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Multi-parametric analysis of strongly

inhomogeneous periodic waveguides with

internal cutoff frequencies

J. Kaplunova, A. Nobilib∗

In this paper, we consider periodic waveguides in the shape of a inhomogeneous string or beam partially

supported by an uniform elastic Winkler foundation. A multi-parametric analysis is developed to take into

account the presence of internal cutoff frequencies and strong contrast of the problem parameters. This

leads to asymptotic conditions supporting non-typical quasi-static uniform or, possibly, linear micro-scale

displacement variations over the high-frequency domain. Macro-scale governing equations are derived within

the framework of the Floquet-Bloch theory as well as using a high-frequency-type homogenization procedure

adjusted to a string with variable parameters. It is found that, for the string problem, the associated macro-

scale equation is the same as that applying to a string resting on a Winkler foundation. Remarkably, for the

beam problem, the macro-scale behavior is governed by the same equation as for a beam supported by a

two-parameter Pasternak foundation. Copyright c© 0000 John Wiley & Sons, Ltd.

Keywords: Periodic waveguide; cutoff frequency; homogenization; contrast; high-frequency

1. Introduction

Periodic structures with internal cutoff frequencies are of interest for numerous applications: as an example, we mention

elastically supported periodic strings and beams [1, 2, 3], composite materials [4], phononic crystals [5, 6, 7] and vibration

absorbers in fluid carrying pipes [8]. It is well renowned that a string supported by a Winkler foundation exhibits a cutoff

frequency [9, §1.5.2]

ω0 =

√

β

ρ
,

where β is Winkler foundation modulus and ρ is the string linear mass density. As it is shown in [10], a two-phase

piecewise periodic string supported by a uniform Winkler foundation cannot be treated by the conventional “low-frequency”

homogenization method [11, 12]. For the latter, the sought for macro-scale homogenized equation is of the same form as the

original equation governing the behavior of the periodic system. Besides, a quasi-static uniform variation of the displacement
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Figure 1.A piecewise homogeneous periodic waveguide with a internal cutoff

field is retrieved at the micro-scale (see also [13, 14]). On the other hand, the periodically supported string problem can be

efficiently treated through a high-frequency asymptotic homogenization procedure, as established in [10, 15, 16, 17]. Within

this approach and contrarily to the classical setup, the homogenized macro-scale equation takes, as a rule, a different form

than the original equation. Moreover, sinusoidal variations at the micro-scale are found which correspond to the eigenforms

of the unit cell. Dynamic homogenization has been the subject of a number of remarkable contributions among which we

mention [18, 19, 20, 21, 22, 23, 24] and also [25, 26, 27], dealing with the important case of periodic waveguides with contrast

properties.

In this paper, we show that quasi-static uniform (or, possibly, linear) micro-scale variation over the high-frequency range

is still possible for strongly inhomogeneous periodic structures with internal cutoffs. As an example, a two-phase periodic

waveguide in the shape of a string or a beam supported by an elastic Winkler foundation is studied. The foundation is assumed

to be periodically discontinuous. Such feature is crucial for the subsequent analysis and, to the best of our knowledge, it

appears in the literature only in the shape of point supports [28].

A dimensional analysis brings up the relevant dimensionless quantities (three for the string and four for the beam),

expressed in terms of relative lengths, stiffnesses and densities. We develop a multi-parametric asymptotic approach assuming

that two of the aforementioned parameters are small in each of the cases. The long-wave expansions of the obtained dispersion

relations near the lowest cutoff frequencies are derived and the ODEs governing the macro-scale behavior deduced.

Remarkably, although for the string problem the macro-scale equation takes the same form as that for a string on a

Winkler foundation, the beam macro-scale behavior is governed by the equation for a beam supported by a two-parameter

Pasternak foundation (as opposed to a Winkler foundation, as it might be expected).

The associated quasi-static displacement fields are shown to be almost uniform at the micro-scale, as for a rigid body

motion. Numerical testing of the asymptotic formulae for the lowest cutoff frequency and the displacement field exhibits

excellent agreement.

The setup in which the string parameters vary along the unsupported region is also addressed using a two-scale approach.

The derived macro-scale equation reduces to the asymptotic expression previously obtained for constant parameters.

