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Abstract

In the present work, the tensionless contact problem of an Euler-Bernoulli

beam of finite length resting on a two-parameter Pasternak-type foundation

is investigated. Owing to the tensionless character of the contact, the beam

may lift-off the foundation and the point where contact ceases and detach-

ment begins, named contact locus, needs be assessed. In this situation, a

one-dimensional free boundary problem is dealt with. An extra condition,

generally in the form of a homogeneous second-order equation in the displace-

ment and its derivatives, is demanded to set the contact locus and it gives the

problem its nonlinear feature. Conversely, the loading and the beam length

may be such that the beam rests entirely supported on the foundation, which

situation is governed by a classical linear boundary value problem. In this

work, the contact evolution is discussed for a continuously varying loading

condition, starting from a symmetric layout and at a given beam length, un-

til overturning is eventually reached. In particular, stability is numerically
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assessed through the energy criterion, which is shown to stand for the free

boundary situation as well. At overturning, a descending pathway in the

system energy appears and stability loss is confirmed.

1. Introduction

The problem of a beam or plate resting on an elastic foundation has been

extensively investigated in the literature, on account of its implications with

the problem of soil-structure interaction [1, 2]. In the vast majority of cases,

beam-foundation interaction is modeled through a bilateral constraint, in an

attempt to warrant the problem with a linear character. This claim is usu-

ally supported on the ground of the beam weight being enough to provide

full contact throughout or of the detached region extension being negligible

with respect to the contact region (although this does not necessarily entail

that its overall effect is indeed negligible). Such claims may be valid in some

situations, yet they generally do not stand. In more recent times, the ten-

sionless nature of the contact has been put in the spotlight as a mechanism

through which a substantial reduction of the stress in the beam is attained in

a natural process [3, 4]. This is especially interesting for design purposes in

an earthquake situation [5]. Conversely, beam detachment is a particularly

undesired event in the design of railway tracks, as it may lead to derailing

[6]. From a mathematical standpoint, tensionless contact brings along non-

linearity. Indeed, the governing equations for the beam in contact with and

the beam detached from the foundation must be enforced on the relevant

regions, which are a problem unknown. On this respect, a free boundary

problem (FBP), as opposed to a boundary value problem (BVP), is dealt
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with. In particular, for special loading and beam length conditions, the non-

contact region, named lift-off region, may vanish. Then, the FBP reduces

to a BVP, which is moreover linear. From an operational standpoint, the

FBP is recast in terms of a (linear) complementarity problem, i.e. it involves

a linear inequality which needs be satisfied on the domain of interest. The

usual solution procedure demands setting up a variational formulation on

the full domain and then letting a sequence of properly chosen function can-

didates approximate the solution to the desired degree of accuracy [7]. The

situation is much more affordable in the one-dimensional case. Then, it is of-

ten convenient to split the domain in two regions (in this framework named

the contact and the lift-off region) and directly operate with the regions’

boundary (here the contact locus). To this aim, the contact locus needs be

set through some extra condition other than the usual boundary conditions,

which is named contact locus equation, to be obtained somehow. To retain

compatibility with the complementarity problem, one way to obtain the con-

tact locus equation is to set up a variational argument on the action integral,

as opposed to the heuristic approach which demands arbitrarily enforcing

some property of the contact locus [8]. In so doing, the Erdman-Weierstrass

or corner condition provides the contact locus equation [9]. The problem

solution is thus an action integral (or free energy) critical point. However, it

is remarked that despite the fact that the free energy is the sum of quadratic

functionals (in the contact, lift-off and free soil regions) which are, individ-

ually, positive-definite, the solution point may not be a minimum, owing to

the role of the free boundary.

