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ON LOW-FREQUENCY VIBRATIONS OF A COMPOSITE

STRING WITH CONTRAST PROPERTIES FOR ENERGY

SCAVENGING FABRIC DEVICES

A. KUDAIBERGENOV, A. NOBILI, AND L.A. PRIKAZCHIKOVA

Abstract. Free vibrations of a two-component string with high-contrast
material parameters are considered at different boundary conditions to
illustrate the very low-frequency energy harvesting capability of fabric
devices. It is revealed that, only for the case of mixed boundary con-
ditions, low-frequency (locally) almost rigid-body vibrations are admis-
sible, provided that material parameter ratios lie in some well defined
interval. A low-frequency perturbation procedure is carried out to de-
termine the eigenfrequencies as well as the eigenforms. The analysis is
extended to a piecewise inhomogeneous string and to a string supported
on an elastic foundation. It is shown that both situations may still ad-
mit low-frequency vibrations, under certain restrictions on the material
properties. This is particularly remarkable, given that the situation of
elastic support normally possesses two nonzero cutoff frequencies. The
results may be especially relevant for energy scavenging fabric devices,
where very low-frequency (< 10 Hz) mechanical vibrations of textile
fibers are harvested through friction.

1. Introduction

Low-frequency mechanical vibrations of composite structures have been
the object of extensive studies, see the classic textbooks [4], [12] and, for in-
stance, [19] for a modern account. In recent years, a revival of interest in the
subject has been taking place owing to the appearance of new applications
connected to the development of multi-phase or multi-layered structures
with high-contrast in the geometrical and mechanical properties. Alongside
multi-layered composite structures with high-contrast material parameters,
which are currently widely used in various fields of civil and mechanical
engineering, see [5, 2], another promising application area is related to the
rapidly developing field of meta-materials. Meta-materials are engineered
materials endowed with unique properties, often stemming from the inter-
play of periodically arranged phases exhibiting extremely high contrast [13].

Key words and phrases. low-frequency vibration; energy scavenging; contrast properties;
strings.
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Figure 1. Schematics of a textile energy harvester, cfr.[17,
Fig.2a]. A micro-wire is wound around the vibrating string
and frictional energy is harvested through pulling or vibrat-
ing. Note that friction causes (mechanical) tension to vary
along the string.

The same principle of phase periodicity is adopted to design and construct
waveguides with tailored filtering properties [3, 16, 10].

Mechanical vibrations arise naturally in a variety of environments and
they can be harvested to power self-sustaining micro- and especially nano-
devices. Despite high-frequency vibrations being very attractive in light of
their high energy content, much greater interest lies in the exploitation of
low-frequency vibrations for their ubiquitous character (body movements
such as footsteps or heartbeat, wind or thermal generated vibrations, air
flow and noise) [18].

Recently, textile fabric devices have been proposed as a mean of scav-
enging very low-frequency (< 10 Hz) mechanical energy through the cou-
pling of a vibrating string wound around by electrically coupled micro-wires
[17, 15]. A device schematics is given in Fig.1, although other arrangements
are equally possible. In this paper, we focus attention on low-frequency vi-
brations of a two-component piecewise-constant finite string, in an attempt
to better elucidate the energy harvesting capability of the passive element
in an energy scavenging device. For the best performance, the string is
endowed with high-contrast in the material and/or in the geometrical prop-
erties. Continuity conditions are assumed between the components. The
analysis is carried out for three types of boundary conditions, namely free-
free, fixed-fixed and fixed-free (mixed) end conditions. It is shown that
the low-frequency behavior is possible only for the case of mixed bound-
ary conditions, which appears especially attractive for energy harvesting
purposes. A low-frequency perturbation approach is adopted to obtain the
lowest eigenfrequency and the corresponding eigenform, whose character ap-
pears almost rigid-body like. The analysis of the case of variable material
parameters confirms that the low-frequency regime is accessible only in a
fixed-free setup, although the almost rigid-body behavior is now restricted to
the strong component. Finally, vibrations of a high-contrast two-component
piecewise homogeneous string supported on a Winkler elastic foundation are
considered [14]. In this case, the asymptotic approximation is carried out for
frequencies standing in the vicinity of the cut-off frequency of the stronger
component, which still can be made very small under some conditions on
the ratios of the geometrical and mechanical properties.
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Figure 2. A two-component fixed-free string. The tension
jump T1−T2 approximate the effect of friction with the micro-
wire (see Fig.1); a more refined model considering continuous
variation of the tension is discussed in Sec.3B

It is worth mentioning that the eigenfrequencies of a composite string
correspond to the lowest cutoff frequencies for a plate (or a shell) from
the standpoint of 3D elasticity [6]. The same analogy can be extended to
incorporate the effects of pre-stress [11] and anisotropy [8].