2. Periodically supported string

Let us consider a periodic waveguide constituted by a string in piecewise uniform tension periodically supported on a

homogeneous Winkler elastic foundation (Fig.1). The governing equation for the transverse displacement w(x, t) is, for the

supported regions Sn = {x ∈ (−L1 + nL, nL)}, n ∈ Z, each with length L1,

−T1∂
2

xxw + ρ1∂
2

ttw + βw = 0, (1)

and, for the free string regions Un = {x ∈ (nL,L2 + nL)}, each with length L2,

−T2∂
2

xxw + ρ2∂
2

ttw = 0, (2)

where ρi and Ti are the constant linear mass density and tension of the string over the relevant regions i = 1, 2, respectively,

β the Winkler elastic modulus (whose dimension is force over length squared), and n ∈ Z (see [9] for more details). These

2 Copyright c© 0000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 0000, 00 1–14
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equations have periodic coefficients with period L = L1 + L2 and they can be treated by means of the Floquet theory,

e.g.[29, 30]. Accordingly, we may restrict attention to the single cell S0 ∪U0 = (−L1, L2). Let us rewrite the equations (1,2)

in dimensionless form

−κ2

1∂
2

x1x1
w + ∂2

ττw + w = 0, x1 ∈ (−1, 0), (3)

and

−κ2

2

α2
∂2

x2x2
w + η ∂2

ττw = 0, x2 ∈ (0, 1), (4)

having introduced the dimensionless positive ratios

κi =

√

Ti

βL2

1

, η =
ρ2
ρ1

, α =
L2

L1

, (5)

together with xi = x/Li, the dimensionless axial co-ordinates, and τ = t/
√

ρ1/β, the dimensionless time. We look for the

harmonic motion of the system, i.e. w(xi, τ) = ui(xi) exp(ıΩτ), i = 1, 2 and ı2 = 1, whence Eq.(3) and (4) become the linear

ODEs with constant coefficients

κ2

1

d2u1

dx2

1

− (1− Ω2)u1 = 0, x1 ∈ (−1, 0), (6a)

κ2

1

d2u2

dx2

2

+ χ2

sΩ
2u2 = 0, x2 ∈ (0, 1), (6b)

having let the shorthand notation u1 for u(x1) and u2 for u(x2). Besides, it is let

κ =
κ2

κ1

=

√

T2

T1

and χs =
α
√
η

κ
.

Eq.(6a) clearly shows that the supported string region possesses the internal cutoff frequency Ω = 1. The conditions expressing

continuity of displacement and tension at the supported/unsupported interface x1 = x2 = 0 are

u1(0) = u2(0),
du1

dx1

(0) = ǫs
du2

dx2

(0), (7)

where

ǫs =
κ2

α
. (8)

The Floquet-Bloch conditions read

u1(−1) = u2(1) exp(ıq),
du1

dx1

(−1) = ǫs
du2

dx2

(1) exp(ıq). (9)

The general solution of Eq.(6a) is

u1 = A1 sin

(
√
Ω2 − 1

κ1

x1

)

+B1 cos

(
√
Ω2 − 1

κ1

x1

)

, (10)

where A1 and B1 are real constants provided Ω > 1. The general solution of Eq.(6b) is

u2 = A2 sin

(

χs
Ω

κ1

x2

)

+B2 cos

(

χs
Ω

κ1

x2

)

. (11)

The dispersion relation reads

cos q − cos

(
√
Ω2 − 1

κ1

)

cos

(

χsΩ

κ1

)

+
(1 + χ2

sǫ
2

s)Ω
2 − 1

2χsǫsΩ
√
Ω2 − 1

sin

(
√
Ω2 − 1

κ1

)

sin

(

χsΩ

κ1

)

= 0 (12)
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Figure 2.Dispersion curves for a string periodically supported on an elastic foundation (κ = 1, ǫs = 0.4, χs = 0.6)

and it gives rise to the usual pass/block bands depicted in Fig.2. The focus of the paper is on quasi-static uniform (or,

possibly, linear) displacement variations at leading order long-wave approximation (q ≪ 1). As it can be seen from (6) and

(10,11), these are obtained whenever χs is small and Ω is close to the internal cutoff frequency, i.e.