In this paper, the tensionless contact for an Euler–Bernoulli beam on
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an elastic foundation is studied under a point force (whose magnitude is ir-

relevant [9]) located at midspan and a continuously increasing point couple

located at either of the beam ends, which brings the system off the initial

symmetric layout. The foundation is a two-parameter Pasternak soil. As

well-known, the simplest soil model was proposed by Winkler [10], which

represented the foundation through a series of closely-spaced independent

bilateral elastic springs. According to this assumption, the reacting pressure

at each point of the soil surface is directly proportional to the deflection

through a material constant (Winkler modulus), thus endowing the soil be-

havior with an entirely local character. In order to overcome the limits of the

Winkler assumption and in view of obtaining a more accurate description of

the soil-structure interaction, many other soil models were proposed. For in-

stance, the soil can be modeled as a homogeneous isotropic elastic half space.

Since the half space yields a nonlocal response, the contact problem of an

elastic structure resting on a half space is governed by an integro-differential

equation, which is difficult to deal with. Therefore, soil models endowed with

a weakly nonlocal (e.g. gradient-type) behavior are generally preferred when

studying soil-structure interaction problems [11].

In order to introduce some non-locality in the Winkler model, Wieghardt

[12] proposed an integral dependence of the soil displacement at a point upon

the contact pressure on the whole contact region through an exponentially

decaying kernel. When the soil model is recast in terms of the contact pres-

sure, it appears that the latter is related to the deflection and its second

derivative at a point, i.e. it is a weakly nonlocal model. Pasternak [13]

proposed to model the foundation as an elastic spring layer surmounted by
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Figure 1: Contact scenarios: I force within the contact interval; II force within either of

two lift-off intervals; III force within the single lift-off interval

an elastic incompressible shear-deformable membrane. At the limiting case

of vanishing shear modulus, the Winkler model is retrieved. The Pasternak

model is governed by an ODE which is analogous to that appearing in the

Wieghardt model [14].

In the present work, different contact scenarios are encountered until over-

turning is eventually reached, namely (I) the force rests within the contact

interval, (II) the force rests outside of it, in either of the two lift-off regions,

(III) the force stands within the only lift-off region, the remaining part of the

beam being supported by the foundation (Fig.1). Mathematically, scenarios

I and II involve a FBP while scenario III is a FBP with a partially fixed

boundary. Solutions are numerically checked against the energy criterion for

stability. The condition on the verge of overturning is also investigated as

well as the case of a short beam.
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The paper is organized as follows: Sec.2 sets the problem governing equa-

tions and boundary conditions (BCs); scenarios I to III are discussed in

Secs.2.1–2.3 and Sec.2.4 illustrates the case of a short beam initially fully

supported by the foundation. Finally, conclusions are drawn in Sec.3.

2. The Free Boundary Problem

Let us consider a rectilinear Euler–Bernoulli beam resting on a tensionless

two-parameter elastic soil of the Pasternak type. The beam is subjected to a

loading distribution q, positive downwards, which is equilibrated by a contact

pressure distribution p, that is a problem unknown. The latter, according to

the Pasternak model, is given by [2]

p(x) = kw − kG

d2w

dxs
, (1)

where k is the soil reaction modulus (i.e. Winkler modulus) and kG is a

measure of the gradient-type nonlocal response. The Pasternak response

boils down to the Winkler reaction pressure taking kG = 0. Owing to the

tensionless character of the foundation, it must be

p(x) > 0, x ∈ [X1, X2], (2)

being [X1, X2] the contact region, and p(x) = 0 otherwise. In the general case,

the contact pattern is unknown, and the contact region may be composed of

several intervals of the form (2), in the so called discontinuous contact sce-

nario. Here, it is assumed that a single contact region exists, which situation

amounts to a continuous contact scenario (Fig.2). The problem is entirely

recast in terms of the displacement w, which is common between the beam
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Figure 2: Force within the contact region and lift-off on either sides of it (dimensionless

quantities)

and the soil in the contact region (superscript c). In the lift-off region, that

is the region where contact no longer holds, two displacement functions are

introduced, namely wl for the beam and ws for the soil, being

ws > wl, (3)

to avoid interpenetration. Determining the boundary of the contact region,

i.e. the contact loci, requires solving a second degree homogeneous form

in the displacement and its derivatives [9]. In this respect, the problem is

nonlinear, even within a small displacement and deformation assumption.

