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Abstract

The paper focuses on analytical models of two-machine aiffefoMarkov lines including
waste production. The aim is to compute the probability @fdpicing good parts, referred as
effectiveefficiency, when waste production is related to stoppagetheffirst machine. This
problem is common in industrial fields where parts are geadray a continuous process, e.g. in
high speed beverage packaging lines.

Two innovative models including waste production are presd theWP-Basic Model ex-
tends the model of a basic two-machine one-buffer transfer theWP-RP Model extends the
model of a two-machine one-buffer transfer line with a regtalicy operating on the first ma-
chine (i.e., when the first machine is blocked because thierbisf filled, it is not allowed to
resume production until the buffer becomes empty). The treoipus models are improved by
distinguishing, at any time step the first machine is openati, whether it is producing a good or
a bad part.

The probabilities of the system being in any feasible steg@nalytically derived for both the
WP-Basic Model and th&/P-RP Model. Then, the obtained probabilities are used toraete

the performance measures of interest, i.e., waste pratyabild effectiveefficiency. Finally,
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some numerical results are provided to illustrate the @ffecess of th&VP-Basic Model and the

WP-RP Model.

1 Introduction

This paper presents an analytical method for calculatiagffectivesfficiency of two-machine one-
buffer lines with Markovian machines having equal and cantsprocessing times. Tleffective
efficiency is defined as the probability of producing a good peany time step.

Parts produced in the manufacturing system of interest neagither “good” or “bad”. It is
assumed that bad parts, i.e., parts that do not meet theedqyiality standards, are produced by
the first machine of the line under specific conditions. Theerh bad and good parts pass through

the buffer and enter the second machine that is supposedtioeca defect-free process.

1.1 Problem formulation and motivation

In this work, the condition under which bad parts are produse¢he occurrence of stoppages of the
first machine. Such stoppages can be caused by two disjésnbsevents: (i) operational failures
and (i) blocking events. While the former refers to the intd behaviour of the machine (depending
on the machine time-to-failure distribution); the lattencerns a more complex phenomenon related
to the interactions with the rest of the line (i.e., the bufiad the second machine). Specifically, a
blocking event occurs when the downstream buffer is fullsthare is not enough storage space to
keep incoming parts. This situation may occur if the secoadhine is down while the first one is
still operational, depending on the buffer level and the imabm buffer size. This paper assumes
that when the first machine is repaired (according to theirgpabability of the very machine) or
leaves the blocking condition (according to the repair phility of the second machine and the
buffer level), it produces a certain and constant numberadffarts. Hence, waste production not
only depends on internal machine failures but also on evssrring in other parts of the line.

This scenario is common in practice in the food and bevenadesiry. Let us consider the first
machine of an automatic packaging line, called “filling miaefi, that fills packages with liquid
diary products or soft drinks. Such a machine takes in paogagaterial and liquid food. The
production process is a continuous and aseptic proces®ulepackaging material passes through
a heated hydrogen peroxide bath. If the process is intexdujorr any reason (e.g. a failure or a
blocking event) a portion of the packaging material rem@&insontact with the hydrogen peroxide

for too long. As a consequence, the first packages produced thie stoppage is removed must be



rejected as waste. It can be assumed that the number of vearieges per stoppage is constant. The
filled packages released by the filling machine (“good” ord'hgass to an accumulation conveyor
and then to the rest of the line. Since the most importantifeatf this accumulation conveyor, from
the point of view of the issue addressed in this paper, igdt$rgy capacity, we refer to it simply as
a finite FIFO buffer (see Li and Meerkov, 2009).

The machines in the buffer downstream are inspection ssm#md packaging machines (e.g.
straw applicators, film wrappers, etc.) that do not compsertine integrity of the filled packages.
Thus, it is acceptable to assume that the machines follotiadiller machine in the line ensure a
waste-free process. This is an interesting industrialiegibn of a manufacturing system where a
number of bad parts are produced in the event of any stoppédges first machine.

Note that in many automatic manufacturing lines parts dédet sizes and shapes are produced
at a very high speed. For example, the filling machine of aoraatic packaging line produces
thousands of packages per hour. Thus, an important praafuissue is the risk of jamming, sliding
or tumbling. When a “jamming” occurs a manual interventiéran operator is needed to restore
the operational state of the machine. In this paper jamnsrtgeated as failures. This is correct
if it assumed that a machine may only fail when it is operatitig general, we can distinguish
betweertime dependergndoperation dependeifdilures (Buzacott and Hanifin, 1978). The former
depend only on the amount of time since the last repair, amthtter depend only on the number of
operations that have been performed since the last repaenhiconductor industry, for example, the
majority of interruptions are time-based (SEMI, 1992). Bitheless, in order to address automatic
manufacturing lines where jamming may interrupt the proidndlow, the assumption of operation
dependent failures is adopted in this paper.

Even if the occurrence of a specific failure is unpredictalvkecan represent the time to the next
failure (time to failure, TTF) by means of mass probabilitjmétions. To facilitate mathematical
tractability, TTF is commonly assumed to be distributedoadimg an exponential law, that is, to
consider the failure occurrence process as it were contpletemory-less. The same is assumed
to model the time needed to restore the operational staten@chine (time to repair, TTR) once
the failure occurred. Although those assumptions coulcehierfvasive, practical evidence showed
that TTF and TTR assume distributions very close to the egptial, especially when automated
machines are considered (Perrica et al., 2008). Hence,faiidine and repair processes can be
conveniently modelled as memory-less processes.

The above considerations justify the modelling approadptet! in this paper. Specifically, the

system under study can be modelled &masfer linewith Markovian machines decoupled by finite



buffers.

1.2 Literature review

Extensive reviews on transfer/production line modellimg provided by Dallery and Gershwin
(1992), Papadapoulos et al. (1993) and Gershwin (2002).