χs ≪ 1 and |Ω− 1| ≪ 1. (13)

In this case, from the dispersion relation (12) it follows that

δs = ǫsχ
2

s = αη ≪ 1. (14)

Here and below it is assumed that κ1 is of order unity. Thus, Eqs.(13) and (14) together show that the fundamental

assumption for quasi-static behavior at leading order for q ≪ 1 is that χs and δs be both small, which entails

η ≪ α−1 and η ≪ α−2,

while it only demands ǫs to be not too large, namely ǫs ≪ χ−2

s .

The asymptotic behavior of the lowest cutoff frequency Ω = Ω∗ in small δs and χs follows from the transcendental equation

(12) taken at q = 0 and it is given by

Ω2

∗ = 1−
(

1 +
χ2

s

12κ2

1

)

δs +

(

1− 1

12κ2

1

)

δ2s + . . . (15)

It is remarked that the cutoff frequency Ω∗ is close to the internal cutoff frequency of the string in supported region, i.e.

Ω∗ ≈ 1.

The related eigenforms are

u1(x1) = 1−
(

1

12κ2

1

− ǫ2s

)

χ2

s +
δs
2

[

x1

κ2

1

(1 + x1) + 1 +
1

6κ2

1

]

+ . . . , (16)

u2(x2) = 1−
{

ǫ2s +
1

12κ2

1

[1− 6x2(1− x2)]

}

χ2

s +
δs
2

[

1 +
1

6κ2

1

]

+ . . . , (17)

which show that u1(x1) and u2(x2) undertake a rigid body motion at leading order. It should be remarked that the above

eigenform formulae are valid provided that ǫs is not a large parameter.

Fig.3 compares the eigenforms evaluated through a numerical procedure with their asymptotic expressions (16), for the

parameter set ǫs = 0.4, χs = 0.6, κ1 = 1. For this choice of the parameters, δs = 0.144 is small and the lowest cutoff frequency

4 Copyright c© 0000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 0000, 00 1–14

Prepared using mmaauth.cls



J. Kaplunov, A. Nobili

Mathematical
Methods in the
Applied Sciences

Figure 3.Eigensolutions near cutoff: numerical (solid) vs. asymptotic (dashed) for ǫs = 0.4, χs = 0.6 and κ1 = 1

Figure 4.Asymptotic (dashed) vs. numerical (solid) dispersion curve for ǫs = 0.4, χs = 0.6, κ1 = 1

numerically occurs at Ω2 = 0.932716, as opposed to Eq.(15) which gives Ω2

∗ = 0.856. Nonetheless, very good agreement is

met for the eigenforms and an almost rigid body behavior found.

The leading order long-wave approximation (q ≪ 1) of the dispersion relation (12) can be written as

Ω2 − Ω2

∗ = κ2

1q
2ǫ (18)

and its accuracy is shown in Fig.4 for the usual parameter set. The corresponding macro-model ODE is a continuously

supported string equation

∂2

xxw − 1

c2∗
∂2

ttw − β∗w = 0 (19)

where

c2∗ =
ǫκ2

1β(L1 + L2)
2

ρ1
, β∗ =

Ω2

∗

ǫκ2

1
(L1 + L2)2

given that q2 = −(L1 + L2)
2∂2

xx.

3. Two-scale procedure for a periodically supported string

Let us now consider the case when the tension along the unsupported region is given by a periodic function with period L,

i.e. T2(x) = T2(x+ L). It is observed that this condition implies either horizontal motion or a restraining device to prevent

it and, for simplicity, we assume the latter. Conversely, it is further assumed that the string tension T1 is still constant

along the supported region and, therefore, a cutoff frequency can still be clearly defined. Then, governing equation for the

Math. Meth. Appl. Sci. 0000, 00 1–14 Copyright c© 0000 John Wiley & Sons, Ltd. 5
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transverse displacement w(x, t) in the supported interval is again Eq.(1), while the governing equation for the free string

becomes

−∂x (T2∂xw) + ρ2∂ttw = 0, x ∈ Un∈Z. (20)

The set of dimensionless governing Eqs.(6) is replaced by the following pair of ODEs, the second of which is an equation

with variable coefficients,

κ2

1

d2u1

dx2

1

− (1− Ω2)u1 = 0, x1 ∈ (−1, 0), (21a)

κ2

1

[

d2u2

dx2

2

+ 2
d lnκ

dx2

du2

dx2

]