In fact, multiple candidates for the contact loci are found, which must be

checked against conditions (2, 3).

Introducing the static wavelength β−1

β4 =
k

4EI
, (4)

the following dimensionless quantities are let:

u = βw, ξ = βx displacement and abscissa (origin at the point force),

σ = βq/k, π = βp/k applied loading and contact pressure,
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Ξ1 = βX1, Ξ2 = βX2 left and right contact locus position,

l1 = βL1, l2 = βL2 left and right beam end position.

The governing equations are

1

4
u4 = σ − π, π = u − αu2, ξ ∈ [Ξ1, Ξ2], (5a)

1

4
u4 = σl, ξ ∈ (l1, Ξ1) ∪ (Ξ2, l2) (5b)

− αu2 + u = σs, ξ ∈ (−∞, Ξ1) ∪ (Ξ2, +∞), (5c)

respectively Eqs.(4,7,9) of [9]. Here, the n-th derivative with respect to ξ is

denoted by the subscript n and α = β2kG/k. Besides, superscript c has been

omitted in (5a) and it is assumed Ξ1 > l1, Ξ2 < l2 with l2 − l1 = l = βL

beam total (dimensionless) length. The soil is taken to extend unbounded

on either side of the beam, so that it attains zero displacement at infinity.

As determined through variational arguments [8, 9], the BCs at the contact

locus are

uc = ul = us, uc

1 = ul

1 = us

1, uc

2 = ul

2, uc

3 = ul

3. (6)

As explained in [9] and unlike the general case, the contact locus equation for

the Pasternak soil may be expressed as the product of two linear conditions

and hereinafter only Kerr’s condition is considered, i.e. uc

1 = us

1.

When the beam length is such that the contact locus falls outside the

beam span, for instance Ξ2 > l2, then contact extends up to l2 and it is no

longer necessary to determine Ξ2. A new set of BCs is enforced at l2, namely

uc = us, uc

1 = ul

1, uc

2 = 0,
1

4
uc

3 = α(uc

1 − us

1). (7)
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Figure 3: Deformed layout for the the beam-soil system: scenario I (α = 2.5, f0 = 1)

The last equation of (7) shows the well-known result that a concentrated

force develops at the beam end supported by a Pasternak soil [11]. For a

tensionless soil, the extra condition

uc

1 − us

1 > 0 (8)

must be enforced along with (2). The governing system of ODEs (5), with

the BCs (6) or (7), is hereinafter solved when the loading is given by a unit

point force at the beam midspan, f0 = 1, together with a point couple at the

beam left end c, positive when counterclockwise (Fig.2). Focus is set upon

determining the limiting values of the end couple which trigger the system

into a different scenario, i.e. from lift-off on either sides to soil support at

one end until, eventually, overturning.

2.1. Point force within the contact region

Let us consider the case of a beam subjected to a unit point force acting

at midspan with no end couple first. This symmetric layout is the first of a
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whole class characterized by the fact that the applied point force falls within

the contact interval. By increasing (in absolute value terms) the applied end

couple c, the contact interval drifts away from midspan towards the unloaded

end until the point force rests exactly at the left contact locus. We shall refer

to this class of loading patterns as scenario I and to cI as the limiting couple

which sets the point force at Ξ1. Besides, within scenario I, the rest of

the beam may be either supported by the soil or lifting off it according to

its length l. Indeed, by solving Eqs.(5) together with the BCs (6) in the

symmetric layout, the contact loci Ξ1 = Ξ2 = 0.84239465586 are found (it

is taken α = 2.5 throughout). Assuming l > 2Ξ2, lift-off takes place and

this condition is represented in Fig.3. Conversely, beams of length l < 2Ξ2

are completely supported by the foundation, and no lift off occurs. Then,

the solution must be rejected and Eqs.(5) solved with the BCs (7). In this

circumstance, point reaction forces develop at the contact boundary. This

situation is addressed at Sec.2.4.

2.2. Point force within either of the two lift-off regions

When the end couple c is further decreased, i.e. c < cI , the contact region

drifts away from under the unit force. The latter stands now applied in the

lift-off region and it conveys negative work. This contact situation is referred

to as scenario II so that cI is the limiting couple between scenario I and II.