For reason of mathematical tractability, exact analytinalddels of this kind of manufacturing
systems are available only for short lines, i.e., lines maglef two machines decoupled by an
intermediate buffer. Thus, also the analytical modelsgueed in this paper address the simple con-
figuration of two-machine one-buffer lines. Although thiayrseem restrictive, the contribution of
the present study is of practical relevance even when loliges are under analysis. Note that if
the line under analysis is a long line with only one buffeg fiist machine and/or the second ma-
chine of the model could be equivalent machines repregpsaéries of machines in the real system.
In case of more complex lines (with several buffers decogpdidjacent machines), approximated
techniques can be adopted. The interesting point is thahtst widely used methods for analysing
long lines, e.g. decomposition techniques (see Gersh@8y/;1Dallery et al., 1989; Levantesi et al.,
2003), are based on the evaluation of a series of two-madamaebuffer sub-systems. Thus, the
development of accurate analytical models for short lined great practical importance to advance
the understanding of more complex and longer lines.

In recent years, transfer/production line models inclgdjjuality control and quality require-
ments have been developed. The reader may refer to workasu@hlledani and Tolio (2000), Kim
and Gershwin (2005), Aksoya and Gupta (2005), Li and Hua@@{®, Colledani and Tolio (2009).
These models treat a system where any part has a certairbflitytef having a quality defect.

On the other hand, this paper addresses a different kindobilggn where waste production is
related to the occurrence of specific events, i.e., stoppafhe first machine. Note that stoppages
of the first machine are due to not only internal failures bsb &vents occurring in other parts of
the line causing the blocking of the first machine itself.

A similar problem is addressed in Liberopoulos et al. (208 Yeveloping analytical expres-
sions for important performance measures of an automaitister line where the quality of the
material trapped in the stopped workstations deterionatdstime. Nevertheless, the study does
not consider storage buffers along the line. A first atteroddress waste production into a two-
machine one-buffer transfer line is presented in Gebereatiail. (2009) and Gebennini et al. (in
press). Nonetheless, teffectiveefficiency is evaluated by means of an approximate formualid v

only under certain conditions (e.g. low values for both thakufe probability and the amount of



waste per stoppage).

Hence, this study contributes to the current literature igl\ically expressing the probability
of waste production and, as a consequence, by providingftaetiveefficiency of a two-machine
one-buffer line. The new models presented in this papemextiee results from the well-known
basic two-machine one-buffer model (refer to Gershwin,2Qind from the two-machine one-
buffer model with restart policy in Gebennini et al. (2008he improvement consists in evaluating
whether a good or a bad part is produced at any time step bydssimgy both internal machine
failures and machine-machine interactions, partiallygaied by the intermediate finite buffer. The
rational is to take the aforementioned previous modelsaitivaste production, easier to be solved,
as a starting point, and to “disaggregate” the states asdeed

The remainder of the paper is organized as follows. Sectiontr8duces some notation and
discusses the new modelling approach with waste produclibe results from Section 3, i.e., the
probabilities of being in any state with the first machineducing a good or a bad part, are used
in Section 4 to derive the expressions of the performanceunea of interest, i.e., waste probabil-
ity and effectiveefficiency. Section 5 presents some numerical results ierdaldemonstrate the

robustness of the new models. Section 6 draws some conafuaiml outlines future work.

2 Modeling approach

The manufacturing system under study is a two-machine aifferttransfer line with Markovian
machines.

If waste production is not taken into consideration and tekdviour of each machine only
depends on its own failure/repair probability and on thelef the intermediate buffer, the transfer
line can be studied by means of a discrete-time discrete-Starkov model. Specifically, we refer

to two previous models:

e the model of the simplest line acting as follows (for majotaile see Gershwin, 2002): when
the buffer is neither full nor empty both machines may faitl dre repaired according to
their own failure/repair probabilities and, accordinghe buffer level rises or falls; when the
buffer is empty the second machine is “starved”, i.e., tr@eeno parts to work on; when
the buffer is full the first machine is “blocked”, i.e., thegeno storage space to hold parts
in the downstream. Starvation and blocking are negative@imena resulting in a loss of
production capacity (the machine is operational but preacgtfrom processing parts). This

model is calledBasic Modein the following;



e the model with “restart policy” acting as follows (for majdetails see Gebennini et al., 2009):
the machines may become blocked and starved as iBdls& Mode| nevertheless the first
machine is not allowed to leave the blocking state as sodmedauffer level starts to decrease.
Briefly, once the first machine gets blocked it is put into arftrolled idle state” in order to
allow the buffer level to diminish. The aim is to reduce thelmability of subsequent blocking
events that can occur if the first machine resumes produetteen the buffer level is just
below the maximum buffer size. Such a control policy is inmpémted in several industrial
applications, especially in case of costly machine outagéss is the case, for example, of
automatic packaging lines where it is important to keep tliedimachine working with the

minimum of disruption. This model is call&P Modelin the following.

The Basic Model and the RP Model allow to solve the Markov baepresenting the system
with or without the restart policy if no waste production &kén into consideration. The states
constituting this kind of Markov chain, referred here as ‘thggregate” Markov chains, depends
only on the buffer level and the condition of the two machifgsor down), without distinguishing
the production of good or bad parts.

In the present work, taking the “aggregate” Markov chainthefBasic Model and the RP Model
as a starting point, additional information about wastedpaion is provided. The new models are
calledWP-Basic Model andVP-RP Model.

In both cases (with or without restart policy), waste prdaucis assumed to be related to
specific events that may occur in the system, i.e., the imp¢ion of the process performed by the
first machine. Such an interruption can be caused either bparational failure of the first machine
(situation denoted by the subscript “f” in the following)lmy a blocking event (situation denoted by
the subscript “b” in the following), i.e., the blockage oétbutgoing flow due to the buffer being full.
When the first machine resumes operation, since either @paired or the buffer level decreases,
a constant numbe#” of bad parts are produced before the good ones. If a furtbppage occurs
while the first machine is still producing bad parts, wastdpiction is interrupted.

Given such a more complex system behaviour, the procedptiedjn this paper and discussed

in details in Section 3.1 and Section 3.2 can be summaristdlaws:

¢ Verify the adoption of a restart policy in the manufacturiimg under analysis and refer to the

RP Model if the restart policy is applied, to the Basic Modileswise;

e Evaluate the “aggregate” Markov chain related to the RP NModée Basic Model without

distinguishing between bad and good parts;



e Develop a “disaggregate” Markov chain for considering wastoduction (with or without
restart policy), i.e., a new Markov chain where two more comgnts are added: a first com-
ponent indicating whether the latest event causing wast@ygtion is an operational failure
(denoted by the subscript “f”) or a blocking event (denotgdHe subscript “b”), and a sec-
ond component specifying the number of bad parpsoduced since recovery from that latest

event, withO<w< %

e Relate the “disaggregate” Markov chain to the “aggregatatidv chain by identifying over-
lapping states (e.g. in the “disaggregate” Markov chaimgesibad parts can be produced by
the first machine only, states with the first machine down lzamen-zero probability only if
waste production is zero; these states coincide with thesponding states in the “aggregate”

Markov chain).

