofthe time steps, and changes in the

buffer level take place at the end of the time steps;

• Parts are not destroyed or rejected at any stage in the system.

Some new assumptions regarding waste production are introduced as follows:

• Each stoppage of the first machine, due to either an operational failure or a blocking event,

causes waste production at the restart;

• No defects are produced at the second machine;

• The total amount of waste produced per stoppage of the first machine is a constant value

W . The first bad part is produced as soon as the first machine is repaired or leaves the block

condition. Next parts are bad parts until either it completes the batch ofW bad parts or another
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failure/blocking event occurs. In the latter case, the firstmachine stops producing waste and,

when it resumes production, a new batch ofW bad parts starts to be processed;

• Waste produced by the first machine at each restart moves forward through the buffer and it is

processed by the second machine. Thus, waste can be detectedonly at the end of the line.

2.2 Aggregate and disaggregate Markov chains

In the so-called “aggregate” Markov chains (with or withoutrestart policy) the system state depends

only on the buffer level and the condition of the two machines(up or down), without distinguishing

the production of good or bad parts. The solution of the “aggregate” Markov chains, denoted as

p̄(n,α1,α2), is supposed to derive from the Basic Model in Gershwin (2002) if no restart policy is

adopted or the RP Model in Gebennini et al. (2009) if there is arestart policy.

In the “disaggregate” Markov chains (with or without restart policy) information about the qual-

ity of the part under production (“good” or “bad”) is added. The objective of this work is to find the

solution of “disaggregate” Markov chains, denoted aspw(n,α1,α2,w), in order to be able to express

the performance measures of interest, i.e., waste probability andeffectiveefficiency (see Section 4).

Given a certain buffer leveln and machines’ conditionsα1,α2, either the system is producing

a good part (w = 0) or it is producing bad partw = 1, . . . ,W . Hence, there exists a relationship

between the probabilitypw(n,α1,α2,w) and the probabilitȳp(n,α1,α2) computed by considering

the same line with no distinction between good and bad parts.The relationship is as follows, for

n= 0, . . . ,N, α1,α2 = 0,1 andw= 0, . . . ,W :

W

∑
w=0

pw(n,α1,α2,w) = p̄(n,α1,α2) . (1)

Moreover, since waste can be produced only by the first machine, if α1 = 0, n = 0, . . . ,N and

α2 = 0,1 we have:

pw(n,0,α2,0) = p̄(n,0,α2) , (2)

pw(n,0,α2,w) = 0, w= 1, . . . ,W . (3)

Since waste production is related to two types of events, i.e., operational failures of the first

machine and blocking events, the two cases can be treated separately whenw 6= 0. This is convenient

whenα1 = 1 (and the first machine is not blocked) since the probabilities of states withw 6= 0 are

zero whenα1 = 0, as stated by equation (3). Thus, forn = 0,1. . . ,N−1 (the first machine is not
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blocked),α2 = 0,1 andw 6= 0, the probabilitypw(n,1,α2,w) can be expressed as follows:

pw(n,1,α2,w) = pw
f (n,1,α2,w)+pw

b (n,1,α2,w) , w= 1, . . . ,W , (4)

where

• pw
f (n,1,α2,w) with w = 1, . . . ,W , is the probability that the first machine is producing bad

partw related to the last operational failure;

• pw
b (n,1,α2,w) is the probability that the first machine is producing bad part w related to the

last blocking event.

Note thatpw
f (n,1,α2,w) andpw

b (n,1,α2,w) are independent since failures are assumed to be

operation-dependent and, consequently, when the first machine is blocked it cannot fail.

If the first machine is blocked, i.e., whenn= N andα2 = 0, no part can be processed. We adopt

the following convention:

pw(N,1,0,0) = p̄(N,1,0) , (5)

pw(N,1,0,w) = 0, w= 1, . . . ,W . (6)

The probability of producing a good partpw(n,1,α2,0), for n= 0,1. . . ,N−1 andα2 = 0,1, can

be expressed, according to equation (1), as:

pw(n,1,α2,0) = p̄(n,1,α2)−
W

∑
w=1

pw(n,1,α2,w) . (7)

In the following section, theWP-Models for addressing the “disaggregate” Markov processes

are discussed in detail by distinguishing between the scenarios with and without restart policy.

3 Models with waste production (WP- Models)

3.1 TheWP-Basic Model

In this case the probabilities̄p(n,α1,α2), for n= 0, . . . ,N andαi = 0,1 with i = 1,2, are given by

the Basic Model without waste production described in Gershwin (2002). The “aggregate” Markov

chain related to the Basic Model is depicted in Figure 1.

