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Abstract

We consider difficult combinatorial optimization problems arising in transportation
logistics when one is interested in optimizing both the routing of vehicles and the
loading of goods into them. The separate problems (routing and loading) are already
NP-hard, and very difficult to solve in practice. A fortiori their combination is
extremely challenging and stimulating. Although the specific literature is still quite
limited, a first attempt to a systematic view of this field can be useful both to
academic researchers and to practitioners. We review vehicle routing problems with
two- and three-dimensional loading constraints. Other combinations of routing and
special loading constraints arising from industrial applications are also considered.

Keywords: Vehicle routing, Loading, Two-dimensional packing, Three-dimensional pack-
ing, Traveling salesman, Pickup&delivery.

1 Introduction

Two central issues in transportation logistics concern the routing of vehicles and the loading
of goods into them. Most optimization problems arising in these two areas are NP-
hard, and extremely difficult to solve in practice. For this reason, traditionally these two
research areas have been handled separately, at the expense of the overall optimization.
Only in recent years algorithms combining these two issues have been proposed in the
literature. Combining two difficult problems leads to a considerable increase of difficulty,
but on the other hand it allows a better solution of the corresponding logistic targets.
Although the specific literature is still quite limited (a brief overview can be found in
Wang, Tao and Shi [90]), we believe that a first attempt to a systematic view of this
field can be useful both to academic researchers and to practitioners. In the next two
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sections we briefly review the basic issues in the areas of routing and loading, respectively.
In Section 4 we consider the capacitated vehicle routing problem with two-dimensional
loading constraints, and in Section 5 the capacitated vehicle routing problem with three-
dimensional loading constraints. Another three-dimensional routing problem with special
loading constraints is examined in Section 6. In Section 7 we discuss traveling salesman
problems with pickup&delivery and loading constraints. A miscellaneous of other problems
that combine routing and loading is finally provided in Section 8.

2 Routing problems

The prototype problem in the routing area is the famous Traveling Salesman Problem
(TSP). Given a set of cities, along with the cost of traveling between each pair of cities, the
TSP is to find a minimum cost tour of all the cities. The problem is NP-hard in the strong
sense, and its optimal solution is a classical challenge in combinatorial optimization. The
Symmetric Traveling Salesman Problem (STSP) can be modeled by a graph G = (V,E),
where V = {0, 1, . . . , n} is the vertex set, E = {(i, j) : i, j ∈ V } is the edge set, and cij
(i, j ∈ V ) is the cost of traveling along edge (i, j) (in either direction). The Asymmetric
Traveling Salesman Problem (ATSP) can be modeled by a digraph G = (V,A), where
A = {(i, j) : i, j ∈ V } is the arc set, and cij (i, j ∈ V ) is the cost of traveling along
arc (i, j) (from i to j). In most practical contexts it is assumed that the costs satisfy the
triangle inequality cij ≤ cik+ ckj ∀ i, j, k ∈ V , which is easily imposed by defining each cost
cij as the cost of the shortest path from i to j. The TSP is probably the most extensively
studied problem in combinatorial optimization. We refer the reader to the most important
books that treat this subject (Lawler, Lenstra, Rinnooy Kan and Shmoys [62], Reinelt [81],
Gutin and Punnen [55], and Applegate, Bixby, Chvátal and Cook [1]), as well as to the
recent articles by D’Ambrosio, Lodi and Martello [35] and Letchford and Lodi [63].

The natural extension of the TSP to real-world transportation issues is the Capacitated
Vehicle Routing Problem (CVRP). We assume that a central depot is located at vertex 0,
where a fleet of K identical vehicles is available, while n customers are located at vertices
1, 2, . . . , n. All vehicles have the same capacity D, and each customer has a demand di
(with 0 ≤ di ≤ D for i = 1, 2, . . . , n). The CVRP is to find a set of at most K circuits
(called routes), each visiting the depot and a subset of customers, such that: (i) each
customer is visited by exactly one vehicle; (ii) each vehicle performs at most one route;
(iii) the sum of the demands on each route is not greater than D; (iv) the sum of the costs
of the traveled edges/arcs is a minimum.

The CVRP has been deeply investigated since the seminal work by Dantzig and Ramser
[36]. We will not review here the huge literature that exists on this problem. The reader is
referred to the books by Toth and Vigo [87] and Golden, Raghavan and Wasil [54], as well
as to the recent surveys by Cordeau, Laporte, Savelsbergh and Vigo [30] and Baldacci,
Toth and Vigo [6, 7]. We just mention here that excellent results have been recently
obtained by Fukasawa, Longo, Lysgaard, Poggi de Arag̃ao, Resi, Uchoa and Werneck [49]
(branch-and-cut-and-price), and by Baldacci, Christofides and Mingozzi [4] and Baldacci
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and Mingozzi [5] (set partitioning formulation).
Vehicle routing problems have great relevance in real world distribution systems, where

the costs associated with operating vehicles and crews form an important component of
the total costs: even small percentage savings can thus result in considerable total savings.
The use of the CVRP for real-world problems can however be limited by the existence
of many additional constraints that are not captured by the model. In the Distance-
Constrained CVRP each edge or arc has an associated traveling time, and an upper bound
is imposed on the total traveling time of each vehicle. In the CVRP with time windows
each customer has an associated time interval in which the visit must start. In the CVRP
with backhauls, in addition to the set of customers who have to receive a given quantity of
product (linehaul customers), there is a set of customers where a given quantity of product
has to be picked up (backhaul customers), and in each route all linehaul customers must
be visited before all backhaul customers. The CVRP with backhauls is a member of a
huge area of CVRPs with pickup&delivery, that includes many variants: customers may be
associated to both product to deliver and product to be picked up, the product picked up
at a customer may be delivered to another customer or has to go to the depot, and so on.
All these problems may be further generalized to combined constraints and to variants such
as, e.g., multiple depots, multiple periods, multiple vehicle types. The reader is referred
again to the books and surveys [87, 54, 30, 6, 7] mentioned above, and, for the area of
pickup&delivery routing problems, to the web page maintained at the University of La
Laguna, see http://webpages.ull.es/users/hhperez/PDsite/index.html.

3 Loading constraints

In the CVRP the demand of a customer is expressed by a value that represents the total
weight of the items to be delivered, while in real-world instances demands consist of sets of
items which are characterized not only by a weight but also by a shape. A more detailed
modeling of such characteristics can involve additional issues such as, e.g., handling loading
and unloading operations, dealing with fragile items, operating with automatic forks, and
so on. A first complication of the basic models arises when we want to ensure that the
transported items can be feasibly allocated within the vehicle loading space. A second
possible complication may come from the fact that the unloading operations should be
performed without reshuffling the transported items, hence they are affected by the order in
which the items are loaded and/or by the items position within the loading area. Problems
related to the former complication are briefly reviewed below, while details on the latter
are discussed in the specific sections.

In some transportation applications one has to handle rectangular-shaped items that
cannot be stacked one on top of the other (because of their fragility or weight). This
happens, for example, when the transported items are large kitchen appliances, such as
refrigerators, or pieces of catering equipment, such as food trolleys. In such cases, the
CVRP must include, besides the classical weight constraints, additional constraints to
reflect two-dimensional loading aspects.
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In other real-world contexts the customer demands consist of sets of three-dimensional
rectangular boxes of given size and weight that can be (partially) superposed. For such
cases, constraints imposing a feasible packing of the goods in the loading space have to be
added to the weight constraints.