Briefly, this study first evaluates the “aggregate” Markowich easier to be solved by applying
the Basic Model or the RP Model, and switches to the “disaggpe® Markov chain only when
it is necessary, i.e., when the system is in states whereewast be produced. This procedure is
convenient because some of the states of the “disaggrdgat&bv chain coincide with those of the
“aggregate” Markov chain whose solution is easily providgdhe Basic Model and the RP Model.
For example, when the first machine is down there is no neegstimguish between bad or good
parts.

In the following, after a description of the model assumpsiothe basic case without restart
policy is addressed in Section 3.1 which describedtWReBasic Model. Then, Section 3.2 discusses

how some probabilities change for tiéP-RP Model when a restart policy is adopted.

2.1 Notation and assumptions
The system state is defined@sas, o, w), where:
e Nn=0,...,N is the buffer level, bein§y the maximum buffer size;

e a; = 0,1 is the condition of maching with i = 1,2: if a; = 0 machine is down, ifa; = 1

machind is operational;

e windicates the bad part the first machine is processing ghvatna total of#” bad parts are
expected to be produced as a consequence of the last stoppage if the first machine is
processing a good pakt;=1,..., 7 if the first machine is processing a bad part (specifically,

the bad partv of the 7" bad parts related to the last stoppage).



The probabilistic model of the system is studied in steadiest

Letp%¥(n,a1,02,w) be the probability of statén, a1, a2, w).

Let p(n,a1,a2) be the probability of a state defined only by the machinestig@ns and the

buffer level if waste production is not taken into accounte #ésume thai(n,ay, a) is given by

solving the “aggregate” Markov chain of the aforesaid twaeimne systems without waste pro-

duction, i.e.,p(n, a1, a7) is obtained by the Basic Model in Gershwin (2002) if no regpaticy is

adopted or by the RP Model in Gebennini et al. (2009) if ther@ iiestart policy.

The main assumptions of the Basic Model and the RP Model withaste production are

retained here. For the sake of clarity, the most importaasa@me briefly recalled in the following:

If the buffer is full the first machine is said to txocked if the buffer is empty the second

machine is said to bstarved

The two machines have equal and constant processing tindestan their operations at the

same instant;
Time is scaled so that processing one part takes one timg step

Both machines have geometrically distributed times betvaidures and times to repair: the
constant parameteps andr; represent the failure and the repair probability of machimgth

i=1,2;

Operational failures are assumed to be operation depeadentding to the discussion in

Section 1;

Repairs and operational failures occur at the beginningiseofime steps, and changes in the

buffer level take place at the end of the time steps;

Parts are not destroyed or rejected at any stage in the system

Some new assumptions regarding waste production are uteaths follows:

Each stoppage of the first machine, due to either an opeedfiaiture or a blocking event,

causes waste production at the restart;
No defects are produced at the second machine;

The total amount of waste produced per stoppage of the firshima is a constant value
W . The first bad part is produced as soon as the first machinpésreel or leaves the block

condition. Next parts are bad parts until either it compd¢te batch o# bad parts or another



failure/blocking event occurs. In the latter case, the firathine stops producing waste and,

when it resumes production, a new batct#6tbad parts starts to be processed;

e Waste produced by the first machine at each restart moveafdwough the buffer and it is

processed by the second machine. Thus, waste can be detabted the end of the line.

2.2 Aggregate and disaggregate Markov chains

In the so-called “aggregate” Markov chains (with or withoegtart policy) the system state depends
only on the buffer level and the condition of the two machifgsor down), without distinguishing
the production of good or bad parts. The solution of the “aggte” Markov chains, denoted as
p(n, a1, a), is supposed to derive from the Basic Model in Gershwin (20020 restart policy is
adopted or the RP Model in Gebennini et al. (2009) if thererissgart policy.

In the “disaggregate” Markov chains (with or without restaslicy) information about the qual-
ity of the part under production (“good” or “bad”) is addechéelobjective of this work is to find the
solution of “disaggregate” Markov chains, denoteg¥én, a1, a»,w), in order to be able to express
the performance measures of interest, i.e., waste pratyadoild effectiveefficiency (see Section 4).

Given a certain buffer levet and machines’ conditionss, o, either the system is producing
a good part\ = 0) or it is producing bad paw = 1,...,%# . Hence, there exists a relationship
between the probabilitp”' (n, a1, a»,w) and the probabilityp(n, a1, a2) computed by considering
the same line with no distinction between good and bad patte. relationship is as follows, for
n=0,...,N,a1,a,=0,1andw=0,..., 7"

W
> p"(n,az,az,w) = p(n,az,az). 1)

w=0

Moreover, since waste can be produced only by the first magifim; = 0,n=0,...,N and

ao> = 0,1 we have:

pW(n7 0,0z, O) = 5([1, 0, a2) ) (2)

p¥(n,0,a2,w) =0, w=1,...,W. 3)

Since waste production is related to two types of events, ogerational failures of the first
machine and blocking events, the two cases can be treatathsely wherw # 0. This is convenient
whena; = 1 (and the first machine is not blocked) since the probadslitif states withv = 0 are

zero whena, = 0, as stated by equation (3). Thus, foe 0,1...,N — 1 (the first machine is not



blocked),a, = 0,1 andw = 0, the probabilityp*(n, 1, a2, w) can be expressed as follows:
pW(n717a2)W):p\f,v(n)l)aZ?W)+p\{)v(n717a2)w)) W:177W) (4)

where

e p{'(n,1,az,w) with w=1,..., %, is the probability that the first machine is producing bad

partw related to the last operational failure;

e py(n,1,a2,w) is the probability that the first machine is producing bad parelated to the

last blocking event.