The paper is organized as follows. In Section 2, three types of boundary
conditions for the ends of the string are considered and it is revealed that
the low-frequency regime is possible only in the case of free-fixed boundary
conditions. A restriction on the material parameters entailing such behavior
is also obtained. In Section 3, a perturbative approach is first conducted
on piecewise homogeneous string and then extended to the case of variable
material properties. It is shown that, although the almost rigid-body eigen-
behaviour retrieved in the former case is lost in the latter, low-frequency
vibrations are still admissible under suitable conditions. The effect of an
elastic support is considered in Section 4 and it brings a cutoff frequency
which may be greatly decreased. Finally, conclusions are drawn in Section
5.

2. Frequency equation for a two-component string

Let us consider a finite linear string made of two-components, named 1
and 2, with high material and geometric contrast parameters. The length of
the components is h1 and h2. Let the x axis be taken to lie along the string
with the origin coinciding with the interface between the two components
(see Fig.2).

The governing equation of the string in harmonic motion is

d2ui
dx2

+
ω2

c2i
ui = 0, i = 1, 2, (2-1)

where ui is the transverse displacement in the relevant component of the
string, Ti and ci =

√

Ti/ρi the corresponding string tension and wave speed,
ρi the linear mass density and ω > 0 the vibration frequency [19, Chap.2].
The conditions enforcing displacement and traction continuity at the inter-
face between the components are given by

u1(0) = u2(0), T1
du1
dx

(0) = T2
du2
dx

(0). (2-2)



4 A. KUDAIBERGENOV, A. NOBILI, AND L.A. PRIKAZCHIKOVA

Let introduce the following notation for the ratios of the material parameters
in the two components of the string:

T =
T1

T2
, h =

h1
h2

, ρ =
ρ1
ρ2

, c =
c1
c2
, (2-3)

together with the non-dimensional frequency parameters

λi =
ω

ci
hi > 0, i = 1, 2. (2-4)

It is observed that the parameters λ1 and λ2 are related through the con-
nection

λ2 =
1

h

√

T

ρ
λ1. (2-5)

The general solution of the constant coefficient linear ODEs (2-1) is given
by

u1(x) = A cos

(

λ1
x

h1

)

+B sin

(

λ1
x

h1

)

, 0 ≤ x ≤ h1,

u2(x) = C cos

(

λ2
x

h2

)

+D sin

(

λ2
x

h2

)

, −h2 ≤ x ≤ 0,

(2-6)

where A,B,C,D are arbitrary constants.
For a one-parameter asymptotic analysis, the small positive quantity ε is

introduced as follows:

ε =
T

h
≪ 1. (2-7)

Besides, let

η =
T

c
=

√

Tρ, (2-8)

whence Eq.(2-5) gives the connection

λ2 =
ε

η
λ1. (2-9)

We shall consider three types of end conditions for the string and, in each
case, investigate the possibility for low-frequency vibrations.

2A. Traction free end conditions. The boundary conditions for a string
with traction free ends can be written in the form

du1
dx

(h1) = 0 and
du2
dx

(−h2) = 0. (2-10)

Substituting the general solution (2-6) into the boundary conditions (2-10)
and into the continuity relations (2-2) we arrive at a homogeneous system
of algebraic equations which is linear in the integration constants. As well
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known, such system possesses non-trivial solution provided that the deter-
minant of the associated coefficient matrix is equal to zero, namely

∣

∣

∣

∣

∣

∣

∣

∣

− sinλ1 cosλ1 0 0
0 0 sinλ2 cosλ2

1 0 −1 0
0 η 0 −1

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (2-11)

Such requirement leads to the frequency equation

η tanλ1 + tanλ2 = 0, (2-12)

which, clearly, cannot sustain low-frequency vibrations (i.e. vibrations at
λ1, λ2 ≪ 1) unless materials with exotic properties, like negative density,
are considered (see, for example, [13] and references therein).