The loading issues above are closely related to multi-dimensional packing problems,
which arise as extensions of the classical (one dimensional) bin packing (see, e.g., Martello
and Toth [70], Coffman, Garey and Johnson [25], Coffman, Galambos, Martello and Vigo
[24]). A considerable number of multi-dimensional packing problems has been studied in
combinatorial optimization, and there is a huge literature on this subject. As will be seen
in the next sections, the main problems that have been addressed in conjunction with
routing issues are:

• Two-Dimensional Bin Packing Problem (2BPP): Pack a given set of rectangles into
the minimum number of large identical rectangles (bins). Exact approaches for the
2BPP are generally based on branch-and-bound techniques and are able to solve
instances with up to 100 items (although some instances with 20 items remain un-
solved). Exact algorithms and lower bounds for the 2BPP have been proposed by
Martello and Vigo [71], Fekete, Schepers and van der Veen [45], Boschetti and Min-
gozzi [12, 13], Pisinger and Sigurd [79], and Caprara and Monaci [17]. A closely
related problem, known as the orthogonal packing problem, was effectively solved by
Clautiaux, Jouglet, Carlier and Moukrim [23].

• Two-Dimensional Strip Packing Problem (2SPP): Pack a given set of rectangles into
an open-ended rectangle of given width and infinite height (strip) so as to minimize
the overall height at which the strip is used. A survey on this problem has been
recently produced by Riff, Bonnaire and Neveu [82]. Recent effective algorithms
not included in such survey are those by Caprara and Monaci [17] and Kenmochi,
Imamichi, Nonobe, Yagiura and Nagamochi [60]. In addition, many heuristic and
metaheuristic approaches have been tested on the 2BPP and the 2SPP.

• Three-Dimensional Bin Packing Problem (3BPP): Pack a given set of rectangular
boxes into the minimum number of large identical three-dimensional boxes. Exact
algorithms for the 3BPP have been given by Martello, Pisinger and Vigo [68] (see also
[38]) and by Martello, Pisinger, Vigo, den Boef and Korst [69]. Lower bounds have
been proposed, among others, by Boschetti [11], and effective heuristics by Faroe,
Pisinger and Zachariasen [44] and by Crainic, Perboli and Tadei [34].

• Three-Dimensional Strip Packing Problem (3SPP): Pack a given set of rectangular
boxes into an open-ended three-dimensional strip of given width and depth and infi-
nite height so as to minimize the overall height at which the strip is used. A heuristic
algorithm for the 3SPP was recently proposed by Bortfeldt and Mack [10].

The items may have a fixed orientation, parallel to the edges of the bins, or they can
be rotated (usually by 90◦). A typology of packing problems was proposed by Dyckhoff
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and Finke [41], and later updated by Wäscher, Haußner and Schumann [91]. The website
of ESICUP, http://www.fe.up.pt/~esicup provides a repository of articles organized
according to such typology.

In Sections 4 and 5 we review recent results obtained on combinations of the CVRP
with two- and three-dimensional loading constraints. As the CVRP is a generalization of
the TSP, it is NP-hard in the strong sense, and very difficult to solve in practice. The
same holds for all the packing problems above, which are generalizations of the (strongly
NP-hard) bin packing problem. Even deciding whether a given set of two-dimensional
rectangles can be packed into a given two-dimensional bin is strongly NP-complete. A
fortiori the combinations of these two areas are extremely challenging. We will see that they
can sometimes be solved exactly for small-size instances, and that powerful metaheuristic
algorithms are able to produce solutions of good quality for instances of realistic size.

4 The capacitated vehicle routing problem with two-

dimensional loading constraints

As in the classical CVRP, we are given a complete undirected graph G = (V,E), where V
is the set of the n+ 1 vertices corresponding to the depot (vertex 0) and to the customers
(vertices 1, 2, . . . , n), and E is the set of the edges (i, j), each having an associated cost
cij . Each customer must be served by a single vehicle. There are K identical vehicles, each
having a weight capacity D and a rectangular loading surface of width W and height H .
The demand of customer i (i = 1, 2, . . . , n) consists of mi items of total weight di: item Iiℓ
(ℓ = 1, 2, . . . , mi) has width wiℓ and height hiℓ. In the version considered here, the items
have fixed orientation, i.e., they must be packed with their w-edge (resp. h-edge) parallel
to the W -edge (resp. H-edge) of the loading surface.

When a vehicle k is assigned a route that includes a set S(k) ⊆ {1, 2, . . . , n} of cus-
tomers, the two following constraints must be satisfied:

• the total weight
∑

i∈S(k) di must not exceed the vehicle capacity D;

• there must exist a feasible (non-overlapping) loading of all the items requested by
the customers of S(k) into the W ×H loading area.

The Capacitated Vehicle Routing Problem with Two-Dimensional Loading Constraints
(2L-CVRP) is to find a partition of the customers into no more than K subsets and, for
each subset, a route starting and ending at the depot such that both conditions above
hold, and the total cost of the edges in all the routes is a minimum. An example involving
8 customers and 3 vehicles is depicted in Figure 1 (taken from [53]).

The above problem is also known as the Unrestricted 2L-CVRP. Another version arises
when the demanded items have great weight, size or fragility, so moving them inside the
vehicle is unpractical. In the resulting problem, known as the Sequential 2L-CVRP, it
is then additionally imposed that, for each vehicle k, the demanded items are allocated
so that, when a customer is visited, his demanded items can be downloaded through a
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Figure 1: Example of the 2L-CVRP.

sequence of straight movements (one per item) parallel to the H-edge of the loading area.
This implies that the strip going from the w-edge of any item demanded by the customer to
the rear of the vehicle must be free of items demanded by customers visited later on in the
route. In the transportation literature this constraint is denoted as “sequential loading”,
or “rear loading”, or “LIFO (Last-In First-Out) policy”.

The solution depicted in Figure 1 satisfies the sequential loading constraint. Consider,
e.g., Vehicle 1: customer 1 is first visited, and items I12, I13 and I11 can be consecutively
unloaded, with no need of moving the other transported items.

With respect to the multi-dimensional packing problems introduced in Section 3, deter-
mining the minimum number of vehicles involves the solution to a 2BPP with additional
constraints. A first constraint, common to both versions of the problem, imposes that all
items demanded by a customer are packed in the same bin. For the sequential 2L-CVRP, a
second constraint restricts the feasible patterns to those allowing the requested sequential
operations.

Iori, Salazar González and Vigo [59] presented an exact algorithm for the solution of
the sequential 2L-CVRP with integer edge costs, and two additional restrictions some-
times encountered in the literature: all K vehicles must be used, and no one-customer
route is allowed. The algorithm is based on a branch-and-cut approach, making use of
both classical valid inequalities from the CVRP literature and specific inequalities asso-

6



ciated with infeasible loading sequences. The model handled by the algorithm initially
disregards the loading constraints. Whenever it produces an integer solution satisfying
the weight constraint for all routes, the feasibility of the corresponding loading patterns is
evaluated through heuristics, possibly followed by a nested branch-and-bound procedure
(following the approach introduced by Martello and Vigo [71]). If all loadings are feasible,
the incumbent solution is updated. Otherwise new cuts are added to the current model
in order to forbid infeasible routes. The algorithm was evaluated on benchmark instances
from the CVRP literature (see Iori [57] for more details on the experiments), showing a
satisfactory behavior for small-size instances.