Note thatp{'(n,1, az,w) andpy/(n,1,az,w) are independent since failures are assumed to be
operation-dependent and, consequently, when the firstimahblocked it cannot fail.
If the first machine is blocked, i.e., whe&nr= N anda, = 0, no part can be processed. We adopt

the following convention:

p"(N,1,0,0) =p(N,1,0), ®)

PY(N,1,0w) =0, w=1,... W. (6)

The probability of producing a good pat(n,1,02,0), forn=0,1...,N—1anda, = 0,1, can

be expressed, according to equation (1), as:

VA
p"(n,1,02,0) =p(n,1,a2) - Y p"(n,1,a2,w). @

w=1

In the following section, th&VP-Models for addressing the “disaggregate” Markov processes

are discussed in detail by distinguishing between the stEnaith and without restart policy.

3 Models with waste production VP- Models)

3.1 TheWP-Basic Model

In this case the probabilitiggn, a1,a2), forn=0,...,N anda; = 0,1 withi = 1,2, are given by
the Basic Model without waste production described in Geist{2002). The “aggregate” Markov

chain related to the Basic Model is depicted in Figure 1.

[PUT FIGURE 1 HERE]
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In the following theWP-Basic Model taking waste production into consideratiodiggussed.
Since waste can be produced only by the first machine, thesfisdwere on states wittm, = 1. All

the steady-state probabilities of théP-Basic Model are reported in Appendix A.

3.1.1 Operational failures

In this section we address the probability of waste produatiue to operational failures of the first
machine. Thus, we focus on the tepi(n, 1,a2,w), forn=0,...,N—-1,a=1,0andw=1,.... 7.
If n= N the only non-transient state is that with = 0 and equations (5) and (6) hold.

Let us consider first the case where the first bad part is pexjue.,w = 1. Then, the proba-

bilities for bad partv, withw=2,..., %, are derived.

e States with w= 1.
The first machine can be processing the first bad part oftHead parts related to a previous
failure if it has just been repaired, or, in other words, & first machine was down during the
previous time step and a repair has occurred at the begifithge current time step. Thus,
we are interested in transitions from states vaih= 0 (and, as a consequence, with= 0)

to states withap = 1.

If n=2,...,N—1, the possible states where the first machine could be mincekad part

w =1 are state$n,1,0,1) and(n,1,1,1). As shown in Figure 2, the internal stgie 1,0,1)
can be reached only from two states (among all the possiatesstvitha; = 0), i.e., from
state(n—1,0,0,0), if the first machine is repaired and the second machine staws, and
state(n—1,0,1,0), if the first machine is repaired and the second fails. Therial state
(n,1,1,1) can be reached from stafe,0,0,0), if both machines are repaired, and from state
(n,0,1,0), if the first machine is repaired and the second machine datefgih This leads to

the following equations:

p}N(n’ 1707 1) = rl(l_ rZ)pW(n_ 1707070) + rlprW(n_ 1a Oa 1a O) n= 2a .. 'aN - 1a (8)

pf'(n,1,1,1) =ryrp%(n,0,0,0) +r1(1— p2)p*(n,0,1,0) n=2,...,.N—1, 9)

wherep*(n,0,0,0) andp¥(n,0,1,0) are given by equation (2) and supposed to be known, ac-
cording to the assumption that the probabilifiesre provided by the Basic Model in Gershwin
(2002).

[PUT FIGURE 2 HERE]
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If n=0,1 some states are transient and consequently have zery-stedel probability as
explained in Gershwin (2002). The only non-transient stetere the first machine could
be processing bad pant= 1 is state(1,1,1,1) that can be reached from statgs0,0,0),
(1,0,1,0) and(0,0,1,0). Thus,

pf(1,1,1,1) =ryrpp%(1,0,0,0) +r1(1— p2)p*(1,0,1,0) +r1p%(0,0,1,0). (10)

e Stateswithw=2.... 7.
Let us consider the generic bad partvith w=2,.... % produced as a consequence of a

previous failure of the first machine.

The possible internal states where the first machine couftdeessing bad pavt are states
(n,1,0,w) and(n,1,1,w). The system can be in one of these two states in the curremstiep
only if it was in a feasible state producing bad part 1 during the previous time step, and
no failure of the first machine has occurred. Specificalgtesin, 1,0,w) can get from state
(n—1,1,0,w— 1) if the first machine does not fail and the second machine isapatired; it
can get from statén—1,1,1,w— 1) if the second machine fails and the first machine does
not. The system reaches statel, 1, w) from state(n, 1,1, w— 1), if neither of the machines
fail, from state(n,1,0,w — 1), if the first machine does not fail and the second machine is

repaired. Thus, we obtain the following equations:

pf(n,1,0,w) = (1—pg)(1—rz)pf'(n—1,1,0,w—1) + (1 — p1)p2pi'(n— 1,1, L, w—1),
(11)

w=2...., n=3,...,N—1,
p¥v(nala 15W) = (1_ pl)r2p¥v(n7 17 17W_ 1) + (1_ pl)(l_ p2)p¥v(n707 17W_ 1)7 (12)

w

2.0, n=2,....N—1.

As regards the lower boundary, the non-transient statesanthe first machine could be pro-
cessing bad pam with w > 1 are(2,1,0,w) and(1,1,1,w). By considering transitions not

including failures of the first machine, we have

p¥v(171717w):(1_pl)(l_DZ)p‘fN(lalalaW_l)7 W:277W7 (13)

pr(2,1,0w) = (1— p)pzp¥ (L, 1,1, w—1), w=2.. . 7. (14)
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The remaining states are transient with zero steady-stabapility.

3.1.2 Blocking events

In this section we address the probability of waste productiue to blocking events. Thus, we
consider now the termp{/(n,1,a2,w) forn=0,...,N—1,a,=1,0,andw=1,..., 7.

When the system leaves stdte, 1,0,0), defined according to (5), the buffer level decreases to
N — 1 and the first machine resumes processing a part. If wastieigtion is taken into account, this
part is a bad part and, specifically, it is the first bad itemhef’#” bad parts related to that restart.
Thus, the system gets steté —1,1,1 1).