[PUT FIGURE 1 HERE]
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In the following theWP-Basic Model taking waste production into consideration isdiscussed.

Since waste can be produced only by the first machine, the focus is here on states withα1 = 1. All

the steady-state probabilities of theWP-Basic Model are reported in Appendix A.

3.1.1 Operational failures

In this section we address the probability of waste production due to operational failures of the first

machine. Thus, we focus on the termpw
f (n,1,α2,w), for n= 0, . . . ,N−1,α2 = 1,0 andw= 1, ...,W .

If n= N the only non-transient state is that withα2 = 0 and equations (5) and (6) hold.

Let us consider first the case where the first bad part is produced, i.e.,w= 1. Then, the proba-

bilities for bad partw, with w= 2, . . . ,W , are derived.

• States with w= 1.

The first machine can be processing the first bad part of theW bad parts related to a previous

failure if it has just been repaired, or, in other words, if the first machine was down during the

previous time step and a repair has occurred at the beginningof the current time step. Thus,

we are interested in transitions from states withα1 = 0 (and, as a consequence, withw= 0)

to states withα1 = 1.

If n = 2, . . . ,N−1, the possible states where the first machine could be processing bad part

w= 1 are states(n,1,0,1) and(n,1,1,1). As shown in Figure 2, the internal state(n,1,0,1)

can be reached only from two states (among all the possible states withα1 = 0), i.e., from

state(n−1,0,0,0), if the first machine is repaired and the second machine staysdown, and

state(n− 1,0,1,0), if the first machine is repaired and the second fails. The internal state

(n,1,1,1) can be reached from state(n,0,0,0), if both machines are repaired, and from state

(n,0,1,0), if the first machine is repaired and the second machine does not fail. This leads to

the following equations:

pw
f (n,1,0,1) = r1(1− r2)pw(n−1,0,0,0)+ r1p2pw(n−1,0,1,0) n= 2, . . . ,N−1, (8)

pw
f (n,1,1,1) = r1r2pw(n,0,0,0)+ r1(1− p2)pw(n,0,1,0) n= 2, . . . ,N−1, (9)

wherepw(n,0,0,0) andpw(n,0,1,0) are given by equation (2) and supposed to be known, ac-

cording to the assumption that the probabilitiesp̄ are provided by the Basic Model in Gershwin

(2002).

[PUT FIGURE 2 HERE]
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If n = 0,1 some states are transient and consequently have zero steady-state probability as

explained in Gershwin (2002). The only non-transient statewhere the first machine could

be processing bad partw = 1 is state(1,1,1,1) that can be reached from states(1,0,0,0),

(1,0,1,0) and(0,0,1,0). Thus,

pw
f (1,1,1,1) = r1r2pw(1,0,0,0)+ r1(1− p2)pw(1,0,1,0)+ r1pw(0,0,1,0) . (10)

• States with w= 2, . . . ,W .

Let us consider the generic bad partw with w = 2, . . . ,W produced as a consequence of a

previous failure of the first machine.

The possible internal states where the first machine could beprocessing bad partw are states

(n,1,0,w) and(n,1,1,w). The system can be in one of these two states in the current time step

only if it was in a feasible state producing bad partw−1 during the previous time step, and

no failure of the first machine has occurred. Specifically, state(n,1,0,w) can get from state

(n−1,1,0,w−1) if the first machine does not fail and the second machine is notrepaired; it

can get from state(n− 1,1,1,w− 1) if the second machine fails and the first machine does

not. The system reaches state(n,1,1,w) from state(n,1,1,w−1), if neither of the machines

fail, from state(n,1,0,w− 1), if the first machine does not fail and the second machine is

repaired. Thus, we obtain the following equations:

pw
f (n,1,0,w) = (1− p1)(1− r2)pw

f (n−1,1,0,w−1)+ (1− p1)p2pw
f (n−1,1,1,w−1) ,

(11)

w= 2, . . . ,W , n= 3, . . . ,N−1,

pw
f (n,1,1,w) = (1− p1)r2pw

f (n,1,1,w−1)+ (1− p1)(1− p2)pw
f (n,0,1,w−1) , (12)

w= 2, . . . ,W , n= 2, . . . ,N−1.