In order to deal with more realistic, larger sized instances, heuristic algorithms have
been proposed. Among the various metaheuristic approaches proposed for the CVRP (see
Cordeau, Gendreau, Hertz, Laporte and Sormany [27] for a recent survey), very good results
were obtained through Tabu search (see Cordeau and Laporte [29]). On the basis of this ob-
servation, Gendreau, Iori, Laporte and Martello [53] developed Tabu search algorithms for
the 2L-CVRP, both for the sequential and the unrestricted version. The general approach
can accept moves producing infeasible routes in the following sense. For the sequential
2L-CVRP, the generated routes must satisfy the constraint on sequential loading but can
have a total weight exceeding D and/or can require a loading surface of height exceeding
H . Moves leading to such infeasibilities are assigned a penalty proportional to the level of
the constraint violation. Moves are evaluated by considering the edge costs, and possibly
penalized by infeasible loadings. The routing aspect of the problem is handled through
an adaptation of Taburoute, a Tabu search heuristic developed by Gendreau, Hertz and
Laporte [50] for the CVRP. Note that weight infeasibilities are immediate to check, while
the loading ones require the solution of an NP-hard problem. The latter issue was thus
handled through a heuristic algorithm which outputs, for each vehicle, a two-dimensional
loading pattern having width W and a (possibly infeasible) height, to be tested against
the available height H . This is obtained by heuristically solving a 2SPP problem for the
unrestricted case, or a modified 2SPP problem for the sequential case, through iterated
calls to modified versions of the greedy heuristic developed by Iori, Martello and Monaci
[58].

Some improvements were proposed to the above Tabu search approach. An Ant Colony
Optimization (ACO) algorithm was proposed by Fuellerer, Doerner, Hartl and Iori [47].
The algorithm is based on the ACO approach developed by Reimann, Doerner and Hartl
[80] for the CVRP, modified and extended through the addition of loading techniques. The
algorithm searches the space of routing solutions, and loading feasibility is checked through
lower bounds, heuristics and a truncated branch-and-bound. The ant colony is initialized
with a population of ants, each of which searches for a low-cost feasible solution through
a generalization of the classical savings algorithm by Clarke and Wright [22]. The decision
on combining customers into a unique route is based on a probabilistic rule that takes into
account both savings and pheromone information.

Another improvement was proposed by Zachariadis, Tarantilis and Kiranoudis [93], who
developed a guided Tabu search algorithm. The routing aspects of the problem are guided
by a classical Tabu search strategy in which the objective function is conveniently altered
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to increase diversification. The feasibility of the produced loadings is tested through a
number of heuristics. The information on the feasibility or infeasibility of the generated
routes is stored in special data structures to avoid useless re-executions of the loading
heuristics.

We present a computational analysis of the three metaheuristics discussed, performed
on randomly generated instances. The graph and the weights demanded by the customers
come from CVRP benchmarks (described in [87], and downloadable from http://www.or.

deis.unibo.it/research.html). For each CVRP network, five 2L-CVRP instances were
generated according to the following five classes:

Class 1: each customer was assigned a single item, with unit width and unit height (pure
CVRP instances);

Classes 2 – 5: the number mi of items demanded by each customer i was uniformly ran-
domly generated in different intervals. Each item was then randomly assigned, with
equal probability, one of three possible shapes (vertical, homogeneous or horizontal),
and its width and height were generated accordingly.

Detailed information on the test bed generation is provided in Table 1. For each instance,
the number of vehicles was determined by heuristically solving a 2BPP with additional
constraints. For all classes, the loading area had sizes H = 40 and W = 20. All instances
are available on line at http://www.or.deis.unibo.it/research.html.

The computational experiments on the resulting 180 instances were executed by the
various authors on similar computers, although with different CPU speeds. Table 2 gives
the average values obtained for each set of five instances. The first two columns give a
CVRP instance identifier, and the number of customers. For each metaheuristic three
information are provided: average solution value z, average elapsed CPU time when the
final incumbent solution was found (sech), and average total CPU time spent (sectot). The
last line of the table reports the average values over all instances. It turns out that the ACO

Table 1: 2L-CVRP test bed generation.

Vertical Homogeneous Horizontal

Class mi hiℓ wiℓ hiℓ wiℓ hiℓ wiℓ

1 [1, 1] [1, 1] [1, 1] [1, 1] [1, 1] [1, 1] [1, 1]

2 [1, 2]
[

4H
10
, 9H

10

] [

W
10
, 2W

10

] [

2H
10
, 5H

10

] [

2W
10

, 5W
10

] [

H
10
, 2H

10

] [

4W
10

, 9W
10

]

3 [1, 3]
[

3H
10
, 8H

10

] [

W
10
, 2W

10

] [

2H
10
, 4H

10

] [

2W
10

, 4W
10

] [

H
10
, 2H

10

] [

3W
10

, 8W
10

]

4 [1, 4]
[

2H
10
, 7H

10

] [

W
10
, 2W

10

] [

H
10
, 4H

10

] [

W
10
, 4W

10

] [

H
10
, 2H

10

] [

2W
10

, 7W
10

]

5 [1, 5]
[

H
10
, 6H

10

] [

W
10
, 2W

10

] [

H
10
, 3H

10

] [

W
10
, 3W

10

] [

H
10
, 2H

10

] [

W
10
, 6W

10

]
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Table 2: Aggregate results on the 2L-CVRP with sequential loading (averages over five
instances per line).

Tabu search [53] ACO [47] Guided Tabu Search [93]
(Pentium IV, 1.7 GHz) (Pentium IV, 3.2 GHz) (Pentium IV, 2.4 GHz)

I n z sech sectot z sech sectot z sech sectot

1 15 295.01 2.6 9.2 291.83 5.5 7.2 299.12 2.9 4.6
2 15 343.18 0.4 3.5 343.22 0.3 0.6 344.36 1.6 2.6
3 20 380.19 3.8 18.9 378.17 2.3 3.1 386.36 2.6 4.6
4 20 440.91 1.4 17.0 439.07 2.3 3.0 441.87 2.4 3.9
5 21 382.30 4.1 27.6 381.63 9.7 12.8 392.14 5.6 9.5
6 21 501.40 5.1 19.5 499.77 3.3 4.3 503.20 2.9 4.7
7 22 691.23 15.5 53.0 678.22 9.2 11.7 692.78 14.6 25.8
8 22 691.89 32.8 83.7 684.37 9.6 16.1 686.29 17.4 26.5
9 25 620.77 10.6 40.0 614.88 4.0 4.9 619.29 8.6 14.2
10 29 679.68 43.5 179.6 668.48 47.8 50.1 689.45 23.5 41.3
11 29 719.76 99.0 199.4 690.22 55.1 57.8 715.52 44.0 77.1
12 30 627.59 58.8 99.5 615.90 6.5 7.4 624.90 66.4 106.8
13 32 2550.89 49.0 312.8 2480.04 58.9 61.8 2544.74 40.5 72.2
14 32 1048.72 146.0 439.5 1007.92 154.9 163.1 1041.76 86.7 143.8
15 32 1160.25 165.4 313.4 1145.96 133.9 138.8 1154.90 34.6 61.9
16 35 703.60 28.0 157.2 701.09 6.6 8.3 705.77 33.4 50.9
17 40 865.72 88.9 226.2 864.92 4.1 7.2 864.81 49.9 84.9
18 44 1037.65 566.5 1167.8 1003.84 285.2 292.6 1027.97 214.0 328.0
19 50 746.91 365.2 1521.5 728.89 118.6 122.1 745.67 292.8 466.8
20 71 513.84 808.9 3370.3 484.23 1057.4 1073.8 510.17 440.8 747.0
21 75 1025.79 1702.2 3561.2 987.54 1027.3 1037.3 1022.58 759.3 1303.7
22 75 1052.39 1573.8 3461.8 1018.76 726.8 738.9 1051.02 1184.3 1998.8
23 75 1121.18 675.8 3600.0 1051.16 1197.3 1206.5 1088.81 919.8 1461.3
24 75 1208.52 2642.5 3324.6 1134.90 312.6 323.4 1172.36 1303.7 2096.4
25 100 1350.56 2336.5 3600.1 1309.98 2424.5 2454.9 1349.11 1988.7 3389.2
26 100 1341.30 1554.6 3600.3 1306.24 2370.4 3558.1 1344.68 1115.5 1936.5
27 100 1439.37 1308.2 3600.0 1341.25 1536.8 1570.3 1390.20 818.6 1292.3
28 120 2502.48 2576.9 3600.1 2417.89 8349.4 8714.5 2476.66 1541.4 2622.8
29 134 2296.03 1162.5 3600.2 2131.54 8180.4 8837.5 2206.22 1257.7 2179.6
30 150 1873.27 2021.4 3600.2 1734.46 8267.0 8720.3 1832.96 1229.5 1980.6
31 199 2366.54 2102.2 3600.5 2219.34 8512.6 8747.4 2327.74 1681.6 2748.7
32 199 2354.60 2305.2 3600.6 2191.97 8687.9 8745.8 2235.70 2528.1 4313.5
33 199 2360.74 2221.2 3600.6 2245.46 8631.9 8742.7 2317.97 2367.0 4104.9
34 240 1408.64 2184.4 3601.0 1160.98 8645.4 8771.6 1186.77 3674.1 4596.2
35 252 1786.93 2223.1 3600.2 1465.85 8822.0 8942.2 1515.69 3291.8 4313.2
36 255 1693.10 2626.3 3600.9 1603.86 8978.6 9011.7 1610.60 2825.2 4732.2