If the first machine does not fail or get blocked again, it kseep processing bad parts until it
completes the whole batch @ bad parts. Otherwise, waste production is interrupted. thiero
words, the first machine processes bad parts related to @apsdviocking event until the system

remains in states with= N — 1. This happens if neither of the machines fails. Thus,

PYIN—1,1,1,w) = [(1— p1)(1— p2)]" r2p"(N,1,0,0), w=1,....7 . (15)

Since no waste due to blocking events can be produced irs stétten £ N — 1, we have:

Vin,Lop,w) =0, n#AN-1, a,=10, w=1....#. (16)
Pb

3.2 TheWP-RP Model

The restart policy described in Gebennini et al. (2009) iappb the first machine each time it gets
blocked, i.e., the buffer fills up. Specifically, the first rhaee is put into the so-called “controlled
idle state”, i.e., it is forced to remain idle even when th&drevel starts to drop. The “controlled
idle state” persists until the buffer empties again.

In order to model such a transfer line with restart policyg t@emplementary Markovian behav-
iors are considered and, consequently, the state spacddsdlinto two partitions that are briefly

recalled in the following:

1. the “Standard Operation Partition” includes states whmth machines can fail and be re-
paired according to their own parameters and, as a consegyee buffer level can fluctuate
within the rang€g0;N]; once the buffer level reaches its maximum capabityhe first ma-
chine gets blocked and the system leaves states belongthgstpartition, i.e., it enters the

buffer drainage partition
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2. the “Buffer Drainage Partition” is entered by the systehew, being the buffer at levél, a
repair on the second machine occurs and the buffer levehbégidecrease. The first machine
is put into the “controlled idle” state: it is prevented frgarocessing parts and it cannot fail.
The system leaves states of this partition, i.e., it retimrtbe standard operation partition
when the buffer level drops below the value- 2 and the second machine is operational. The
choice of leaving this partition at = 2 allows the system to come back into tstiandard

operation partitionwith n= 1, i.e., with the second machine not starved.
The “aggregate” Markov chain related to the RP Model is depliin Figure 3.
[PUT FIGURE 3HERE]

Note that if waste production is taken into consideratiotoading to the assumptions listed in
Section 2.2 bad parts can be produced only in states belptmihe Standard Operation Partition.

Similarly as for the Basic Model, waste due to operationéilifas and to blocking events are
discussed separately in the following. The probability odducing a good part is still expressed
according to equation (1).

All the steady-state probabilities of tNéP-Basic Model are summarized in Appendix B.

3.2.1 Operational failures

As regards waste due to operational failures, the expnessieveloped for the case without restart
policy are still valid (see Section 3.1.1). Thyg'(n, 1, az,w), can be expressed by equations (2),
(3), (5), (6), (8), (9) and (10), fon=0,...,N—1,a, =0,1 andw=1,...,% . In this case the
probabilitiesp are given by the RP Model by Gebennini et al. (2009) considetiie “Standard

Operation Partition”.

3.2.2 Blocking events

As regards the occurrence of blocking events, a new settef gtababilities has to be formalized.
The first machine produces the first bad part of #idad parts related to the previous blocking

event when the system leaves the Buffer Drainage Partitidrcames back to the Standard Opera-

tion Partition in a state witihh = 1 and both the machines operational. As a consequenaesii

the only non-zero probability state ($,1,1,1). Consider now the second bad part, ve= 2. The

second bad part can be produced in a state aits 1 that can be reached frofh, 1,1,1) in a time

step. The possible states d21,0,2) and(1,1,1,2). If w= 3, the states with non-zero probabili-

14



ties are state€l, 1,1,3), (2,1,0,3), (2,1,1,3) and(3,1,0,3). A similar reasoning is valid also for
w> 3.

Thus, in case of waste due to blocking events, we obtain that:

e Stateg1,1,1 w) have a non-zero probability fev=1,...,% . Bad partw is produced when

the system leaves stati, 1,0,0) and no failures occur. Thus,

pY(1,1,1,w) = r2p"(N,1,0,0)[(1— p1)(1—p)]" !t w=1... 7. (17)

e The generic statén,1,0,w) with n=2,... N — 1 has a non-zero probability only# > n.
Moreover, if # < N bad parts related to a blocking event can be produced ontgiaswith
a buffer leveln < 7. Otherwise, if#” > N the first machine could get blocked again while
it is still producing bad parts. In this case, the currentte@soduction is interrupted and, at
the restart, it will start to produce oth#f bad parts. Thus, by settivh = min{% ; N — 1},

we have that the only non-zero stationary probabilitiesareollows:

pp (N, 1,0,w) = (1—p1)(1—r2)py (n—1,1,0,w— 1)+ (1 — p)pzpp (Nn— 1,1, 1,w— 1),
(18)

n=2,....\W;, w=n,...,W.

e The generic statén, 1,1, w) has a non-zero probability onlyw > n+ 1. Moreover, bad parts
related to a blocking event can be produced only in statdseithern < %7 — 1 (if 7" <N)
orn< N—1(if # > N). By setting\, = min{%  — 1 ; N — 1}, the following expression for

the non-zero stationary probabilities can be derived:

p\lljv(na 1a OaW) - (1_ pl)er\l,)V(n7 17 va_ 1) + (1_ pl)(l_ p2)p\lljv(n7 17 17W_ 1)’ (19)

n=2,....\Wo, w=n+1...W.

e The remaining states not discussed above have zero stesdysobability forw = 0.

4 Waste probability and effective efficiency

The approach discussed in Section 3 provides the probathitit the first machine is producing

either a good part or bad pastwith w=1,...,W. This is given for both the case without restart

15



policy (WP-Basic Model) and the case with restart polidyR-RP Model).
In both cases, the expressiorvadiste probabilityin a time step, i.e., the probability that the first

machine is producing any bad part during a time step, is &sifsl

N-1%w 1

Ry = nZO S S p(nLa,w). (20)

w=10a,=0

Similarly, theeffectiveefficiencyEy, i.e., the probability that the system produces a good part i

a time step, can be expressed as follows:

N-1 1
Ew= p¥(n,1,a5,0). (21)
" n; C{zz:O

Such information is missing in previous models that do netidguish between bad and good
parts. Gershwin (2002) and Gebennini et al. (2009) onlyerethe exact expression of thatal
efficiency, that is denoted &s for the whole line and ag; for machinel with i = 1,2. Thetotal
efficiencyk; is the probability that machirigorocesses a part (bad or good) during a time step. Since

the system is studied in steady state, we have:

Er= Y p(na,az), Eo= Y p(na,az), E=E =B, (22)
n;\‘ n;

a;=1 arx=1
wherep(n,a1,a2) are provided by the two-machine models without waste proolidor n =
0,...,Nandaj; = 0,1 withi=1,2.
Note that theeffectiveefficiencyE,, can also be expressed in termdathl efficiency andvaste

probability. So,
Ew=E—PRy. (23)

5 Numerical results

The main objective of this paper is to present an analyticathwd for computing theffective
efficiency Ey, of a two-machine one-buffer transfer line with good accyrachis performance
measure can be computed whether a restart policy is adoptext.o

An approximate formula for theffectiveefficiency was given in Gebennini et al. (2009) and

Gebennini et al. (in press). Itis recalled as follows:
Ew=E-W(fo+pE), (24)
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wherekE is thetotal efficiency of the line andy, is the blocking frequency of the first machine. Note
that this approximate formula is valid only if we assume titet first machine cannot fail or get

blocked during waste production. This is because the ajupeie formula (24) does not take into

consideration that waste production, as well as the proatuof good parts, can be interrupted by a
further stoppage of the first machine.

Inthe sequel, the accuracy estimates are obtained by corgphaeeffectivesfficiencyk,, result-
ing from a simulation model programmed in PERL langudgf™, with the corresponding values
deriving from the new analytical modeB2", and the approximate formulgy”. Specifically, for
each scenario, 4 simulation runs (each of the@00 000 time units long) were generated for both
the basic line and the line with restart policy. The objexts/to show that the new analytical models
with waste production presented in this paper accuratelgiptthe performance of the two-machine
one-buffer systems under study, with a better fit to simotatesults than the approximate formula.

In this section, we used the same examples as in Gebennini(gt press) to show significant
results. Table 1 lists the values of the input parameterthiocase in which the second machine is
more reliable than the first machine (denoted as “dd3geand for the opposite case in which the
first machine is the most reliable machine (denoted as “28se

Table 2 and Table 3 summarize the comparison results foe‘taand “case2”, respectively.

In both case£g" is evaluated according to thgP-Basic Model for the basic line and according to
the WP-RP Model for the line with restart policy. It can be notedtttiee accuracy of the&VP-Basic
Model and theVP-RP Model is always acceptable. On the contrary, the appratd formula can
give significant errors. This observation is more evidenthia basic line, where blocking events
have a greater impact (as discussed in Gebennini et al.egsprand when the first machine is less
reliable (“casel”). In such situations a method that does not take into clamation interruptions
of the waste production may lead to significant errors.

Another interesting example is given in Table 4. Table 5 shtivat the approximate formula
(24) is acceptable only when the failure probabiliyand the amount of waste per stoppage
are small enough. As the amount of waste per stopgégecreases, the error with the simulation
results also increases. On the other hand, the results\WéxBasic Model and th&/P-RP Model
are always consistent with the results of the simulatiosrun

Finally, note that the proposed models allow the line dexiga decide whether to adopt the
restart policy or not. In “casé&” (see Table 2) the basic line performes better than thewiitie
restart policy when the amount of waste per stoppa@g is 4 or when?”” < 6 and the buffer size is

N > 60 parts. On the contrary, as the amount of waste per stojpeagases or the phenomenon of
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blocking of the first machine becomes more significant (elgemthe buffer is small or in “casg’
where the first machine is the more reliable than the secomtime) the adoption of a restart policy
becomes convenient. This is not surprising since the magitipe effect of the restart policy is
to reduce the blocking frequency of the first machine and, @maequence, its waste production.
Finally, note that the line with restart policy performsteethan the basic line in most scenarios.
This is more evident a¥” increases. This is not surprising since the main positifecebdf the
restart policy is to reduce the blocking frequency of thet finmchine and, as a consequence, its
waste production. In order to better understand this phemom, let us consider the following input
parameters: failure/repair probabilities as in Tabl&l4s 200 and# varying in the range of 0 to
20 bad parts per stop. Figure 4 shows the treng,pfor both the basic case (dashed line) and the
case with restart policy (solid line). If no waste is produdi€ee., ##” = 0) the basic line performs
better than the line with restart policy. This is becauseaited production time of the first machine
is longer in the basic line where the first machine is neverddito remain idle (i.e., it never enters
the “controlled idle” state). Nevertheless, whigh > 0 the application of a restart policy makes
it possible to reduce the blocking frequency of the first ni@eland, as a consequence, to gain in

terms ofeffectiveefficiency.
[PUT FIGURE 4 HERE]
[PUT TABLE 1 HERE]
[PUT TABLE 2 HERE]
[PUT TABLE 3HERE]
[PUT TABLE 4 HERE]

[PUT TABLE 5HERE]

6 Conclusions and further research

In this paper, an analytical method for evaluatingeffectiveefficiency of a two-machine one-buffer
line with waste production is presented. We assume thatvpastiuction is related to specific events
that may occur in the system. In particular, the first macpioeluces a certain amount of bad parts
each time it resumes processing after any stoppage (duthér an operational failure or a blocking

event).
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In particular, the work extends the Basic Model presentéaiérshwin (2002) and the RP Model
in Gebennini et al. (2009) and Gebennini et al. (in press)isymjuishing whether the first machine
is producing a good or a bad part. The expressions of the piiales of producing any bad part are
derived in order to compute the waste probability andaffiectiveefficiency of the line for both the
basic case and the case with restart policy.

Comparisons with simulation results show that the new nmeod#er very good accuracy by
overcoming the precision errors of the approximate fornpuésented in Gebennini et al. (2009).