+ χ2

sΩ
2u2 = 0, x2 ∈ (0, 1), (21b)

where it is understood that κ = κ(x2) and χs = χs(x2); in addition, d lnκ
dx2

is the logarithmic derivative of κ(x2). The same

set of equations governs the behavior of a string whose linear mass density is constant along the supported region and

periodically variable along the unsupported one, i.e. ρ1 = const and ρ2 = ρ2(x2) with ρ2(x2) = ρ2(x2 + L). The conditions

expressing continuity at x1 = x2 = 0 are

u1(0) = u2(0),
du1

dx1

(0) = ǫs
du2

dx2

(0), (22)

where

ǫs =
κ2(0)

α
. (23)

Let, for the sake of definiteness, assume the following asymptotic relation between the small parameters of the previous

section

δs ∼ χ4

s.

In this case, ǫs ∼ χ2

s is also a small parameter and we set

χs =
√
ǫsχ0,

where it is recalled that χ0 = χ0(x2). Then, Eq.(21b) becomes

κ2

1

(

d2u2

dx2

2

+ 2
d lnκ

dx2

du2

dx2

)

+ ǫsχ0
2Ω2u2 = 0. (24)

In this section, we adopt a two-scale approach [31] setting

ui = ui(ξi, X), i = 1, 2, (25)

being X = ǫsx2 the slow variable, ξi = xi, i = 1, 2. Then, with the usual understanding for the integer power of a linear

operator,

κ2

1

(

∂ξ1 +
ǫs
α
∂X

)2

u1 − (1− Ω2)u1 = 0, ξ1 ∈ (−1, 0), (26a)

κ2

1

[

(∂ξ2 + ǫs∂X)2 + 2(∂ξ2 lnκ) (∂ξ2 + ǫs∂X)
]

u2 + ǫsχ0
2Ω2u2 = 0, ξ2 ∈ (0, 1). (26b)

The conditions expressing continuity at ξ = 0 are

u1(0, X) = u2(0, X), (27a)
(

∂ξ1 +
ǫs
α
∂X

)

u1(0, X) = ǫs (∂ξ2 + ǫs∂X)u2(0, X), (27b)

6 Copyright c© 0000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 0000, 00 1–14
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while periodicity yields

u1(−1, X) = u2(1, X), (28a)
(

∂ξ1 +
ǫs
α
∂X

)

u1(−1, X) = ǫs (∂ξ2 + ǫs∂X)u2(1, X). (28b)

Let us take the regular expansions

u1(ξ1, X) = p0(ξ1, X) + ǫsp1(ξ1, X) + ǫ2sp2(ξ1, X) + . . . , (29a)

u2(ξ2, X) = q0(ξ2, X) + ǫsq1(ξ2, X) + ǫ2sq2(ξ2, X) + . . . , (29b)

and, likewise, for the frequency (e.g.[10])

Ω2 = 1 + ǫsΩ
2

1 + ǫ2sΩ
2

2 + ǫ3sΩ
2

3 + . . . . (30)

Here and below we understand ξ = ξ1 (ξ = ξ2) when the (un)-supported string is dealt with. Then, we get the usual succession

of linear problems in the expansion terms. Indeed, at order zero in ǫ, we get

κ2

1∂
2

ξξp0 = 0,

κ2

1

[

2(lnκ)′∂ξ + ∂2

ξξ

]

q0 = 0,

where prime is short for the total derivative d/dξ2. The first equation admits the linear polynomial solution

p0 = a0(X) + b0(X)ξ, (31)

while the second equation is linear and first-order in ∂ξq0, whence its solution is

q0 = c0(X) + d0(X)φ1(ξ) (32)

having let

φ1(ξ) =

ˆ ξ

0

κ−2(σ)dσ.

Plugging the solutions (31,32) into the expansions (29), we get from the conditions (27,28) at leading order

c0(X) = a0(X), d0(X) = b0(X) ≡ 0,

whereupon, the zero order solution is just a rigid body motion

p0 = q0 = a0(X).