AVG 1171.75 936.5 1817.0 1111.77 2462.4 2560.3 1142.22 829.8 1315.2
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algorithm improves the solution quality, with respect to the original Tabu search, by 5% on
average, while for the guided Tabu search the improvement is limited to 2.5%. The guided
Tabu search improves the solutions for the larger instances, while for the smaller instances
it is often outperformed by the original Tabu search. By considering the different CPU
speeds, the ACO algorithm requires a considerable increase in the computational effort
(around 2-3 times), while the guided Tabu search takes more or less the same time as the
original Tabu search. Concerning the values of sech, it can be observed that the ACO
algorithm finds the final incumbent solution in a CPU time very close to the total CPU
time spent, and about 5 times larger than that of the Tabu search approaches.

On similar instances, the exact algorithm by Iori, Salazar González and Vigo [59] solved
to optimality all instances with n ≤ 25 (in less than one CPU hour per instance), and 37
% of those with 25 < n ≤ 35 (with time limit set to one CPU day per instance), failing for
the larger instances. The largest instance solved to optimality had 35 customers and 114
items, while the smallest unsolved instance had 29 customers and 43 items. The instances
of Classes 4 and 5 turned out to be the most challenging ones for the exact algorithm. This
is probably explained by the fact that such instances include a large number of relatively
small items per vehicle, hence the enumerative phase of the packing subproblems tend to
degenerate to almost complete enumeration.

Computational experiments reported in [53] show that the inclusion of the unrestricted
loading constraint considerably worsens the solution values of the CVRP, on average by
about 50%. A relatively smaller further increase (on average by 4%) is produced by the
constraint on sequential loading. Analogous results can be found in [47] and [93].

5 The capacitated vehicle routing problem with

three-dimensional loading constraints

The 3L-CVRP is a natural extension to three dimensions of the two-dimensional case dis-
cussed in the previous section. To our knowledge, the first contribution in this direction is
the metaheuristic algorithm proposed by Gendreau, Iori, Laporte and Martello [51], who
extended their approach [53] to a three-dimensional case arising from real-world appli-
cations. In the 3L-CVRP, for each vehicle one has to solve a three-dimensional packing
problem, which consists in finding a non-overlapping packing of a set of rectangular boxes
into a rectangular container. Figure 2 depicts a solution to a simple problem with two
vehicles and five customers. In addition to the standard weight and packing constraints
(see Section 3), other operational constraints are frequently encountered in real-world ap-
plications. We assume that the boxes can be rotated by 90◦ on the horizontal plane, while
upside-down rotations are not allowed. Some of the goods may be fragile, in which case
it is requested that no non-fragile item be placed over a fragile one. In addition, when
boxes are stacked, the supporting surface must be large enough to guarantee the stability
of the load. It is also frequently requested that the loading of each vehicle allows sequential
unloading (see Section 4). An example of three-dimensional loading for Vehicle 1 of Figure
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Figure 2: Example of the 3L-CVRP.

2 is shown in Figure 3 (taken from [51]), where it is assumed that the vehicle is unloaded
in the direction of the z axis.

For the 3L-CVRP, each of the K vehicles has a weight capacity D and a three-
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Figure 3: A possible three-dimensional loading for Vehicle 1 of Figure 2.
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dimensional rectangular loading space defined by width W , height H and length L. Each
customer i (i = 1, 2, . . . , n) requires a set ofmi three-dimensional items Iiℓ (ℓ = 1, 2, . . . , mi)
having width wiℓ, height hiℓ and length liℓ, whose total weight is di. The items have a fixed
orientation with respect to the height, but they can be rotated by 90◦ on the w-l plane. In
addition, each item Iiℓ has a fragility flag fiℓ, equal to 1 if Iiℓ is fragile, and to 0 otherwise:
no non-fragile item can be placed over a fragile item, while fragile items can be stacked
one over the other as well as over non-fragile items.

When one wants to place an item Iiℓ over other items, the corresponding supporting
surface has to be considered. Let h be the height at which the bottom of Iiℓ is placed, and
A the supporting area of the bottom of Iiℓ that lays on items having their top at height h:
the packing is feasible only if such area is no less than a given threshold percentage a of the
base of the item, i.e., if A ≥ awik lik. We finally impose that the loading of each vehicle
obeys the following sequential constraint. When customer i is visited, it must be possible
to unload all items Iik of his demand through a sequence of straight movements (one per
item) parallel to the L-edge (see again Figure 3). In other words, no item demanded by a
customer visited later may be placed over Iiℓ or between Iiℓ and the rear of the vehicle.

The 3L-CVRP consists in finding a set of at most K routes such that:

• each customer is served by exactly one vehicle;

• no vehicle carries a total weight exceeding D;

• for each vehicle there is an orthogonal three-dimensional loading of the transported
items, which satisfies the constraints described above (fixed vertical orientation,
fragility, supporting area and sequential loading);

• the solution cost is a minimum.

To our knowledge, no exact algorithm exists for this problem, and the only results are
on extensions to this case of metaheuristic algorithms developed for the 2L-CVRP, and
discussed in Section 4.

Gendreau, Iori, Laporte and Martello [51], used the general frame of their two-dimen-
sional approach [53] (see Section 4), but introduced a novel way for determining the vehicle
loads. Instead of solving a (possibly modified) 2SPP problem through iterated calls to a
greedy heuristic, they developed an “inner” Tabu search algorithm (with its own Tabu
list) to solve a modified 3SPP. Whenever a neighbor is explored by the “outer” (main)
Tabu search, and a customer is moved from one route to another one, the loadings for the
updated sets of transported items are computed by iteratively invoking the following inner
algorithm:

(i) the inner neighborhood modifies the sequences adopted for the items loading;

(ii) two greedy heuristics are attempted in order to pack the items of the new sequence
by minimizing the used length.
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Once the inner algorithm has been executed a convenient number of times, if the smallest
obtained length exceeds the vehicle length, the solution passed to the outer algorithm
is penalized accordingly. The two greedy heuristics executed at Step (ii) were obtained
by modifying two algorithms for two-dimensional packing problems: the classic bottom-left
algorithm by Baker, Coffman and Rivest [3], and the effective touching perimeter algorithm
by Lodi, Martello and Vigo [64].