Future work will be directed towards applying the methodeallong lines by including it in
decomposition techniques (see Gershwin, 1987; Dallery.e1289; Levantesi et al., 2003) based
on the evaluation of a series of two-machine one-buffersidtems. Moreover, further studies may
improve the model, e.g., by avoiding that bad parts entebttifer, by including an intermediate
restart level, by distinguish different sizes of bad patthas. Finally, it would be interesting to
investigate extensions of the proposed approach to diffdyehaviours related to other types of

events that may occur in the system, e.g. production lindsavder-selection and switch-over.
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A Steady-State Probabilities - ThewP-Basic Model

0 if w> 0
pW(n)O)O)W): ? n:07 7N7
p(n,0,0) ifw=0
0 ifw>0
pW(n)O)l)W): ? n:07 7N7
p(n,0,1) ifw=0
py(n,1,0,w) + pf(n,1,0,w)

pW(n)l) O)W) = f b
5([1, 1’ O) - z\\ﬁv\/:l(p}lv(n’ 1’ O’ W) + p\lljv(n’ 1’ O’ W))
Py (n,1,1,w) +pf(n,1,1,w)

pY(n11w) =4 °

5([1, 1’ 1) - z\\fvvzl(p}lv(n’ 1’ LW) + p\l/)\/(n’ 1’ LW))

ifw>0

, n=0,..
ifw=0
ifw>0

, n=0,..
ifw=0

(25)

(26)

(28)

where the probabilitieg(n, a1, a») are given by the model without waste production (refer tosBer

win, 2002), and where

e waste probabilities related to failures are

pY(0,1,00w) =0, w=1,...,%, (29)
p(0,1,1,w) =0, w=1,....%, (30)
pY(1,1,00w) =0, w=1,..,#, (31)
rip“(0,0,1,0) +ryrop*(1,0,0,0) +r1(1— p2)p*¥(1,0,1,0) ifw=1
p¥v(1) 1) 15W) = I
(1-p)(1—p2)pf(1,1,L,w—1) ifw>1
(32)
r1(1—12)p¥(1,0,0,0) +r1p2p*(1,0,1,0) if w=1
pf'(2,1,0,w) = : (33)
(1—py)p2pf(1,1,1,w—1) if w>1
ri(1—rz)p¥(n—1,0,0,0) +ripop*(n—1,0,1,0) ifw=1
p}N(n, 1) OaW) =
(1-p)(d—r2)pf'(n—1,1,0,w—1)+ (1 —py)p2pi'(n—1,1,1,w—1) ifw>1
(34)
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rlrzpw(nv 07 07 0) + rl(l - pZ)pW(na Oa 1a O)

p¥v(n) 1) 1)W) =
(1_ pl)r2p¥v(nala OaW_ 1) =+ (1_ pl)(l_ p2)p¥v(n7 17 17W_ 1)
n=2,....,.N—1,
p'(N,1,0,w) =0, w=1...,%,
pf(N,1,1,w) =0, w=1....%,

e waste probabilities related to blocking events are

py(n,1,00w)=0 w=1....%, n=0,...,N,

pp(n,1,L,w)=0, w=1...%, n=0,...

W
p\t’)v(N_L 17 17w) _ rzp (NalaOaO)

py(N,1,Lw)=0, w=1,... 7.

ifw=1

ifw>1

B Steady-State Probabilities - TheAV\P-RP Model

0 if w>0
pw(n,0,0,W): 5 n:0,...,N,
p(n,0,0) ifw=0
0 if w>0
pW(n,O,l,W): 5 n:0,...,N,
p(n,0,1) ifw=0
pw(n) l) O) W) + pw(n) l) O) W)
pY(n1,0w) =4 ' ;
P(n,1,0)— S (p}(n,1,0,w) + py(n, 1,0,w))
pw(n) l) l)W) + pw(n) l) l)W)
p(nL1w) =4 ;
p(n,1,1) — S (p'(n, 1,1, w) + p(n, 1,1,w))

21

ifw=1
ifw>1

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(45)
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where the probabilitiep(n, a1, a») are given by the RP Model without waste production (refer to

Gebennini et al., 2009) considering the Standard Oper&&atition (where the first machine is not

in the “controlled idle state”), and where

e waste probabilities related to failures are

pf(0,1,0,w) =0, w=1,...,%,

pf'(0,1,1,w) =0, w=1,..,%,

pf(1,1,0,w) =0, w=1,...%,

r1p*(0,0,1,0) +r1rop*(1,0,0,0) +r1(1— p2)p*(1,0,1,0)

pr(1,1,1,w) =

(1_ pl)(l_ p2)p¥v(17 1,1,w— 1)

rl(l_r2)pw(1707070)+rlp2pw(1a0a 1a0) ifw=1

(1—p1)ppi’(1,1,1,w—1) if w> 1

rl(l_ r2)pw(n - 1a Oa Oa O) + rlpzpw(n - 1a Oa 1a O)

rirop*(n,0,0,0) +r1(1—p2)p%(n,0,1,0)

p¥v(na 1a 1aW) =

(1_ pl)r2p¥v(n) 1) OaW_ 1) + (1_ pl)(l_ p2)p¥v(n7 17 17W_ 1)

pf'(N,1,0,w) =0, w=1....%,

pf'(N,1,1,w) =0, w=1...,%,

e waste probabilities related to blocking events are

pl(0,1,0,w) = pl¥(1,1,0,w) =0, w=1,... %,

1

PY(L,1,1,w) =r2p¥(N,1,0,0) [(1— p)(1—p2)]" ~, w=1,...., 7,

22
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(46)
(47)

(48)

)

(49)

(50)

ifw=1

(1_ pl)(l_ rZ)p‘fN(n_ 17 1707W_ 1) + (1_ pl) pzp‘fN(n_ 17 17 17W_ 1) if w>1

(51)

ifw=1

)

ifw>1

(52)

(53)

(54)

(55)

(56)

)



(1_ pl)(l_ rZ)p‘kIJv(nala OaW_ 1) + (1_ pl)pr\[’)V(n_ 1) 1) 15W_ 1)7 if WZ n

p\lgv(nala OaW) = Ll
0 ifw<n
(57)
n=1..., W,
pp(n,1,0,w) =0, n=Wy+1,....N, (58)
(1_ pl)rzp\[gv(na 1) OaW_ 1) + (1_ pl)(l_ pZ)p\{)v(n_ 1) 1) 15W_ 1)7 if w >n
Pp (N, 1,1,w) = ,
0 ifw<n
(59)
n=1.... W,
pp(n,1,1,w) =0, n=Wo+1,...,N, (60)
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28



Standard Operation Partition Buffer Drainage Partition
Fist machine in the “controlled idle state”

(n,0,0) (n,0,1) (n,1,0) (n,1,1) (n,0)*  (n,1)*

Figure 3: RP Model: Markov chain.
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Parameter casel case?2
p1 0.06 0.03
p2 0.05 0.05
r 0.2 0.2
ro 0.2 0.2
N [20;40;60;80 | [20;40;60;80
/4 [2;4;6;8;10 [2;4;6;8;10