As regards the lower boundary, the non-transient states where the first machine could be pro-

cessing bad partw with w> 1 are(2,1,0,w) and(1,1,1,w). By considering transitions not

including failures of the first machine, we have

pw
f (1,1,1,w) = (1− p1)(1− p2)pw

f (1,1,1,w−1) , w= 2, . . . ,W , (13)

pw
f (2,1,0,w) = (1− p1)p2pw

f (1,1,1,w−1) , w= 2, . . . ,W . (14)
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The remaining states are transient with zero steady-state probability.

3.1.2 Blocking events

In this section we address the probability of waste production due to blocking events. Thus, we

consider now the termpw
b (n,1,α2,w) for n= 0, . . . ,N−1, α2 = 1,0, andw= 1, . . . ,W .

When the system leaves state(N,1,0,0), defined according to (5), the buffer level decreases to

N−1 and the first machine resumes processing a part. If waste production is taken into account, this

part is a bad part and, specifically, it is the first bad item of theW bad parts related to that restart.

Thus, the system gets state(N−1,1,1,1).

If the first machine does not fail or get blocked again, it keeps on processing bad parts until it

completes the whole batch ofW bad parts. Otherwise, waste production is interrupted. In other

words, the first machine processes bad parts related to a previous blocking event until the system

remains in states withn= N−1. This happens if neither of the machines fails. Thus,

pw
b (N−1,1,1,w) = [(1− p1)(1− p2)]

w−1r2pw(N,1,0,0) , w= 1, . . . ,W . (15)

Since no waste due to blocking events can be produced in states withn 6= N−1, we have:

pw
b (n,1,α2,w) = 0, n 6= N−1, α2 = 1,0, w= 1, . . . ,W . (16)

3.2 TheWP-RP Model

The restart policy described in Gebennini et al. (2009) applies to the first machine each time it gets

blocked, i.e., the buffer fills up. Specifically, the first machine is put into the so-called “controlled

idle state”, i.e., it is forced to remain idle even when the buffer level starts to drop. The “controlled

idle state” persists until the buffer empties again.

In order to model such a transfer line with restart policy, two complementary Markovian behav-

iors are considered and, consequently, the state space is divided into two partitions that are briefly

recalled in the following:

1. the “Standard Operation Partition” includes states where both machines can fail and be re-

paired according to their own parameters and, as a consequence, the buffer level can fluctuate

within the range[0;N]; once the buffer level reaches its maximum capacityN, the first ma-

chine gets blocked and the system leaves states belonging tothis partition, i.e., it enters the

buffer drainage partition.
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2. the “Buffer Drainage Partition” is entered by the system when, being the buffer at levelN, a

repair on the second machine occurs and the buffer level begins to decrease. The first machine

is put into the “controlled idle” state: it is prevented fromprocessing parts and it cannot fail.

The system leaves states of this partition, i.e., it returnsin thestandard operation partition,

when the buffer level drops below the valuen= 2 and the second machine is operational. The

choice of leaving this partition atn = 2 allows the system to come back into thestandard

operation partitionwith n= 1, i.e., with the second machine not starved.

The “aggregate” Markov chain related to the RP Model is depicted in Figure 3.

[PUT FIGURE 3 HERE]

Note that if waste production is taken into consideration according to the assumptions listed in

Section 2.2 bad parts can be produced only in states belonging to the Standard Operation Partition.

Similarly as for the Basic Model, waste due to operational failures and to blocking events are

discussed separately in the following. The probability of producing a good part is still expressed

according to equation (1).

All the steady-state probabilities of theWP-Basic Model are summarized in Appendix B.

3.2.1 Operational failures

As regards waste due to operational failures, the expressions developed for the case without restart

policy are still valid (see Section 3.1.1). Thus,pw
f (n,1,α2,w), can be expressed by equations (2),

(3), (5), (6), (8), (9) and (10), forn = 0, . . . ,N− 1, α2 = 0,1 andw = 1, . . . ,W . In this case the

probabilitiesp̄ are given by the RP Model by Gebennini et al. (2009) considering the “Standard

Operation Partition”.

3.2.2 Blocking events

As regards the occurrence of blocking events, a new set of state probabilities has to be formalized.

The first machine produces the first bad part of theW bad parts related to the previous blocking

event when the system leaves the Buffer Drainage Partition and comes back to the Standard Opera-

tion Partition in a state withn= 1 and both the machines operational. As a consequence, ifw= 1

the only non-zero probability state is(1,1,1,1). Consider now the second bad part, i.e.,w= 2. The

second bad part can be produced in a state withα1 = 1 that can be reached from(1,1,1,1) in a time

step. The possible states are(2,1,0,2) and(1,1,1,2). If w= 3, the states with non-zero probabili-
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ties are states(1,1,1,3), (2,1,0,3), (2,1,1,3) and(3,1,0,3). A similar reasoning is valid also for

w> 3.