Fuellerer, Doerner, Hartl and Iori [48] generalized their ACO approach [47] to the three-
dimensional case by checking loading feasibility through the above mentioned modified
heuristics from [3] and [64].

Tarantilis, Zachariadis and Kiranoudis [86] similarly adapted to the three-dimensional
case their guided Tabu search [93]. They also considered a variant of the problem in which
the size and weight of the transported items are not excessive, hence they can be manually
unloaded, so some unloading operations become less restrictive.

In Table 3 we present a computational analysis of the above metaheuristics on 27
randomly generated instances, obtained from classic CVRP instances. The loading space
was set to W = 25, H = 30 and L = 60. For each customer, the number of requested
items was uniformly randomly generated between 1 and 3. For each item, width, height
and length were uniformly randomly generated in the intervals [0.2W, 0.6W ], [0.2H, 0.6H ]
and [0.2L, 0.6L], respectively. For each instance, the number of vehicles was defined so as
to ensure the existence of at least one feasible solution. This was obtained by heuristically
solving, for each instance, a 3BPP, conveniently modified so as to take into account the
additional loading constraints of the 3L-CVRP. The threshold percentage for the minimum
supporting surface was set to 0.75. All instances are available on line at http://www.or.
deis.unibo.it/research.html.

The first two columns of Table 3 give the instance identifier and the number of cus-
tomers. For each instance and for each metaheuristic the entries give the solution value z,
the elapsed CPU time when the final solution was found (sech), and the total CPU time
(sectot). The last line of the table reports the average values over all instances. The ACO
approach improved the solution quality by 8% with respect to the original Tabu search, the
guided Tabu search by 4%. The total CPU times of the ACO and the guided Tabu search
algorithms are roughly equivalent, while the CPU time spent to obtain the incumbent
solution is larger for the former algorithm.

Additional computational experiments on the effect of the various loading constraints
(reported in the original papers) show that the removal of one or more constraints produces
an improvement of the solution value, as it can be expected, although relatively limited
(roughly ranging between 3% and 15%). Gendreau, Iori, Laporte and Martello [51] also
report computational results on challenging real-world 3L-CVRP instances provided by an
Italian furniture company.

13



Table 3: Results on the 3L-CVRP.
Tabu search [53] ACO [47] Guided Tabu Search [93]

(Pentium IV, 3 GHz) (Pentium IV, 3.2 GHz) (Pentium IV, 2.8 GHz)

I n z sech sectot z sech sectot z sech sectot

1 15 316.32 129.5 1800.0 305.35 11.2 12.0 321.47 7.8 13.2
2 15 350.58 5.3 1800.0 334.96 0.1 0.6 334.96 7.2 11.5
3 20 447.73 461.1 1800.0 409.79 88.5 121.8 430.95 352.6 540.6
4 20 448.48 181.1 1800.0 440.68 3.9 5.4 458.04 204.0 323.5
5 21 464.24 75.8 1800.0 453.19 22.7 30.9 465.79 61.3 99.6
6 21 504.46 1167.9 1800.0 501.47 17.5 18.4 507.96 768.8 1212.4
7 22 831.66 181.1 1800.0 797.47 51.4 67.4 796.61 241.5 364.8
8 22 871.77 156.1 1800.0 820.67 56.2 78.6 880.93 140.0 230.0
9 25 666.10 1468.5 1800.0 635.50 15.3 16.3 642.22 604.7 982.2
10 29 911.16 714.0 3600.0 841.12 241.2 246.7 884.74 803.1 1308.4
11 29 819.36 396.4 3600.0 821.04 172.4 199.8 873.43 308.5 522.5
12 30 651.58 268.1 3600.0 629.07 46.2 48.2 624.24 180.8 294.6
13 32 2928.34 1639.1 3600.0 2739.80 235.4 308.8 2799.74 1309.5 2193.1
14 32 1559.64 3451.6 3600.0 1472.26 623.8 642.8 1504.44 2678.1 4581.3
15 32 1452.34 2327.4 3600.0 1405.48 621.0 656.8 1415.42 1466.3 2528.3
16 35 707.85 2550.3 3600.0 698.92 12.8 14.8 698.61 2803.2 4256.5
17 40 920.87 2142.5 3600.0 870.33 11.8 14.9 872.79 1208.6 2096.0
18 44 1400.52 1452.9 3600.0 1261.07 2122.2 2209.8 1296.59 1300.9 2275.2
19 50 871.29 1822.3 7200.0 781.29 614.3 623.6 818.68 1438.4 2509.0
20 71 732.12 790.0 7200.0 611.26 3762.3 3901.0 641.57 1284.8 1940.9
21 75 1275.20 2370.3 7200.0 1124.55 5140.0 5180.6 1159.72 1704.8 2823.4
22 75 1277.94 1611.3 7200.0 1197.43 2233.6 2290.3 1245.35 1663.5 2685.6
23 75 1258.16 6725.6 7200.0 1171.77 3693.4 3727.6 1231.92 3048.2 4659.1
24 75 1307.09 6619.3 7200.0 1148.70 1762.8 1791.5 1201.96 2876.8 4854.1
25 100 1570.72 5630.9 7200.0 1436.32 8619.7 8817.1 1457.46 3432.0 5725.8
26 100 1847.95 4123.7 7200.0 1616.99 6651.2 6904.3 1711.93 3974.8 6283.1
27 100 1747.52 7127.2 7200.0 1573.50 10325.8 10483.9 1646.44 5864.2 9915.7

AVG 1042.26 2058.9 4266.7 966.66 1746.6 1793.1 997.18 1471.6 2415.9

6 The multi-pile vehicle routing problem

The multi-pile vehicle routing problem, introduced by Doerner, Fuellerer, Gronalt, Hartl
and Iori [39], arose from a real-world transportation situation faced by a company delivering
timber products. Each customer requires a mix of three-dimensional products that may
belong to two categories:

• short chipboards of various types; and

• long chipboards.
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All chipboards of the same category requested by a customer are preventively palletized,
thus producing short and long pallets, called items in the following. All items have the same
width W , equal to the vehicle width, and variable length and height. While the height can
take any value between 1 and H (the vehicle height), the lengths can only take the value
L (i.e., the vehicle length) for the long items, or the value L/3 for the short ones. The
items can be stacked one on top of the other, producing piles. The length of the vehicle
loading area is subdivided into three sectors of size L/3, and each item occupies a certain
height of one or three sectors. The loading area is accessed through a rolling shutter placed
on the side of the vehicle, so all piles can be accessed independently. The loading of each
vehicle must obey a sequential constraint: when customer i is visited, it must be possible
to unload all items of his demand without moving other items, i.e., such items must be on
top of the piles. The weight capacity of the K vehicles is inessential in this case. Each
customer i (i = 1, 2, . . . , n) requires a set of mi items Iiℓ (ℓ = 1, 2, . . . , mi) having fixed
width W , height hiℓ and length liℓ ∈ {L/3, L}. The items can be placed one over the other,
regardless of any supporting surface (see Section 5), as, in the loading phase, “holes” are
filled with bulk material. The Multi-Pile Vehicle Routing Problem (MP-VRP) is to find a
set of at most K routes such that:

• each customer is served by exactly one vehicle;

• for each vehicle there is a feasible sequential loading of the transported items;

• the solution cost is a minimum.