At first order in ǫ, we get

κ2

1∂
2

ξξp1 +Ω2

1a0 = 0,

κ2

1

[

2(lnκ)′∂ξ + ∂2

ξξ

]

q1 + 2κ2

1(lnκ)
′ da0

dX
+ χ2

0a0 = 0

whose general solution is

p1 = −Ω2

1a0

κ2

1

ξ2

2
+ a1ξ + b1,

q1 = c1 + d1φ1 −
a0

κ2

1

φ2 −
da0

dX
ξ,

Math. Meth. Appl. Sci. 0000, 00 1–14 Copyright c© 0000 John Wiley & Sons, Ltd. 7
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where a1, b1, c1 and d1 are (yet) undetermined functions of X and

φ2(ξ) =

ˆ ξ

0

´ σ

0
χ0

2(γ)κ2(γ)dγ

κ2(σ)
dσ.

Solvability of the first order problem [31] yields Ω1 = 0 and, after tedious calculations, we find

p1 = − (1 + ξ)

α

da0

dX
,

q1 =
(α+ 1)φ1(ξ)− φ1(1)(αξ + 1)

αφ1(1)

da0

dX
+

φ2(1)φ1(ξ)− φ1(1)φ2(ξ)

κ2

1
φ1(1)

a0.

At second order in ǫ, we get

κ2

1∂
2

ξξp2 −
κ2

1

α2

d2a0

dX2
+Ω2

2a0 = 0,

κ2

1

[

(

2(lnκ)′∂ξ + ∂2

ξξ

)

q2 + 2
(

(lnκ)′∂X + ∂2

ξX

)

q1 +
d2a0

dX2

]

+ χ2

0q1 = 0,

whose general solution is

p2 =

(

1

α2

d2a0

dX2
− Ω2

2

κ2

1

a0

)

ξ2

2
+ a2ξ + b2,

q2 = c2 +

ˆ ξ

0

y(σ,X)dσ,

being

y(σ,X) =
d2
κ2

+
a0

κ4

1

y1 +
1

κ2

1

da0

dX
y2 +

d2a0

dX2
y3

and a2, b2, c2, d2 are yet unknown functions of the slow variable. In the case of constant coefficients (i.e. for constant string

tension, κ = const, and constant linear mass density, χ0 = const)

y1 =
σ2(2σ − 3)

12
χ4

0,

y2 = χ2

0σ

(

2− σ

2α
+ σ − 1

)

,

y3 =
1− 2σ

α
− σ.

Solvability of the second order problem yields

Ω2

2 = −φ′

2(1),

while conditions (27,28) give b2 = c2,

a2 =
1

α2

d2a0

dX2
+

1 + α

ακ(0)2φ1(1)

da0

dX
+

φ2(1)

κ(0)2κ2

1
φ1(1)

a0.

For constant coefficients,

d2 = κ2

0

(

α2 − 1

2α2

d2a0

dX2
+

(

α− 2

6ακ2

1

χ2

0 −
α+ 1

α

)

da0

dX
+

χ4

0

24κ4

1

a0

)

.

and Ω2

2 = −χ2

0, b2 = c2 while

a2 =
1

α2

d2a0

dX2
+

(

1

α
+ 1

)

da0

dX
+

χ2

0

2κ2

1

a0.

Finally, at third order in ǫ, it is found

p3 = a3ξ
3 + b3ξ

2 + c3ξ + d3

8 Copyright c© 0000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 0000, 00 1–14
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where, for constant coefficients,

a3 = − 1

6α3

d3a0

dX3
− χ2

0

2ακ2

1

da0

dX
,

a2 = − 1

2α3

d3a0

dX3
− 1 + α

α2

d2a0

dX2
− χ2

0

ακ2

1

da0

dX
− Ω2

3

2κ2

1

a0.

In this case, we get from the solvability of the third order problem

−κ2

1

d2a0

dX2
− α2

(α+ 1)2

(

Ω2

3 +
χ4

0

12κ2

1

)

a0 = 0, (33)

which is identical to Eq.(19). Indeed, setting in Eq.(33)

Ω2

3 =
Ω2 − 1− ǫsΩ

2

1 − ǫ2sΩ
2

2

ǫ3
=

Ω2 − 1 + ǫsχ
2

s

ǫ3

the dispersion relation (18) is retrieved, which is associated with Eq.(19). In the general case of a string with variable

parameters, we also arrive at second order macro-scale governing equation with messy expressions for its coefficients. For

example, in the case of constant tension, κ = const, and variable linear mass density, χ0 = χ0(x2), it is found

−κ2

1

d2a0

dX2
− α2

(α+ 1)2

(

Ω2

3 +
Ω̄2

κ2

1

)

a0 = 0, (34)

where

Ω̄2 = 2

ˆ

1

0

χ2

0(σ)

ˆ σ

0

τχ2

0(τ)dτdσ −
(
ˆ

1

0

σχ2

0(σ)dσ

)2

.