Thus, in case of waste due to blocking events, we obtain that:

• States(1,1,1,w) have a non-zero probability forw= 1, . . . ,W . Bad partw is produced when

the system leaves state(N,1,0,0) and no failures occur. Thus,

pw
b (1,1,1,w) = r2pw(N,1,0,0)[(1− p1)(1− p2)]

w−1 w= 1, . . . ,W . (17)

• The generic state(n,1,0,w) with n= 2, . . . ,N−1 has a non-zero probability only ifw≥ n.

Moreover, ifW < N bad parts related to a blocking event can be produced only in states with

a buffer leveln≤ W . Otherwise, ifW ≥ N the first machine could get blocked again while

it is still producing bad parts. In this case, the current waste production is interrupted and, at

the restart, it will start to produce otherW bad parts. Thus, by settingW1 = min{W ; N−1},

we have that the only non-zero stationary probabilities areas follows:

pw
b (n,1,0,w) = (1− p1)(1− r2)pw

b (n−1,1,0,w−1)+ (1− p1)p2pw
b (n−1,1,1,w−1) ,

(18)

n= 2, . . . ,W1 , w= n, . . . ,W .

• The generic state(n,1,1,w) has a non-zero probability only ifw≥ n+1. Moreover, bad parts

related to a blocking event can be produced only in states with eithern≤ W −1 (if W < N)

or n≤ N−1 (if W ≥ N). By settingW2 = min{W −1 ; N−1}, the following expression for

the non-zero stationary probabilities can be derived:

pw
b (n,1,0,w) = (1− p1)r2pw

b (n,1,0,w−1)+ (1− p1)(1− p2)p
w
b (n,1,1,w−1) , (19)

n= 2, . . . ,W2 , w= n+1, . . . ,W .

• The remaining states not discussed above have zero steady-state probability forw 6= 0.

4 Waste probability and effective efficiency

The approach discussed in Section 3 provides the probability that the first machine is producing

either a good part or bad partw with w= 1, . . . ,W. This is given for both the case without restart
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policy (WP-Basic Model) and the case with restart policy (WP-RP Model).

In both cases, the expression ofwaste probabilityin a time step, i.e., the probability that the first

machine is producing any bad part during a time step, is as follows:

Pw =
N−1

∑
n=0

W

∑
w=1

1

∑
α2=0

pw(n,1,α2,w) . (20)

Similarly, theeffectiveefficiencyEw, i.e., the probability that the system produces a good part in

a time step, can be expressed as follows:

Ew =
N−1

∑
n=0

1

∑
α2=0

pw(n,1,α2,0) . (21)

Such information is missing in previous models that do not distinguish between bad and good

parts. Gershwin (2002) and Gebennini et al. (2009) only present the exact expression of thetotal

efficiency, that is denoted asE for the whole line and asEi for machinei with i = 1,2. Thetotal

efficiencyEi is the probability that machinei processes a part (bad or good) during a time step. Since

the system is studied in steady state, we have:

E1 = ∑
n<N
α1=1

p̄(n,α1,α2) , E2 = ∑
n>0

α2=1

p̄(n,α1,α2) , E = E1 = E2 , (22)

where p̄(n,α1,α2) are provided by the two-machine models without waste production for n =

0, . . . ,N andαi = 0,1 with i = 1,2.

Note that theeffectiveefficiencyEw can also be expressed in terms oftotal efficiency andwaste

probability. So,

Ew = E−Pw . (23)

5 Numerical results

The main objective of this paper is to present an analytical method for computing theeffective

efficiency Ew of a two-machine one-buffer transfer line with good accuracy. This performance

measure can be computed whether a restart policy is adopted or not.

An approximate formula for theeffectiveefficiency was given in Gebennini et al. (2009) and

Gebennini et al. (in press). It is recalled as follows:

Ew = E−W( fb+ p1E) , (24)
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whereE is thetotal efficiency of the line andfb is the blocking frequency of the first machine. Note

that this approximate formula is valid only if we assume thatthe first machine cannot fail or get

blocked during waste production. This is because the approximate formula (24) does not take into

consideration that waste production, as well as the production of good parts, can be interrupted by a

further stoppage of the first machine.