An example with 5 customers and 2 vehicles is depicted in Figure 4. A possible loading
for Vehicle 1 is shown in Figure 5, where the dashed areas represent bulk material.

Doerner, Fuellerer, Gronalt, Hartl and Iori [39] proposed two metaheuristic approaches
for the MP-VRP: a Tabu search algorithm and an ACO algorithm, conceptually analogous
to those presented by Gendreau, Iori, Laporte and Martello [53, 52] and by Fuellerer,
Doerner, Hartl and Iori [47], respectively.

Tricoire, Doerner, Hartl and Iori [88] presented a combination of Variable Neighborhood
Search (VNS) and branch-and-cut for solving the problem, either exactly or heuristically.
In the VNS phase the neighborhood is obtained through cross-exchange (see Taillard,
Badeau, Gendreau, Guertin and Potvin [85]). The branch-and-cut algorithm is based on
the classical two-index model of the CVRP, tightened by families of valid inequalities (see
Lysgaard, Letchford and Eglese [66]). The overall resulting algorithm iteratively solves
the subproblem of finding a feasible loading (if any) for a single vehicle and a given set
of items. Lower bounds for such subproblem are obtained by relaxing it to the parallel
processor scheduling problem known as P||Cmax, and computing the lower bounds proposed
by Hochbaum and Shmoys [56] and by Dell’Amico and Martello [37], while the exact
solution is obtained through dynamic programming.

Table 4 computationally compares the three metaheuristics above on 21 randomly
generated instances obtained from the classic CVRP instances proposed by Christofides,
Mingozzi and Toth [21], and available on line at http://www.univie.ac.at/bwl/prod/
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Figure 5: A feasible loading for Vehicle 1 of Figure 4.

research/VRPandBPP/. The entries give the same information as for Table 3. The results
show a clear superiority of the VNS approach. The exact approach of [88] could solve to
optimality instances with up to 38 customers. Results on the heuristic solution of real-
world instances are also reported in [39] and in [88], showing, in this case too, a clear
superiority of the VNS approach.
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Table 4: Results on the MP-VRP.
Tabu search [39] ACO [39] VNS [88]

(Pentium IV, 2.6 GHz) (Pentium IV, 2.6 GHz) (Pentium IV, 3.2 GHz)

I n z sech sectot z sech sectot z sech sectot

1 50 594.06 12.4 2966.9 594.56 4.9 12.3 591.80 90 < 1800
2 50 620.91 312.7 2229.2 622.82 5.9 11.5 640.07 76 < 1800
3 50 636.95 1261.8 1809.0 638.97 4.9 11.4 634.46 67 < 1800
4 75 990.51 119.1 2599.8 981.07 31.8 73.7 986.12 408 < 1800
5 75 912.62 3409.6 3594.9 915.34 30.6 72.7 901.01 283 < 1800
6 75 920.61 336.6 2694.8 917.84 29.6 72.4 892.11 409 < 1800
7 100 1209.46 3481.8 4885.6 1208.72 144.6 364.3 1197.44 402 < 1800
8 100 1247.54 2740.1 3585.3 1242.87 139.4 349.2 1222.37 468 < 1800
9 100 1196.15 3576.6 3994.0 1187.49 130.8 366.8 1162.49 604 < 1800

10 150 1672.70 2660.6 7200.0 1660.55 1599.5 3978.3 1635.78 470 < 1800
11 150 1603.09 4925.4 7200.0 1575.28 1513.0 3998.5 1562.83 470 < 1800
12 150 1592.68 4902.5 7092.1 1583.65 1269.7 3940.5 1547.90 563 < 1800
13 199 2107.49 1717.4 7200.1 2085.68 5501.5 7200.0 2049.25 658 < 1800
14 199 1879.00 6611.1 7200.0 1863.42 5416.6 7200.0 1839.54 925 < 1800
15 199 2042.28 4282.6 7200.0 1999.74 5090.5 7200.0 1965.85 506 < 1800
16 120 2292.03 522.9 6406.4 2269.56 837.0 1466.8 2254.28 739 < 1800
17 120 2122.34 1784.2 7200.0 2107.66 719.5 1327.1 2102.64 606 < 1800
18 120 2237.86 2855.0 4927.7 2195.66 666.5 1368.7 2183.12 794 < 1800
19 100 1154.31 1944.3 5918.0 1153.45 150.2 302.9 1136.61 345 < 1800
20 100 1237.43 148.6 4088.1 1248.83 157.5 303.5 1228.61 463 < 1800
21 100 1183.18 3859.6 4052.3 1182.92 109.8 274.8 1165.13 630 < 1800

AVG 1402.53 2450.7 4954.5 1392.19 1121.6 1899.8 1376.16 475

7 Traveling salesman problems with pickup&delivery

and loading constraints

In the Traveling Salesman Problem with Pickup&Delivery (TSPPD) a single vehicle must
visit a set of customers, each associated with an origin location where some items must be
picked up, and a destination location where such items must be delivered. The problem
consists of determining a shortest Hamiltonian cycle through all locations while ensuring
that the pickup of any given request is performed before the corresponding delivery.

Generalization of this problem in which loading aspects play a relevant role are re-
viewed in the next sections. The reader interested in general routing problems with
pickup&delivery is referred to the surveys by Berbeglia, Cordeau, Gribkovskaia and La-
porte [9] (who also propose a three-field classification) and Parragh, Doerner and Hartl
[75, 76], as well as to the branch-and-cut algorithm for the TSPPD recently presented by
Dumitrescu, Ropke, Cordeau and Laporte [40].
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7.1 The traveling salesman problem with pickup&delivery and

LIFO loading

The variant of the TSPPD in which both pickups and deliveries must be performed in Last-
In First-Out (LIFO) order is known as the TSPPD with LIFO Loading (TSPPDL). The
problem naturally arises in the routing of vehicles that have a single access point (usually
the rear) for loading and unloading the transported items. Avoiding load rearrangements
is particularly relevant when rear-loading vehicles transport large, heavy or fragile items,
or hazardous materials. Another application arising in industrial contexts is the routing
of automated guided vehicles (AGVs) which typically use a stack to move items between
different workstations.

To the best of our knowledge, the first contribution on the TSPPDL is the one by
Ladany and Mehrez [61], who studied a real-world delivery problem arising in the trans-
portation of milk containers. A similar problem was later investigated by Pacheco [74],
who proposed a heuristic algorithm based on classical TSP neighboring procedures. The
TSPPDL was also recently studied by Carrabs, Cordeau and Laporte [19], who proposed
new local search operators and a VNS heuristic, reporting results on instances with up to
375 customers.

Coming to exact approaches, a branch-and-bound algorithm was introduced by Carrabs,
Cerulli and Cordeau [18]. The algorithm makes use of additive lower bounds produced
by the classical TSP relaxations based on assignment problems and shortest spanning r-
arborescences. The algorithm could solve to optimality many instances with 15 customers
and some instances with 21 customers. Slightly better results were obtained by Cordeau,
Iori, Laporte and Salazar González [28] through a branch-and-cut algorithm based on
families of valid inequalities and on tailored branching strategies.