2B. Fixed end conditions. The situation of a string with fixed ends is now
considered. In this case, the boundary conditions (2-10) are substituted by

u1(h1) = 0 and u2(−h2) = 0. (2-13)

Following the usual procedure, we arrive at the frequency equation

tanλ1 + η tanλ2 = 0, (2-14)

which closely resembles Eq.(2-12). Hence, low-frequency vibrations in a
string with fixed ends cannot be achieved. However, an interesting remark
appears in [19], where it is observed that, in the case of a fixed-fixed two-
segment string, the eigenfrequency is a decreasing function of the density
ratio ρ.

2C. Fixed-free ends. Let us consider yet another type of boundary con-
ditions, namely the fixed-free end conditions, wherein

u1(h1) = 0 and
du2
dx

(−h2) = 0. (2-15)

The frequency equation may be written as

tanλ1 tanλ2 = η.

In the low-frequency regime, characterized by λ1 ≪ 1 and λ2 ≪ 1, the
frequency equation is approximated by

λ1λ2 = η,

or, employing the connection (2-9), by the following condition on λ1:

λ1 =
η√
ε
≪ 1. (2-16)

Clearly, Eq.(2-9) demands
λ2 =

√
ε ≪ 1. (2-17)

According to the definitions (2-7,2-8), the (order) inequalities (2-16) and
(2-17) amount to

ρh ≪ 1 and
T

h
≪ 1, (2-18)
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respectively. In particular, the first inequality may be rewritten in term of
masses, i.e.

m1 = ρ1h1 ≪ ρ2h2 = m2,

that is one string component mass needs be much smaller than the other’s
(note that 1 and 2 are exchangeable). Together, the inequalities (2-18)
require

η2 ≪ ε ≪ 1

which, by the definitions (2-7,2-8), gives a single condition on the geomet-
ric/mechanical parameters allowing for low-frequency vibrations, namely

T ≪ h ≪ 1

ρ
. (2-19)

Low-frequency vibrations may arise, for example, in a string with soft and
light part 1, while part 2 is stiff and heavy, i.e. T1 ≪ T2 and ρ1 ≪ ρ2.
Besides, the corresponding string component lengths, h1 and h2, need be
chosen of the same order of magnitude, i.e. h1/h2 ∼ 1.

3. Asymptotic analysis of low-frequency vibrations in a

composite string with free-fixed ends

The study of the frequency equation carried out in Sec.2 leads to the
conclusion that low-frequency vibrations are only possible for a string with
free-fixed end conditions, provided some restriction on the material param-
eter ratios is met. For a more refined analysis, a low-frequency asymp-
totic approximation is now employed. A constant coefficient boundary-value
problem is considered first and then results are generalized to the variable
coefficients situation.

3A. Piecewise homogeneous string. For a two-component string with
homogeneous material parameters, the equations of motion (2-1) hold to-
gether with the boundary conditions (2-10) and the continuity relations
(2-2) at the interface. We restrict our attention to low-frequency vibrations
at η ∼ ε, whence λ1 ∼ λ2 ∼

√
ε. To this aim, let

η = αε, where α = O(1). (3-1)

Hence, the connection (2-9) between λ1 and λ2 now reads

λ2 = α−1λ1. (3-2)

Let us introduce non-dimensional spatial variables in each component of
the string

ξ1 =
x

h1
∈ [0, 1] and ξ2 =

x

h2
∈ [−1, 0].

Then, our boundary-value problem may be re-written in terms of the di-
mensionless variables

d2u∗i
dξ2i

+ λ2
iu

∗

i = 0, i = 1, 2, (3-3)
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together with the fixed-free end conditions

u∗1(1) = 0,
du∗2
dξ2

(−1) = 0

and the continuity conditions at the interface ξ1 = ξ2 = 0

u∗1(0) = u∗2(0), ε
du∗1
dξ1

(0) =
du∗2
dξ2

(0).