In the sequel, the accuracy estimates are obtained by comparing theeffectiveefficiencyEw result-

ing from a simulation model programmed in PERL language,Esim
w , with the corresponding values

deriving from the new analytical models,Eana
w , and the approximate formula,Eapp

w . Specifically, for

each scenario, 4 simulation runs (each of them 1,000,000 time units long) were generated for both

the basic line and the line with restart policy. The objective is to show that the new analytical models

with waste production presented in this paper accurately predict the performance of the two-machine

one-buffer systems under study, with a better fit to simulation results than the approximate formula.

In this section, we used the same examples as in Gebennini et al. (in press) to show significant

results. Table 1 lists the values of the input parameters forthe case in which the second machine is

more reliable than the first machine (denoted as “case1”), and for the opposite case in which the

first machine is the most reliable machine (denoted as “case2”).

Table 2 and Table 3 summarize the comparison results for “case 1” and “case2”, respectively.

In both cases,Eana
w is evaluated according to theWP-Basic Model for the basic line and according to

theWP-RP Model for the line with restart policy. It can be noted that the accuracy of theWP-Basic

Model and theWP-RP Model is always acceptable. On the contrary, the approximate formula can

give significant errors. This observation is more evident inthe basic line, where blocking events

have a greater impact (as discussed in Gebennini et al., in press), and when the first machine is less

reliable (“case1”). In such situations a method that does not take into consideration interruptions

of the waste production may lead to significant errors.

Another interesting example is given in Table 4. Table 5 shows that the approximate formula

(24) is acceptable only when the failure probabilityp1 and the amount of waste per stoppageW

are small enough. As the amount of waste per stoppageW increases, the error with the simulation

results also increases. On the other hand, the results fromWP-Basic Model and theWP-RP Model

are always consistent with the results of the simulation runs.

Finally, note that the proposed models allow the line designer to decide whether to adopt the

restart policy or not. In “case1” (see Table 2) the basic line performes better than the linewith

restart policy when the amount of waste per stoppage isW ≤ 4 or whenW ≤ 6 and the buffer size is

N ≥ 60 parts. On the contrary, as the amount of waste per stoppageincreases or the phenomenon of
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blocking of the first machine becomes more significant (e.g. when the buffer is small or in “case2”

where the first machine is the more reliable than the second machine) the adoption of a restart policy

becomes convenient. This is not surprising since the main positive effect of the restart policy is

to reduce the blocking frequency of the first machine and, as aconsequence, its waste production.

Finally, note that the line with restart policy performs better than the basic line in most scenarios.

This is more evident asW increases. This is not surprising since the main positive effect of the

restart policy is to reduce the blocking frequency of the first machine and, as a consequence, its

waste production. In order to better understand this phenomenon, let us consider the following input

parameters: failure/repair probabilities as in Table 4,N = 200 andW varying in the range of 0 to

20 bad parts per stop. Figure 4 shows the trend ofEw for both the basic case (dashed line) and the

case with restart policy (solid line). If no waste is produced (i.e.,W = 0) the basic line performs

better than the line with restart policy. This is because thetotal production time of the first machine

is longer in the basic line where the first machine is never forced to remain idle (i.e., it never enters

the “controlled idle” state). Nevertheless, whenW > 0 the application of a restart policy makes

it possible to reduce the blocking frequency of the first machine and, as a consequence, to gain in

terms ofeffectiveefficiency.

[PUT FIGURE 4 HERE]

[PUT TABLE 1 HERE]

[PUT TABLE 2 HERE]

[PUT TABLE 3 HERE]

[PUT TABLE 4 HERE]

[PUT TABLE 5 HERE]

6 Conclusions and further research

In this paper, an analytical method for evaluating theeffectiveefficiency of a two-machine one-buffer

line with waste production is presented. We assume that waste production is related to specific events

that may occur in the system. In particular, the first machineproduces a certain amount of bad parts

each time it resumes processing after any stoppage (due to either an operational failure or a blocking

event).

18



In particular, the work extends the Basic Model presented inGershwin (2002) and the RP Model

in Gebennini et al. (2009) and Gebennini et al. (in press) by distinguishing whether the first machine

is producing a good or a bad part. The expressions of the probabilities of producing any bad part are

derived in order to compute the waste probability and theeffectiveefficiency of the line for both the

basic case and the case with restart policy.

Comparisons with simulation results show that the new models offer very good accuracy by

overcoming the precision errors of the approximate formulapresented in Gebennini et al. (2009).