7.2 The traveling salesman problem with pickup&delivery and

FIFO loading

The variant of the TSPPD in which both pickups and deliveries must be performed in
First-In First-Out (FIFO) order is known as the TSPPD with FIFO Loading (TSPPDF).
The TSPPDF arises, for example, in fair dial-a-ride systems, i.e., when the passengers
resent another passenger being picked up after them but dropped off before them. Other
potential industrial applications may arise in the management of automatic guided vehicles
that load items on one end and unload them at the other end.

The TSPPDF was recently introduced by Erdogan, Cordeau and Laporte [42], who pro-
posed an integer linear programming (ILP) formulation of the problem with a polynomial
number of variables and constraints. Using CPLEX branch-and-bound, they were able to
solve to optimality instances with 12 customers within 4 CPU hours. For other instances,
involving 37 or more customers, even the linear programming relaxation of the problem
could not be solved within the time limit, hence local search heuristics were adopted.

Carrabs, Cerulli and Cordeau [18] extended their additive branch-and-bound algorithm
to the FIFO case, solving most instances with up to 13 customers and some instances
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with 15, 17 and 19 customers. Their algorithm strongly benefits from elimination rules
that gradually remove from the graph arcs that are incompatible with previous branching
decisions.

A branch-and-cut algorithm for the TSPPDF was recently proposed by Cordeau, Del-
l’Amico and Iori [26]. The algorithm, which makes use of valid inequalities, specially
tailored branching strategies and fathoming criteria, could solve to optimality instances
involving up to 25 customers.

7.3 The double traveling salesman problem with multiple stacks

The double traveling salesman problem with multiple stacks (DTSPMS) is a pickup&delivery
problem in which all pickups must be completed before any delivery can be made. The
problem originates from a real-life application where a rear-loaded container, structured in
a number of stacks, is used to transport pallets from a set of pickup customers to a set of
delivery customers. Pickups and deliveries are performed in two separate routes. The prob-
lem is to find the two routes and the stacking plan that minimize the total transportation
costs.

The problem was introduced by Petersen and Madsen [78], who presented an ILP model
and simple metaheuristic algorithms. A VNS algorithm for the DTSPMS was proposed by
Felipe, Ortuño and Tirado [46]. Lusby, Larsen, Ehrgott and Ryan [65] presented an exact
algorithm, which generates the k best solutions for each of the two separate routes, and
looks for the lowest cost pair (if any) that allows a feasible stacking plan. Petersen, Archetti
and Speranza [77] proposed several branch-and-cut algorithms, one of which, based on the
separation of infeasible path constraints, clearly outperforms the others.

8 Miscellaneous

The problems we have considered so far consist of a CVRP with the addition of constraints
on the loading. Other variants of routing problems, especially arising from industrial
contexts, include a number of additional real-world constraints, among which loading is
present at a certain extent. In the next sections we briefly comment on recent results
in such area, restricting ourselves to the cases in which the loading aspect is particularly
relevant.

8.1 Vehicle routing problems with multi-compartment loading

Routing-loading problems arising in the shipping industry and in the land delivery of
petroleum products frequently impose the transportation of various products in separate
compartments or tanks. It is usually imposed, especially in the case of land delivery, that,
whenever a client is visited, the entire contents of the requested tanks are emptied.

In its basic version, the land delivery problem, known as Petrol Station Replenishment
Problem (PSRP) (see Cornillier, Boctor, Laporte and Renaud [31]) calls for the delivery of
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petroleum products to petrol stations by means of an heterogeneous fleet of compartmented
tank vehicles. The objective is to maximize the total profit, which is given by the sales
revenue minus the routing cost.

Already in the early Eighties, Brown and Graves [16] developed an automated, real-
time dispatch system for the daily operations at Chevron USA, involving dispatching from
more than 80 bulk terminals on a fleet of more than 300 vehicles in approximately 2600
loads per day. They introduced an integer programming model and a heuristic algorithm
based on a network structure representing the matching of orders and vehicles. Brown,
Ellis, Graves and Ronen [14] later derived another real-time dispatch system for Mobil Oil
Corporation. A study to redesign the distribution network in the Netherlands of a large
oil company was presented by van der Bruggen and R. Gruson and M. Salomon” [89]. The
operational environments existing in dispatching petroleum products, and the operations
research tools used by oil companies up to the mid Nineties were examined by Rosen [83].

Avella, Boccia and Sforza [2] considered the case of a company that delivers different
types of fuel from a single depot to a set of fuel pumps. They formulated the problem
through set partitioning, and proposed an exact branch-and-price algorithm combined with
a fast heuristic used to produce an initial feasible solution and a starting set of columns.

Cornillier, Boctor, Laporte and Renaud [32] address the basic version of the PSRP
by means of an exact algorithm, tested on randomly generated instances and on a real-
world case arising in Eastern Quebec. The algorithm is based on the decomposition of
the original problem into a routing component and a loading component. The routing
component is modeled through a classical set partitioning formulation, solved through
column generation, while the feasibility of each route is tested through the solution of an
associated loading subproblem. The computational results indicate the effectiveness of the
algorithm, which the authors report to be regularly used by the transportation company
that provided the test case. The same authors addressed two generalizations of the PSRP:

• for the case where the deliveries of petrol products to the stations can be postponed
or anticipated, [31] gives a multi-phase heuristic algorithm, followed by two local
search procedures. For each potential route, the loading problem is solved by a
greedy heuristic followed by a simple improvement phase;

• for the case where the deliveries to the stations have to obey given time windows,
[33] proposes two constructive heuristics based on a pre-selection of given subsets of
arcs and/or routes and on the decomposition of the geographical space into sectors.

Fagerholt and Christiansen [43] studied a multi-ship pickup&delivery problem faced by
a producer of mineral fertilizers that adopts ships characterized by a flexible way of par-
titioning the loading space in compartments. They developed a set partitioning approach
consisting of two phases. In the first phase, a restricted number of feasible candidate
routes for each ship is heuristically generated, while the second phase produces an overall
feasible solution through set partitioning. A similar set partitioning approach had been
used by Brown, Goodman and Wood [15] to determine the annual planning schedule for
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naval combatants of the Atlantic fleet so as to optimize the fleet combat readiness during
peacetime.

8.2 Other routing and loading problems

Malapert, Guerét, Jussien, Langevin and L.-M. Rousseau [67] considered a variant of the
2L-CVRP in which additional pickup&delivery constraints (see Section 2) are present, and
proposed a Constraint Programming model, based on a scheduling approach to handle the
loading aspects.

Three-dimensional container loading problems with multi-drop constraints were inves-
tigated by Christensen and Rousøe [20], who proposed a heuristic algorithm based on a
tree search framework.

Moura and Oliveira [73] addressed the issue of integrating the CVRP with time windows
and three-dimensional container loading, proposing a number of constructive heuristics.
Moura [72] modeled the same problem as a multi-objective problem in which the multi-
objective function space has three dimensions (number of vehicles, total traveled distance
and volume utilization), and presented a genetic algorithm for its solution.

A special class of CVRP with pickup&delivery, delivery due dates, three-dimensional
loading and other constraints, arising in an industrial context, was treated by Tadei, Per-
boli and Della Croce [84]. The considered problem is that of delivering cars and commer-
cial vehicles using ad hoc trucks (the so-called auto-carrier transportation problem). The
problem was solved through a three-step heuristic procedure strongly based on an integer
programming formulation.

Xu, Chen, Rajagopal and Arunapuram [92] considered a real-world logistics problem
involving multiple vehicle types, pickup&delivery, time windows, loading and unloading
operations and drivers work rules. They proposed a column generation approach based on
a set partitioning formulation.