Table 1: Input parameters for “cadé and “case2”.
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Scenario Basic Line Line with Restart Policy
N / E\.zim E\;a\l/na E\;‘\‘/PP E&/im E\;a\l/na E\;a\,pp
100 2 | 0.677 0.677 0.674 0.674 0.674 0.671
4 | 0598 0.598 0.581 0.595 0.596 0.58
6 | 0.527 0.527 0.488 0.526 0.526  0.488
8 | 0.465 0.465 0.395 0.465 0.465 0.396
10| 0.411 0.411 0.302 0.410 0.411 0.305
80 2 |0.675 0.675 0.672 0.671 0.671 0.668
4 |1 0595 0.595 0.578 0.592 0.593 0.577
6 | 0.525 0.525 0.485 0.523 0.523  0.485
8 | 0.463 0.463 0.391 0462 0.462 0.394
10| 0.408 0.408 0.297 0.408 0.408 0.303
60 2 | 0.671 0.671 0.668 0.665 0.665 0.663
4 10591 0.590 0.5730.587 0.587 0.572
6 | 0.520 0.520 0.478 0.519 0.519 0.481
8 | 0.457 0.457 0.384 0.458 0.458 0.39
10| 0.402 0.402 0.289 0.404 0.404 0.299
40 2 | 0.663 0.663 0.659 0.655 0.655 0.652
4 10581 0.580 0.562 0.577 0.577 0.561
6 | 0.509 0.509 0.465 0.509 0.509 0.471
8 | 0.446 0.446 0.367 0.449 0.449 0.381
10| 0400 0.391 0.270 0.395 0.396 0.29
20 2 | 0.639 0.639 0.635 0.629 0.629 0.626
4 | 0553 0.553 0.531 0551 0.551 0.535
6 | 0.479 0.478 0.426 0.483 0.483 0.444
8 | 0.414 0.413 0.322 0.423 0.423 0.353
10| 0.358 0.357 0.218 0.370 0.370 0.262

Table 2: Comparison results - “ca%& p; = 0.06,p, =0.05,r; =rp, =0.2.
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Scenario Basic Line Line with Restart Policy
N / E\.zim E\;a\l/na E\;‘\‘/PP E&/im E\;a\l/na E\;a\,pp
100 2 | 0.723 0.723 0.720 0.744 0.745 0.744
4 | 0.654 0.653 0.640 0.699 0.699 0.695
6 | 0.593 0.591 0.560 0.656 0.657 0.646
8 | 0.537 0.536 0.480 0.616 0.617 0.597
10| 0.488 0.486 0.400 0.579 0.579 0.548
80 2| 0.723 0.722 0.720 0.742 0.742 0.742
4 | 0.654 0.653 0.640 0.697 0.697 0.692
6 | 0.592 0.591 0.560 0.654 0.654  0.643
8 | 0.537 0.536 0.480 0.614 0.614 0.594
10| 0.487 0.486 0.399 0.576 0.576 0.545
60 2 |0.722 0.722 0.719 0.738 0.739  0.738
4 | 0.653 0.652 0.639 0.693 0.693 0.688
6 | 0.591 0.590 0.558 0.649 0.649 0.638
8 | 0.536 0.534 0.478§ 0.609 0.609 0.589
10| 0.486 0.484 0.398 0.571 0.571 0.539
40 2| 0.719 0.719 0.716 0.731 0.731 0.73
4 |1 0649 0.649 0.633 0.684 0.684 0.679
6 | 0.587 0.586 0.554 0.640 0.640 0.629
8 | 0.531 0.530 0.472 0.599 0.599 0.578
10| 0481 0.479 0.391 0.560 0.560 0.527
20 2 10705 0.704 0.701 0.711 0.711 0.71
4 10632 0.631 0.616 0.660 0.660 0.655
6 | 0.568 0.566 0.531 0.613 0.613 0.6
8 | 0.510 0.508 0.446 0.570 0.569 0.546
10| 0.458 0.457 0.360 0.528 0.528 0.491

Table 3: Comparison results - “cag& p; = 0.03,p2, =0.05,r; =rp, =0.2.
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Parameter Value
p1 0.006
P2 0.02
ri 0.1
ro 0.1
N [20;40;60;80
W [2;4;6;8;10

Table 4: Input parameters (case with low failure probafilit

35



Scenario Basic Line Line with Restart Policy
N / E\.zim E\;a\l/na E\;‘\‘/PP E&/im E\;a\l/na E\;a\,pp
100 2 | 0.800 0.800 0.800 0.815 0.815 0.815
4 10769 0.769 0.767 0.803 0.803 0.803
6 | 0.739 0.739 0.733 0.792 0.792 0.791
8 | 0.710 0.710 0.700 0.780 0.780 0.779
10| 0.682 0.682 0.6671 0.769 0.769  0.768
80 2| 0.800 0.800 0.800 0.813 0.813 0.813
4 10769 0.769 0.766 0.801 0.801 0.801
6 | 0739 0.739 0.733 0.789 0.789  0.788
8 | 0.710 0.710 0.700 0.777 0.777 0.776
10| 0.682 0.682 0.666 0.765 0.765 0.764
60 2 | 0.800 0.800 0.799 0.810 0.810 0.81
4 10768 0.768 0.766 0.797 0.797  0.797
6 | 0.738 0.738 0.732 0.784 0.784  0.783
8 | 0.709 0.709 0.699 0.771 0.772 0.77
10| 0.681 0.681 0.663 0.759 0.759  0.757
40 2 | 0.797 0.797 0.797 0.804 0.804 0.804
4 |1 0765 0.765 0.763 0.789 0.789  0.789
6 | 0.735 0.735 0.729 0.775 0.775 0.774
8 | 0.706 0.706 0.693 0.761 0.761 0.76
10| 0.678 0.678 0.662 0.747 0.748  0.745
20 2 |0.789 0.789 0.788 0.790 0.790 0.79
4 | 0755 0.755 0.753 0.772 0.772 0.772
6 | 0.724 0.723 0.717 0.754 0.754 0.753
8 | 0.693 0.693 0.682 0.736 0.736 0.734
10| 0.664 0.664 0.647 0.719 0.719 0.715

Table 5: Comparison resultgps = 0.006,p, = 0.02,r1 =r, =0.1.
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