4. Periodically supported beam

Let us consider bending of a piecewise homogeneous beam periodically supported by a Winkler elastic foundation. Similarly

to the string case above (Fig.1), the governing equations for the transverse displacement w(x, t) are given by

(EI)1 ∂
4

xxxxw + ρ1∂
2

ttw + βw = 0, x ∈ Sn, (35a)

(EI)2 ∂
4

xxxxw + ρ2∂
2

ttw = 0, x ∈ Un, (35b)

where ρi and (EI)i are, respectively, the linear mass density and the flexural rigidity of the beam, which are constant in

the relevant regions i = 1, 2, while β is the Winkler foundation modulus. These equations may be rewritten in dimensionless

form for a single cell as follows

γ4

1∂
4

x1x1x1x1
w + ∂2

ττw + w = 0, x1 ∈ (−1, 0), (36a)

γ4

2

α4
∂4

x2x2x2x2
w + η∂2

ττw = 0, x2 ∈ (0, 1), (36b)

having introduced the dimensionless ratios

γi =
4

√

(EI)i
βL4

1

, i = 1, 2, (37)

together with the dimensionless axial co-ordinates xi = x/Li. Here, as before, τ = t/
√

ρ1/β is the dimensionless time.
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Figure 5.Dispersion curves (solid) and long-wave asymptotic approximation (dashed), Eq.(43), for γ1 = 1, α = 0.9, ǫb = 0.4 and χb = 0.6.

The first cutoff frequency is located at Ω∗ = 0.972354, which is very close to the internal cutoff, while the asymptotic expansion (42) provides

Ω∗ = 0.970768 (relative error −0.16%).

We look for the harmonic behavior of w, i.e. w(xi, τ) = ui(xi) exp(ıΩτ), i = 1, 2, whence the Eqs.(36) become the pair of

ODEs

γ4

1

d4u1

dx4

1

+ (1− Ω2)u1 = 0, x1 ∈ (−1, 0), (38a)

γ4

1

d4u2

dx4

2

− χ4

bΩ
2u2 = 0, x2 ∈ (0, 1), (38b)

where the problem’s parameters of interest are

γ =
γ2
γ1

= 4

√

(EI)2
(EI)1

and χb =
α 4
√
η

γ
. (39)

Similarly to Sec.2, Eq.(38a) indicates the existence of the internal cutoff frequency Ω = 1.

The continuity conditions at x1 = x2 = 0 are

u1(0) = u2(0), α
du1

dx1

(0) =
du2

dx2

(0),
d2u1

dx2

1

(0) = ǫb
d2u2

dx2

2

(0), α
d3u1

dx3

1

(0) = ǫb
d3u2

dx3

2

(0), (40)

where

ǫb =
γ4

α2
. (41)

The periodicity conditions read

u1(−1) = u2(1) exp(ıq), α
du1

dx1

(−1) =
du2

dx2

(1) exp(ıq),

d2u1

dx2

1

(−1) = ǫb
d2u2

dx2

2

(1) exp(ıq), α
d3u1

dx3

1

(−1) = ǫb
d3u2

dx3

2

(1) exp(ıq).

The dispersion relation is presented in the Appendix in the form of a 8x8 determinant. A plot is given in Fig.5 for the

parameter set γ1 = 1, α = 0.9, ǫb = 0.4 and χb = 0.6.

As in Sec.2, the lowest cutoff frequency (Ω = Ω∗ ≈ 1, q = 0) can be expanded from the dispersion relation for δb = ǫbχ
4

b

and χb small, namely

Ω2

∗ = 1− δb
α

(

1 +
χ4

b

720γ4

1

)

+ . . . , (42)
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Figure 6.Numerical (solid) and asymptotic (dashed) eigenforms for γ1 = 1, α = 0.9, ǫb = 0.4 and χb = 0.6

provided that γ1 and α are of order unity. We emphasize that the analogous formula for the string (15) does not involve the

geometric parameter α explicitly. The associated eigenforms are

u1(x1) = 1 +
α3/4

3
√
2γ1

δ
1/4
b + . . .

and

u2(x2) = 1 +
x2

2 (x2 − 1)2

24γ4

1

χ4

b +
α3/4

3
√
2γ1

δ
1/4
b + . . . ,

which, at leading order, reduce to a rigid body motion, as in the case of a string. They are shown in Fig.6 together with

their numerically evaluated counterparts.