Battarra, Erdogan, Laporte and Vigo [8] recently considered a problem in which a
single, rear loaded vehicle has to visit a set of clients, each of which may require a cer-
tain quantity of commodity from the depot (delivery commodity) and supply a certain
quantity of commodity to the depot (pick-up commodity). Differently from the CVRP
with backhauls (see Section 2), each client must be visited only once, implying that the
pickup commodities may obstruct the unloading of the delivery commodities. In such a
case, the currently transported goods may have to be rearranged, thus increasing the over-
all transportation cost. The authors called this problem the Traveling Salesman Problem
with Pickup&Delivery and Handling Costs, and proposed heuristics and branch-and-cut
algorithms in which the handling decisions are restricted to three simplified policies.

9 Conclusions and open perspectives

We have presented a review on the integrated (exact or heuristic) solution of vehicle routing
and vehicle loading. This recent and promising research areas opens new possibilities of
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solving real world problems in transportation. As it also arose from the comments from
the discussants, further developments concern

• evaluation of classical vehicle routing situations (e.g., allowing split deliveries);

• heterogeneous vehicle fleets;

• addition of special loading requirements (e.g., issues related to the center of gravity
of the load);

• use of column generation techniques for effectively determining exact solutions;

• study of different objective functions reflecting special practical needs, such as routes
with similar lengths or loads;

• integration of these models and algorithms with location issues.
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pickup and delivery traveling salesman problem with lifo loading. Networks, 55:46–59,
2010.

[29] J.-F. Cordeau and G. Laporte. Tabu search heuristics for the vehicle routing prob-
lem. In C. Rego and B. Alidaee, editors, Metaheuristic Optimization via Memory and
Evolution: Tabu Search and Scatter Search, pages 145–163. Kluwer, Boston, 2004.

[30] J.-F. Cordeau, G. Laporte, M.W.P. Savelsbergh, and D. Vigo. Vehicle routing. In
C. Barnhart and G. Laporte, editors, Transportation, volume 14 of Handbooks in
Operations Research and Management Science, pages 367–428. Elsevier, Amsterdam.

[31] F. Cornillier, F.F. Boctor, G. Laporte, and J. Renaud. An exact algorithm for the
petrol station replenishment problem. Journal of the Operational Research Society,
59:607–615, 2008.

[32] F. Cornillier, F.F. Boctor, G. Laporte, and J. Renaud. A heuristic for the multi-period
petrol station replenishment problem. European Journal of Operational Research,
191:295–305, 2008.

24



[33] F. Cornillier, F.F. Boctor, G. Laporte, and J. Renaud. The petrol station replenish-
ment problem with time windows. Computers & Operations Research, 36:919–935,
2009.

[34] T.G. Crainic, G. Perboli, and R. Tadei. Extreme point-based heuristics for three-
dimensional bin packing. INFORMS Journal on Computing, 20:368–384, 2008.

[35] C. D’Ambrosio, A. Lodi, and S. Martello. Combinatorial traveling salesman problem
algorithms. In J.J. Cochran, editor, Wiley Encyclopedia of Operations Research and
Management Science. Wiley, Chichester, 2010. To appear.

[36] G.B. Dantzig and J.H. Ramser. The truck dispatching problem. Management Science,
6:80, 1959.

[37] M. Dell’Amico and S. Martello. Optimal scheduling of tasks on identical parallel
processors. ORSA Journal on Computing, 7:191–200, 1995.

[38] E. den Boef, J. Korst, S. Martello, D. Pisinger, and D. Vigo. Erratum to ”the three-
dimensional bin packing problem”: Robot-packable and orthogonal variants of packing
problems. Operations Research, 53:735–736, 2005.

[39] K. Doerner, G. Fuellerer, M. Gronalt, R. Hartl, and M. Iori. Metaheuristics for vehicle
routing problems with loading constraints. Networks, 49:294–307, 2007.

[40] I. Dumitrescu, S. Ropke, J.-F. Cordeau, and G. Laporte. The traveling salesman
problem with pickup and delivery: polyhedral results and a branch-and-cut algorithm.
Mathematical Programming, Series A, 121:269–305, 2010.

[41] H. Dyckhoff and U. Finke. Cutting and Packing in Production and Distribution.
Physica-Verlag, Heidelberg, 1992.

[42] G. Erdogan, J.-F. Cordeau, and G. Laporte. The pickup and delivery traveling
salesman problem with first-in-first-out loading. Computers & Operations Research,
36:1800–1808, 2009.

[43] K. Fagerholt and M. Christiansen. A combined ship scheduling and allocation problem.
Journal of the Operational Research Society, 51:834–842, 2000.

[44] O. Faroe, D. Pisinger, and M. Zachariasen. Guided local search for the three-
dimensional bin packing problem. INFORMS Journal on Computing, 15:267–283,
2003.

[45] S.P. Fekete, J. Schepers, and J.C. van der Veen. An exact algorithm for higher-
dimensional orthogonal packing. Operations Research, 55:569–587, 2007.

[46] A. Felipe, M.T. Ortuño, and G. Tirado. New neighborhood structures for the double
traveling salesman problem with multiple stacks. TOP, 17:190–213, 2009.

25



[47] G. Fuellerer, K. Doerner, R. Hartl, and M. Iori. Ant colony optimization for the
two-dimensional loading vehicle routing problem. Computers & Operations Research,
36:655–673, 2009.

[48] G. Fuellerer, K. Doerner, R. Hartl, and M. Iori. Metaheuristics for vehicle routing
problems with three-dimensional loading constraints. European Journal of Operational
Research, 201:751, 2010.

[49] R. Fukasawa, H. Longo, J. Lysgaard, M. Poggi de Arag̃ao, M. Reis, Uchoa. E., and
R.F. Werneck. Robust branch-and-cut-and-price for the capacitated vehicle routing
problem. Mathematical Programming, 106:491–511, 2006.

[50] M. Gendreau, A. Hertz, and Laporte G. A tabu search heuristic for the vehicle routing
problem. Management Science, 40:1276–1290, 1994.

[51] M. Gendreau, M. Iori, G. Laporte, and S. Martello. A tabu search algorithm for a
routing and container loading problem. Transportation Science, 40:342–350, 2006.

[52] M. Gendreau, M. Iori, G. Laporte, and S. Martello. Erratum: A tabu search heuristic
for the vehicle routing problem with two-dimensional loading constraints. Networks,
51:153–153, 2007.

[53] M. Gendreau, M. Iori, G. Laporte, and S. Martello. A tabu search heuristic for the
vehicle routing problem with two-dimensional loading constraints. Networks, 51:4–18,
2007.

[54] B. Golden, S. Raghavan, and E. Wasil (eds.). The Vehicle Routing Problem: Latest
Advances And New Challenges, volume 43 of Operations Research/computer Science
Interfaces Series. Springer, Berlin, 2008.

[55] G. Gutin and A.P. Punnen (eds.). The Traveling Salesman and its Variations. Kluwer,
Dordrecht, 2002.

[56] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for schedul-
ing problems: practical and theoretical results. Journal of ACM, 34:144–162, 1987.

[57] M. Iori. Metaheuristic algorithms for combinatorial optimization problems. 4OR,
3:163–166, 2005.

[58] M. Iori, S. Martello, and M. Monaci. Metaheuristic algorithms for the strip packing
problem. In P. Pardalos and V. Korotkich, editors, Optimization and Industry: New
Frontiers, pages 159–179. Kluwer, Boston, 2003.
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