Here, it is let u∗i (ξi) = ui(x/hi), i = 1, 2. Assuming for u∗i a regular asymp-
totic expansion in the small parameter ε, we write

u∗i = u
(0)
i + εu

(1)
i + ε2u

(2)
i +O(ε3), i = 1, 2, (3-4)

while, in the low-frequency regime, it is

λ2
1 = ε(Λ0 + εΛ1 + ε2Λ2 +O(ε3)). (3-5)

Clearly, λ2 follows from the connection (3-2).

3A.1. Leading order problem. At the leading order, the equations of motion
(3-3) give

u
(0)
1 = A0ξ1 +B0,

u
(0)
2 = C0ξ2 +D0,

where A0, B0, C0 and D0 are integration constants. Using the boundary
and continuity conditions, we arrive at

u
(0)
1 = D0(1− ξ1), (3-6a)

u
(0)
2 = D0, (3-6b)

which shows a local rigid-body behavior (rotation for 1 and translation for
2). Given that frequency cannot be derived at this stage, we need proceed
to the next order.

3A.2. First order problem. At the first order, compatibility gives the leading
order frequency term

Λ0 = α2,

whereupon

λ2
1 = α2ε (1 +O(ε)) , λ2

2 = ε (1 +O(ε)) .

Expressions for first order correction to displacements, u
(1)
1 and u

(1)
2 , take

up the form:

u
(1)
1 =

1

6
α2D0(1− ξ1) (2− ξ1) ξ1 +D1(1− ξ1),

u
(1)
2 = −D0ξ2

(

ξ2
2

+ 1

)

+D1,

where D1 is yet another integration constant.
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3A.3. Second order. At the second order, compatibility yields the first order
correction to the frequency

Λ1 = −α2(1 + α2)

3
,

and we arrive at the expansion

λ2
1 = εα2

(

1− 1 + α2

3
ε+O(ε2)

)

.

3B. Piecewise inhomogenenous string. It is now assumed that the ma-
terial properties of each component of the string are no longer constant along
the length, namely Ti = Ti(x) > 0, ρi = ρi(x) > 0, i = 1, 2. The equation
for harmonic transverse vibrations are [19]

d

dx

(

Ti(x)
dui
dx

)

+ ρi(x)ω
2ui = 0, i = 1, 2, (3-7)

while the fixed-free boundary conditions (2-15), together with the continu-
ity relations (2-2), hold. It is expedient to introduce the non-dimensional
quantities

T ∗

i (ξi) =
Ti(x)

Ti(0)
, ρ∗i (ξi) =

ρi(x)

ρi(0)
, i = 1, 2 (3-8)

as well as the ratios

T =
T1(0)

T2(0)
, ρ =

ρ1(0)

ρ2(0)
. (3-9)

In terms of the dimensionless co-ordinates ξi, Eq.(3-7) becomes

d

dξi

(

T ∗

i (ξi)
du∗i
dξi

)

+ λ2
i ρ

∗

i (ξi)u
∗

i = 0, (3-10)

where

λ2
i =

ω2h2i ρi(0)

Ti(0)
, i = 1, 2 (3-11)

and the connection (3-2) still holds. The boundary conditions give

u∗1(1) = 0,
du∗2
dξ2

(−1) = 0,

while continuity at the interface reads

u∗1(0) = u∗2(0), ε
du∗1
dξ1

(0) =
du∗2
dξ2

(0),

where the small parameter ε is introduced as at Eq.(2-7). Solution of this
boundary value problem is taken in the form of the asymptotic expansions
(3-4) and (3-5) for u∗i and λ1, respectively.

At the leading order we obtain

u
(0)
1 (ξ1) = D0

(

1− φ1(ξ1)

φ1(1)

)

, (3-12a)

u
(0)
2 (ξ2) = D0, (3-12b)
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Figure 3. Leading order eigenforms for T ∗

1 (ξ1) = 1 + A2ξ21
and T ∗

2 (ξ2) = 1 at A = 0.1 (solid), A = 1 (dashed) and
A = 10 (dot-dashed)

where D0 is an integration constant and we have let

φi(ξi) =

∫ ξi

0

dt

T ∗

i (t)
, i = 1, 2. (3-13)

In order to better illustrate the leading order expressions for the first eigen-
form (3-12), a string with quadratic and constant behavior for the dimension-
less tensions T ∗

1 and T ∗

2 is considered, i.e. T ∗

1 (ξ1) = 1+A2ξ21 and T ∗

2 (ξ2) = 1.
Then, it is

φ1(ξ1) =
1

|A| arctan(|A|ξ1) and φ2(ξ2) = ξ2.