Future work will be directed towards applying the method to real long lines by including it in

decomposition techniques (see Gershwin, 1987; Dallery et al., 1989; Levantesi et al., 2003) based

on the evaluation of a series of two-machine one-buffer sub-systems. Moreover, further studies may

improve the model, e.g., by avoiding that bad parts enter thebuffer, by including an intermediate

restart level, by distinguish different sizes of bad part batches. Finally, it would be interesting to

investigate extensions of the proposed approach to different behaviours related to other types of

events that may occur in the system, e.g. production lines with order-selection and switch-over.
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A Steady-State Probabilities - TheWP-Basic Model

pw(n,0,0,w) =















0 if w> 0

p̄(n,0,0) if w= 0

, n= 0, . . . ,N , (25)

pw(n,0,1,w) =















0 if w> 0

p̄(n,0,1) if w= 0

, n= 0, . . . ,N , (26)

pw(n,1,0,w) =















pw
f (n,1,0,w)+pw

b (n,1,0,w) if w> 0

p̄(n,1,0)−∑W
w=1

(

pw
f (n,1,0,w)+pw

b (n,1,0,w)
)

if w= 0

, n= 0, . . . ,N ,

(27)

pw(n,1,1,w) =















pw
f (n,1,1,w)+pw

b (n,1,1,w) if w> 0

p̄(n,1,1)−∑W
w=1

(

pw
f (n,1,1,w)+pw

b (n,1,1,w)
)

if w= 0

, n= 0, . . . ,N ,

(28)

where the probabilities̄p(n,α1,α2) are given by the model without waste production (refer to Gersh-

win, 2002), and where

• waste probabilities related to failures are

pw
f (0,1,0,w) = 0, w= 1, . . . ,W , (29)

pw
f (0,1,1,w) = 0, w= 1, . . . ,W , (30)

pw
f (1,1,0,w) = 0, w= 1, . . . ,W , (31)

pw
f (1,1,1,w) =















r1pw(0,0,1,0)+ r1r2pw(1,0,0,0)+ r1(1− p2)pw(1,0,1,0) if w= 1

(1− p1)(1− p2)pw
f (1,1,1,w−1) if w> 1

,

(32)

pw
f (2,1,0,w) =















r1(1− r2)pw(1,0,0,0)+ r1p2pw(1,0,1,0) if w= 1

(1− p1)p2pw
f (1,1,1,w−1) if w> 1

, (33)

pw
f (n,1,0,w) =















r1(1− r2)pw(n−1,0,0,0)+ r1p2pw(n−1,0,1,0) if w= 1

(1− p1)(1− r2)pw
f (n−1,1,0,w−1)+ (1− p1)p2pw

f (n−1,1,1,w−1) if w> 1

,

(34)
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n= 3, . . . ,N−1,

pw
f (n,1,1,w) =















r1r2pw(n,0,0,0)+ r1(1− p2)pw(n,0,1,0) if w= 1

(1− p1)r2pw
f (n,1,0,w−1)+ (1− p1)(1− p2)pw

f (n,1,1,w−1) if w> 1

,

(35)

n= 2, . . . ,N−1,

pw
f (N,1,0,w) = 0, w= 1, . . . ,W , (36)

pw
f (N,1,1,w) = 0, w= 1, . . . ,W , (37)

• waste probabilities related to blocking events are

pw
b (n,1,0,w) = 0 w= 1, . . . ,W , n= 0, . . . ,N , (38)

pw
b (n,1,1,w) = 0, w= 1, . . . ,W , n= 0, . . . ,N−2, (39)

pw
b (N−1,1,1,w) =















r2pw(N,1,0,0) if w= 1

(1− p1)(1− p2)pw
b (N−1,1,1,w−1) if w> 1

, (40)

pw
b (N,1,1,w) = 0, w= 1, . . . ,W . (41)

B Steady-State Probabilities - TheWP-RP Model

pw(n,0,0,w) =















0 if w> 0

p̄(n,0,0) if w= 0

, n= 0, . . . ,N , (42)

pw(n,0,1,w) =















0 if w> 0

p̄(n,0,1) if w= 0

, n= 0, . . . ,N , (43)

pw(n,1,0,w) =















pw
f (n,1,0,w)+pw

b (n,1,0,w) if w> 0

p̄(n,1,0)−∑W
w=1

(

pw
f (n,1,0,w)+pw

b (n,1,0,w)
)

if w= 0

, n= 0, . . . ,N ,

(44)

pw(n,1,1,w) =















pw
f (n,1,1,w)+pw

b (n,1,1,w) if w> 0

p̄(n,1,1)−∑W
w=1

(

pw
f (n,1,1,w)+pw

b (n,1,1,w)
)

if w= 0

, n= 0, . . . ,N ,

(45)
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where the probabilities̄p(n,α1,α2) are given by the RP Model without waste production (refer to