Mathematically, cI is characterized by the requirement that Ξ1 = 0 in either

scenario I or scenario II. Solving Eqs.(5) under the BCs (6) and enforcing

Ξ1 = 0, the pair (cI , Ξ2) is obtained. In particular, Fig.4 plots the solution

curves for the last of the BCs (6) evaluated at the left and right contact

loci, that is at Ξ1 = 0 and Ξ2: intersections of such curves lend the solution
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Figure 4: Solution curves for the last of the BCs (6) in terms of c and Ξ2, having set

Ξ1 = 0 (α = 2.5, f0 = 1)

Figure 5: Solution curves for the last of the BCs (6) in terms of contact loci Ξ1, Ξ2 and

energy level curves
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points. The plot is here drawn in terms of the end couple cI versus the right

contact locus Ξ2. For α = 2.5, it is cI = −0.29021719 and Ξ2 = 1.04540974

(it is remarked that couples are positive counterclockwise). As a back-check,

the same solution curves are drawn in Fig.5 for c = cI in terms of contact loci

positions Ξ1, Ξ2. It is easily seen that, as expected, intersection takes place

at Ξ1 = 0. As already remarked, the contact locus equation is determined

through a variational argument so that it makes the free energy Π stationary.

In fact, superposed onto the solution curves are the energy level curves, which

show that the alleged solution is indeed a minimum. It is observed that the

same extremum property does not hold in the (c, Ξ2) plane. Furthermore,

the solution is acceptable inasmuch as l2 ≥ 1.04540974, for only then lift-

off may take place. The deformed layout is presented in Fig.6 along with

slope, dimensionless bending moment, shearing force and (negative) contact

pressure distribution. As expected, a linearly varying slope in the left lift-

off beam region is retrieved, due to the fact that only a constant bending

moment acts at the left end. The corresponding value of the shearing force is

zero. It is worth noticing that the shearing force jumps in correspondence of

the left contact locus Ξ1 (i.e. at ξ =0) owing to the presence of the point force

f0. The reacting pressure π occurring inside the contact region is positive

and thereby acceptable; besides, it exhibits a monotonic decreasing trend

from left to right.

2.3. Overturning condition

Decreasing the end couple c beyond cI causes the contact region to move

to the right, in an attempt to increase the contact pressure moment resul-

tant. This is possible as long as the beam is long enough. Eventually, the
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Figure 6: Beam and soil deflection, beam slope, dimensionless bending moment, shearing

force and (negative) contact pressure distribution (i.e. −π) at the boundary between

scenario I and II (c = cI)
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Figure 7: c vs. Ξ1 for a beam whose right end rests supported on the foundation; two

energy plots Π vs. Ξ1 are also given: at Ξ1 = l2 a descending pathway in the energy

appears.
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Figure 8: Beam on the verge of overturning (cIII = −f0l2)
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beam right end is reached such that Ξ2 = l2. This situation is addressed as

scenario III. Therefore, for l2 < 1.04540974, scenario III follows directly from

scenario I and this happens before c attains the value cI . Scenario III solution