In Fig.3, the leading order expressions for the first eigenform, given by
Eqs.(3-12), are plotted at three values of the parameter A. As expected,
the locally rigid-body behavior is retrieved for small values of A. However,
it is perhaps less obvious that large values of A lead to a step function.
Besides, we further observe that the transformation u∗i (ξi) = U∗

i (zi), with
the mapping

ξi 7→ zi | zi(ξi) =
φi(ξi)

φi((−1)i+1)
,

can be used to turn the variable coefficient problem (3-10) into Lioville’s
normal form [5, 19].

Bringing the analysis one step further, we obtain the displacement first
order correction

u
(1)
1 (ξ1) = D0Λ0

(

1

φ1(1)

∫ ξ1

0

∫ σ2

0 ρ∗1(σ1)φ1(σ1) dσ1

T ∗

1 (σ2)
dσ2 − Φ1(ξ1)

)

+A
(1)
1 φ1(ξ1) +B

(1)
1

u
(1)
2 (ξ2) = −D0Λ0

1

α2
Φ2(ξ2) + C

(1)
1 φ2(ξ2) +D

(1)
1

being

Φi(ξ) =

∫ ξ

0

∫ σ2

0 ρ∗i (σ1) dσ1

T ∗

i (σ2)
dσ2, i = 1, 2.
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Figure 4. A two-component free-fixed string supported by
a Winkler elastic foundation. The foundation is introduced
to account for an embedding elastic matrix

Here, compatibility gives the leading order term in the frequency expansion

Λ0 =
α2

φ1(1)m∗

2

,

having let the dimensionless mass of the 2 component

m∗

2 =

∫ 0

−1
ρ∗2(σ1)dσ1.

Clearly, the expression for λ2 may be readily obtained from (3-2).

4. Piecewise homogenenous string on a Winkler foundation

In this Section, near-zero frequency vibrations of a two-component piece-
wise homogenenous string on a Winkler foundation are considered (Fig.4).

The equations of motion for a string on a Winkler foundation are [4]

d2ui
dx2

+

(

ω2

c2i
− κ

Ti

)

ui = 0, i = 1, 2, (4-1)

where κ is the Winkler foundation modulus (whose physical dimensions are
force over length squared). These equations clearly show that local cutoff
frequencies exist [9]

ωcutoff
2
i =

κ

ρi
,

such that harmonic vibrations are possible only whenever ω > max (ωcutoff1, ωcutoff2).
Eqs.(4-1) are most conveniently put in dimensionless form

d2ui
dξ2i

+ γ2i ui = 0, i = 1, 2, (4-2)

where it is let

γ2i = λ2
i − β2

i and β2
i =

h2i
Ti

κ, i = 1, 2. (4-3)

It is remarked that the λi are defined according to Eq.(2-4) and therefore
the connection (2-9) still holds. Obviously, we demand λi > βi for global
vibrations to take place, which shows that βi are the dimensionless local
cutoff frequencies. Furthermore, the following connection stands between
β1 and β2:

β2
2 =

ε

h
β2
1 . (4-4)
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The general solution of the ODEs (4-2) is given by

u1(ξ1) = A cos(γ1ξ1) +B sin(γ1ξ1), 0 ≤ ξ1 ≤ 1, (4-5a)

u2(ξ2) = C cos(γ2ξ2) +D sin(γ2ξ2), −1 ≤ ξ2 ≤ 0, (4-5b)

where A,B,C,D are arbitrary constants. As in the case of a string with
homogeneous parameters, we shall consider three types of boundary condi-
tions, namely free-free, fixed-fixed and fixed-free end conditions. The fre-
quency equation for harmonic vibrations of a string is, for the case of fixed
ends,

ε
γ1
γ2

tan γ1 + tan γ2 = 0,

while, for the case of free ends, it is

ε
γ1
γ2

tan γ2 + tan γ1 = 0.