Gebennini et al., 2009) considering the Standard OperationPartition (where the first machine is not

in the “controlled idle state”), and where

• waste probabilities related to failures are

pw
f (0,1,0,w) = 0, w= 1, . . . ,W , (46)

pw
f (0,1,1,w) = 0, w= 1, . . . ,W , (47)

pw
f (1,1,0,w) = 0, w= 1, . . . ,W , (48)

pw
f (1,1,1,w) =















r1pw(0,0,1,0)+ r1r2pw(1,0,0,0)+ r1(1− p2)pw(1,0,1,0) if w= 1

(1− p1)(1− p2)pw
f (1,1,1,w−1) if w> 1

,

(49)

pw
f (2,1,0,w) =















r1(1− r2)pw(1,0,0,0)+ r1p2pw(1,0,1,0) if w= 1

(1− p1)p2pw
f (1,1,1,w−1) if w> 1

, (50)

pw
f (n,1,0,w) =















r1(1− r2)pw(n−1,0,0,0)+ r1p2pw(n−1,0,1,0) if w= 1

(1− p1)(1− r2)pw
f (n−1,1,0,w−1)+ (1− p1)p2pw

f (n−1,1,1,w−1) if w> 1

,

(51)

n= 3, . . . ,N−1,

pw
f (n,1,1,w) =















r1r2pw(n,0,0,0)+ r1(1− p2)pw(n,0,1,0) if w= 1

(1− p1)r2pw
f (n,1,0,w−1)+ (1− p1)(1− p2)pw

f (n,1,1,w−1) if w> 1

,

(52)

n= 2, . . . ,N−1,

pw
f (N,1,0,w) = 0, w= 1, . . . ,W , (53)

pw
f (N,1,1,w) = 0, w= 1, . . . ,W , (54)

• waste probabilities related to blocking events are

pw
b (0,1,0,w) = pw

b (1,1,0,w) = 0, w= 1, . . . ,W , (55)

pw
b (1,1,1,w) = r2pw(N,1,0,0)

[

(1− p1)(1− p2)
]w−1

, w= 1, . . . ,W , (56)
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pw
b (n,1,0,w) =















(1− p1)(1− r2)pw
b (n,1,0,w−1)+ (1− p1)p2pw

b (n−1,1,1,w−1) , if w≥ n

0 if w< n

,

(57)

n= 1, . . . ,W1 ,

pw
b (n,1,0,w) = 0, n=W1+1, . . . ,N , (58)

pw
b (n,1,1,w) =















(1− p1)r2pw
b (n,1,0,w−1)+ (1− p1)(1− p2)pw

b (n−1,1,1,w−1) , if w> n

0 if w≤ n

,

(59)

n= 1, . . . ,W2 ,

pw
b (n,1,1,w) = 0, n=W2+1, . . . ,N , (60)
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Parameter case1 case2

p1 0.06 0.03
p2 0.05 0.05
r1 0.2 0.2
r2 0.2 0.2
N [20;40;60;80] [20;40;60;80]
W [2;4;6;8;10] [2;4;6;8;10]

Table 1: Input parameters for “case1” and “case2”.
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Scenario Basic Line Line with Restart Policy
N W Esim

w Eana
w Eapp

w Esim
w Eana

w Eapp
w

100 2 0.677 0.677 0.674 0.674 0.674 0.671
4 0.598 0.598 0.581 0.595 0.596 0.58
6 0.527 0.527 0.488 0.526 0.526 0.488
8 0.465 0.465 0.395 0.465 0.465 0.396
10 0.411 0.411 0.302 0.410 0.411 0.305

80 2 0.675 0.675 0.672 0.671 0.671 0.668
4 0.595 0.595 0.578 0.592 0.593 0.577
6 0.525 0.525 0.485 0.523 0.523 0.485
8 0.463 0.463 0.391 0.462 0.462 0.394
10 0.408 0.408 0.297 0.408 0.408 0.303

60 2 0.671 0.671 0.668 0.665 0.665 0.663
4 0.591 0.590 0.573 0.587 0.587 0.572
6 0.520 0.520 0.478 0.519 0.519 0.481
8 0.457 0.457 0.384 0.458 0.458 0.39
10 0.402 0.402 0.289 0.404 0.404 0.299

40 2 0.663 0.663 0.659 0.655 0.655 0.652
4 0.581 0.580 0.562 0.577 0.577 0.561
6 0.509 0.509 0.465 0.509 0.509 0.471
8 0.446 0.446 0.367 0.449 0.449 0.381
10 0.400 0.391 0.270 0.395 0.396 0.29