The long-wave approximation of the dispersion relation around the lowest cutoff frequency Ω∗ reads

Ω2 − Ω2

∗ = − δb
6α(1 + α)

q2 +
αγ4

1ǫb
(1 + α)2

q4 + . . . (43)

and its effectiveness is shown in Fig.5. Obviously, the O(q4) term here needs be kept when q & χ2. The macroscopic governing

equation corresponding to (43) is given by the fourth-order PDE

EI∗∂
4

xxxxw −K2∗∂
2

xxw +K1∗w + ρ1∂
2

ttw = 0, (44)

where

K1∗ = βΩ2

∗,

K2∗ = −δbβL
2

1(L1 + L2)

6L2

,

EI∗ = ǫbαβγ
4

1L1L2(L1 + L2)
2.

It is worth mentioning that the derived equation is different from the original equation in that it corresponds to a beam

supported by a two-parameter Pasternak foundation (see [32, 33, 34] and references therein) with coefficients K1∗, K2∗

instead of a Winkler foundation. Besides, the same equation governs the behavior of a beam pre-stressed by the longitudinal

force K2∗, often termed a beam-column [35]. It is also worth noting that high-frequency homogenization of a similar system,

in the absence of contrast, leads to a second-order PDE [15].

5. Conclusions

In this paper, high-frequency homogenization is adapted for periodic waveguides with internal cutoffs and contrast properties.

The analysis is carried out in a Floquet-Bloch fashion for a piecewise uniform string or beam periodically supported by an
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elastic Winkler foundation. The case of variable parameters is also considered, for the string problem, through a two-scale

asymptotic procedure. In the special case of constant parameters, results match with those obtained by the Floquet-Bloch

approach.

Unlike the usual outcome of high-frequency homogenization, micro-scale rigid body motion is retrieved at leading order

and, unlike conventional low-frequency homogenization, such quasi-static behavior occurs near a non-zero cutoff frequency.

This unusual phenomenon is due to a double cancellation. In fact, on the one hand, over the supported region, the inertia

force balances the support reaction because of the proximity of global and internal cutoffs. This occurs when δs, δb ≪ 1. On

the other hand, over the unsupported region, the inertia force vanishes on account of strong contrast, namely at χs, χb ≪ 1.

The asymptotic expansions of the dispersion relations in the vicinity of the cutoff frequencies are given and the associated

macro-scale governing equations deduced. Although it might be expected that, for the string problem, the macro-scale

equation corresponds to that for a string on a Winkler foundation, it is less obvious that, for the beam problem, the

governing equation for a beam on a two-parameter Pasternak foundation arises. The latter can be also interpreted as an

axially pre-stressed beam (i.e. beam-column) on a Winkler foundation. In this respect, we mention that axially pre-stressed

thin structures recently found new interesting applications in the area of meta-materials [36].
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Appendix

The dispersion relation for the beam problem is given by the determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 0 1 0 −1 0 −1

αt 0 αt 0 −r 0 −r 0

0 −t2 0 t2 0 ǫbr
2 0 −ǫbr

2

−αt3 0 αt3 0 ǫbr
3 0 −ǫbr

3 0

− sin(t) cos(t) − sinh(t) cosh(t) − sin(r) − cos(r) − sinh(r) − cosh(r)

αt cos (t) αt sin (t) αt cosh (t) α(−t) sinh (t) −r cos (r) r sin (r) −r cosh (r) −r sinh (r)

t2 sin(t) −t2 cos(t) −t2 sinh(t) t2 cosh(t) ǫbr
2 sin(r) ǫbr

2 cos(r) −ǫbr
2 sinh(r) −ǫbr

2 cosh(r)

−αt3 cos(t) −αt3 sin(t) αt3 cosh(t) −αt3 sinh(t) ǫbr
3 cos(r) −ǫbr

3 sin(r) −ǫbr
3 cosh(r) −ǫbr

3 sinh(r),

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

having let the shorthand notation

t =
4
√
ω2 − 1

γ1
and r =

χ
√
ω

γ1
.
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