candidates are obtained solving Eqs.(5) with BCs (6) at the single contact

locus Ξ1 and with BCs (7) at the right beam end l2. Further decrease of the

end couple leads to a narrowing of the contact region, i.e. Ξ1 moves towards

l2. Fig.7 plots the end couple c < cI against the contact locus position Ξ1, as

well as the right end position l2. The curve is obtained evaluating the last of

the BCs (6) for Ξ2 = l2. It is observed that the curve is monotonic decreasing

and that a solution is always possible for any Ξ1 ≤ Ξ2. However, it rests to

be determined whether such solutions are also stable or rather overturning

sets in at some point. This is accomplished evaluating the free energy as a

function of Ξ1. It is found that the free energy always exhibits a minimum

along the solution curve provided that Ξ1 < l2. In particular, the limiting

case Ξ1 = l2 corresponds to the onset of overturning for the beam and the

corresponding end couple cIII is a minimum beyond which equilibrium no

longer stands. This is confirmed by the appearance of a descending pathway

in the energy curve, corresponding to increasing Ξ1. The beam and soil de-

formed layouts are presented in Fig.8 together with slope, bending moment,

shearing force and contact pressure. As expected, within a linear theory of

deformation, the minimum end couple cIII equals the applied force times the

beam length, i.e. cIII = −f0l = −1.04540973965. Then, it is found that for

a beam on the verge of overturning resting on a Pasternak soil, the contact

region degenerates into a single point and the contact pressure distribution

vanishes. Thus, equilibrium is granted through the concentrated reaction
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Figure 9: Free energy Π (left axis) and contact locus position Ξ1 (right axis, dotted curve)

vs. c for a fully supported (dash) and a partially lifting-off (solid) beam (l1 = l2 = 0.5)

which develops at the contact region right boundary, that is where slope dis-

continuity is met. That the contact pressure distribution role in equilibrating

the system evaporates on the verge of overturning is also proved by the fact

that the solution curve exhibits a zero slope at Ξ1 = l, i.e. small changes in

the contact region bear no effect on equilibrium. Finally, Fig.7 shows that

for any cIII < c < cI the solution corresponds to an energy minimum point

and it is thereby stable. Conversely, on the verge of overturning, that is for

c = cIII the solution is located on a flex point for the energy, which accounts

for a loss of stability.

2.4. Short beam

When the beam is short, i.e. l < 2Ξ2, no lift-off takes place in the sym-

metric layout and scenario I sees the beam being initially fully supported by

the foundation. For growing values of |c|, the (left) boundary point reaction
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decreases until it eventually reverses its sign. Then, condition (8) no longer

holds and lift-off sets in at the left end, while contact extends up to the beam

right end. Here, unlike scenario III, the point force is still within the contact

region. It is emphasized that failing of condition (8) takes place before condi-

tion (2) is violated. In this respect, it is remarked that condition (8) is often

neglected in the literature. Fig.(9) shows the free energy Π as a function

of the point couple c. The free energy for the beam at partial lift-off (solid

curve) is displaced so that it equals the free energy of the fully supported

beam (dash curve) when Ξ1 = l1 (which happens for c = −0.03903762785).

In the region Ξ1 > l1 full support stands while in the region Ξ1 < l1 condi-

tion (8) is violated so that partial lift-off sets in. In this latter situation, the

free energy of the fully supported beam is lower than the free energy for the

beam in partial lift-off. However, it is emphasized that here no branching

phenomenon occurs so that the energy criterion cannot be appealed to.

3. Discussion

In the present work, three contact scenarios for the problem of a E-B

beam loaded by a unit force at midspan and a concentrated couple at one

end, resting on a tensionless Pasternak soil have been investigated. The beam

is long enough to accommodate lift-off. The tensionless nature of the contact

gives the problem a nonlinear nature. Such scenarios amount to three classes

of solutions, according to the amount of the external couple. For moderate

values, the force rests within the contact region until it stands right on top of

either of the contact loci. For higher couple values, the contact region moves

away from the force, which now stands in the lift-off region until, eventually,
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either of the contact loci hits the beam end. From that point, a final scenario

deploys wherein equilibrium holds despite a monotonic decreasing (with the

couple) contact region length, owing to a parallel increase of the concentrated

force that develops at the beam end supported by the foundation. A limiting

value for the couple is found at which equilibrium stability is lost and the

beam stands on the verge of overturning. Such limiting configuration occurs

in a zero contact length condition. Then, equilibrium is granted only through

the concentrated reaction force and the supported beam end. Within a small

displacement theory, such limiting couple is given by the distance between

the point force and the beam supported end (times the unit force). Stability

loss is numerically confirmed by a descending pathway in the free energy. For

a short beam, an initial fully supported condition is followed, at increasing

values of the end couple, by a partial lift-off condition. Such conditions are

ruled by different governing equations so that here the energy criterion is of

no avail in determining the limiting couple.
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