Clearly, both equations do not allow for low-frequency vibrations. Con-
versely, the frequency equation for the fixed-free case reads

ε
γ1
γ2

= tan γ1 tan γ2, (4-6)

which may admit low-frequency vibrations. Indeed, assuming γ1 and γ2
small (which amounts to considering near-cutoff vibrations, see also [1]), we
get

γ22 = ε+O(ε3),

whence the condition for γ2 to be small is given by

ε = T/h ≪ 1. (4-7)

The (squared) scaled frequency λ2
2 is readily obtained from Eq.(4-3) through

shifting by the local cutoff frequency β2
2 , i.e.

λ2
2 = β2

2 + ε+O(ε3)

which, in light of (4-4), is enough for low-frequency vibrations of the 2-
component (assuming that β1 is of order unity or smaller and h of order
unity or larger). In order to achieve global low-frequency vibrations, we
demand λ1 to be small as well and, using the connections (2-9), this requires

λ2
1 =

η2

ε

(

β2
1

h
+ 1 +O(ε2)

)

≪ 1, (4-8)

which amounts to the condition

(β2
1 + h)ρ ≪ 1. (4-9)

Similarly to what was chosen in Sec.3, this condition may be fulfilled taking,
for instance,

η = η0ε. (4-10)

It rests to be seen whether γ1 is also small as it was initially assumed. To
this aim, using the definition (4-3), we further demand

0 < β2
1(ρ− 1) + ρh ≪ 1. (4-11)
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Together, Eqs.(4-9) and (4-11) imply

β2
1 < (β2

1 + h)ρ ≪ 1,

whereupon β1 needs also be a small quantity. For instance, we could set

β1 = εβ0. (4-12)

Leading order asymptotic expansions for the displacement may be equally
well derived. To this end, we first write the eigenforms u1 and u2 through
introducing the general solution (4-5) into the fixed-free boundary conditions
(2-15) and into the continuity relations (2-2)

u1(ξ1) = D (sin(γ1ξ1)− tan(γ1) cos(γ1ξ1)) ,

u2(ξ2) = D

(

ε
γ1
γ2

sin(γ2ξ2)− tan(γ1) cos(γ2ξ2)

)

,

where it is understood that γ1 and γ2 are related through the frequency
equation (4-6). Then, we introduce the smallness assumptions (4-10,4-12)
together with the expansion (4-8) for λ1 and proceed to expand in the small
parameter ε. Thus, the asymptotic expansion for the eigenform is obtained

u1 = D(1− ξ1) +O(ε),

u2 = D +O(ε).

It is perhaps surprising to observe that, under the smallness assumptions,
the presence of the Winkler foundation does not alter the leading order
shape of the eigenforms, cfr. Eqs.(3-6), and a local rigid body-motion is
again retrieved.

5. Conclusions

Very low-frequency vibrations in a two-component high-contrast string
have been investigated for the case of fixed-fixed, free-free and free-fixed
boundary conditions, in an attempt to enhance the energy scavenging capa-
bility of the soft element in a fabric device. It is shown that low-frequency
vibrations are achievable only for the case of fixed-free end conditions, which
seems especially apt at harvesting low-power energy sources. Besides, condi-
tions on the material and geometrical property ratios were given in order to
sustain near-zero frequency vibrations. Piecewise constant as well as variable
material parameters are considered. In the former case, the exact solution
is obtainable and an almost rigid-body motion is found. The almost rigid-
body behavior is especially welcome as it warrants little wear in the system.
Conversely, the latter situation can only be addressed in an approximate
way, through a two-scale approach, and it is shown that, although the al-
most rigid body behavior is generally lost, low-frequency vibrations can still
be sustained, provided that suitable conditions on the material parameters
hold. The question whether low-frequency vibrations may be still admitted
in a soft element supported by a Winkler foundation was then addressed,
because energy harvesters may be embedded in an elastic matrix. In this
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case, the soft string is assumed piecewise constant and an exact solution
is obtained. As expected, two cutoff frequencies appear which, however,
may be brought close to zero under suitable smallness assumptions on the
material parameter ratios. A somewhat surprising result is obtained, for
the local rigid-body character of the leading order expressions for the eigen-
forms, already met in the unsupported case, is again retrieved. It is finally
observed that our results apply equally well to the analysis of low-frequency
vibrations in composite plates and shells treated within the framework of
3D elasticity. For example, in case of a two-layered elastic plate, the eigen-
frequencies λ1, λ2 would be associated with the lowest cutoff frequencies,
see, for instance, [7] and [12].
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