20 2 0.639 0.639 0.635 0.629 0.629 0.626
4 0.553 0.553 0.531 0.551 0.551 0.535
6 0.479 0.478 0.426 0.483 0.483 0.444
8 0.414 0.413 0.322 0.423 0.423 0.353
10 0.358 0.357 0.218 0.370 0.370 0.262

Table 2: Comparison results - “case1”: p1 = 0.06, p2 = 0.05, r1 = r2 = 0.2.
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Scenario Basic Line Line with Restart Policy
N W Esim

w Eana
w Eapp

w Esim
w Eana

w Eapp
w

100 2 0.723 0.723 0.720 0.744 0.745 0.744
4 0.654 0.653 0.640 0.699 0.699 0.695
6 0.593 0.591 0.560 0.656 0.657 0.646
8 0.537 0.536 0.480 0.616 0.617 0.597
10 0.488 0.486 0.400 0.579 0.579 0.548

80 2 0.723 0.722 0.720 0.742 0.742 0.742
4 0.654 0.653 0.640 0.697 0.697 0.692
6 0.592 0.591 0.560 0.654 0.654 0.643
8 0.537 0.536 0.480 0.614 0.614 0.594
10 0.487 0.486 0.399 0.576 0.576 0.545

60 2 0.722 0.722 0.719 0.738 0.739 0.738
4 0.653 0.652 0.639 0.693 0.693 0.688
6 0.591 0.590 0.558 0.649 0.649 0.638
8 0.536 0.534 0.478 0.609 0.609 0.589
10 0.486 0.484 0.398 0.571 0.571 0.539

40 2 0.719 0.719 0.716 0.731 0.731 0.73
4 0.649 0.649 0.635 0.684 0.684 0.679
6 0.587 0.586 0.554 0.640 0.640 0.629
8 0.531 0.530 0.472 0.599 0.599 0.578
10 0.481 0.479 0.391 0.560 0.560 0.527

20 2 0.705 0.704 0.701 0.711 0.711 0.71
4 0.632 0.631 0.616 0.660 0.660 0.655
6 0.568 0.566 0.531 0.613 0.613 0.6
8 0.510 0.508 0.446 0.570 0.569 0.546
10 0.458 0.457 0.360 0.528 0.528 0.491

Table 3: Comparison results - “case2”: p1 = 0.03, p2 = 0.05, r1 = r2 = 0.2.
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Parameter Value

p1 0.006
p2 0.02
r1 0.1
r2 0.1
N [20;40;60;80]
W [2;4;6;8;10]

Table 4: Input parameters (case with low failure probability).
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Scenario Basic Line Line with Restart Policy
N W Esim

w Eana
w Eapp

w Esim
w Eana

w Eapp
w

100 2 0.800 0.800 0.800 0.815 0.815 0.815
4 0.769 0.769 0.767 0.803 0.803 0.803
6 0.739 0.739 0.733 0.792 0.792 0.791
8 0.710 0.710 0.700 0.780 0.780 0.779
10 0.682 0.682 0.667 0.769 0.769 0.768

80 2 0.800 0.800 0.800 0.813 0.813 0.813
4 0.769 0.769 0.766 0.801 0.801 0.801
6 0.739 0.739 0.733 0.789 0.789 0.788
8 0.710 0.710 0.700 0.777 0.777 0.776
10 0.682 0.682 0.666 0.765 0.765 0.764

60 2 0.800 0.800 0.799 0.810 0.810 0.81
4 0.768 0.768 0.766 0.797 0.797 0.797
6 0.738 0.738 0.732 0.784 0.784 0.783
8 0.709 0.709 0.699 0.771 0.772 0.77
10 0.681 0.681 0.665 0.759 0.759 0.757

40 2 0.797 0.797 0.797 0.804 0.804 0.804
4 0.765 0.765 0.763 0.789 0.789 0.789
6 0.735 0.735 0.729 0.775 0.775 0.774
8 0.706 0.706 0.695 0.761 0.761 0.76
10 0.678 0.678 0.662 0.747 0.748 0.745

20 2 0.789 0.789 0.788 0.790 0.790 0.79
4 0.755 0.755 0.753 0.772 0.772 0.772
6 0.724 0.723 0.717 0.754 0.754 0.753
8 0.693 0.693 0.682 0.736 0.736 0.734
10 0.664 0.664 0.647 0.719 0.719 0.715

Table 5: Comparison results -p1 = 0.006,p2 = 0.02,r1 = r2 = 0.1.
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