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Abstract. In this contribution, we apply the multiband model developed in [1] to a Kronig-
Penney potential and calculate the Floguet projections of a Gaussian Wigner function in phase
space. The Bloch functions are calculated numerically and then used in the expressions of the
Wigner projections.

1. Introduction

The Wigner-function approach is a commonly used method in the study of electron transport
properties in semiconductors and in the description of their physical properties. (2, 3, 4]. All the
relevant and realistic applications of this approach, however, have considered until now only those
processes which can be adequately described within the single-parabolic-band approximation.
This formalism cannot be applied to those processes which involve non-parabolicity of the
band profiles or multi-band transitions.The latter ones, for example, play a significant role
in determining the flow of current in interband devices (e.g., the Resonant Interband Tunneling
Diode [5]). Therefore, the Wigner-function approach needs to be extended; the definition of the
Wigner function should include the populations of all bands involved in the transport processes
and the evolution equation should take into account possible non-parabolicity effects. A general
model of multiband, non-parabolic transport by the Wigner-function approach was developed
in [1], where a multi-band Wigner function was introduced by using a straightforward expansion
of the wave functions in Bloch states and a Bloch-state representation of the density matrix.
This multi-band model is probably the most general way of using the Wigner-function approach
in the context of multi-band model problems; other formulations, such as the envelope function
model and the Kane model, have recently been explored in the literature 6, 7, 8, 9].

While the effects of non-parabolicity are easy to include in Wigner-function models (see [10]),
the description of multiband transitions requires the knowledge of the energy bands and of the
Bloch functions of the periodic potential, which enter the expressions of the Floquet projections
of the Wigner function. The calculation of these projections is an essential intermediate step
towards the numerical solution of the equation which governes the time evolution of the Wigner
function, and have not been obtained until now. In this work, we show the Floquet projections
of a Gaussian Wigner function in a one-dimensional Kronig-Penney potential.
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2. Multiband Wigner function
By using the completeness of the Bloch functions, we express the Wigner function as a sum over
the components onto the Floquet band subspaces:

f(x,p) = Z fmn(m>p) (1)
M 1 k' di'
funto8) = 3= [ [ S bR )b (2.9 @

where B is the Brillouin zone and |B| its volume, the pp,’s are the elements of the density
matrix in the Bloch-state representation, the coefficients ¢,,, are given by
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and¥ (%) = Umk(z)e?*? is the Bloch function of the m—th band of the periodic potential.
The diagonal projections fp,m, are real, while the off-diagonal ones are complex conjugates,
Fmn = fim. After some steps, we find
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where we have indicated by f(/\, p) the Fourier transform of f(z,p) with respect to z. Here, the
U (k) are the m/—th Fourier coefficients of the periodic part of the Bloch functions. Also,
Kon(@) =p— (m+n)/2, amn(p) =1 — 2| Knn(p)] and © is the Heaviside function. In order to
obtain analytical or numerical data for the Uy, (k)’s, we consider a Kronig-Penney potential
of period 27, given by

Vo, —b<z<0

V(z):{ 0, 0<Lz<g
with b 4+ ¢ = 2#. In the equations above, we have used dimensionless variables. If a is the

lattice period, we have scaled the space variable z, the energy F, the potential V', the Wigner
momentum p and the wave function ¥ according to

2m a? 2ma?

€T a a

For given values of the parameters & and Vj, the eigenvalue problem for the Kronig-Penney
potential can be solved completely, the Fourier coefficients U,y can be evaluated and the
Floquet projections (3) of the Wigner function can be calculated.

3. Numerical results
In this section, we calculate the projections of a Gaussian shaped Wigner function which, as is
well known [11], results from the Wigner-Weyl transform of a Gaussian wave packet,
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f(z,p) =
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Figure 1. (a) foo(z,p), (b) foz(x,D), (¢) fas(z,p) and (d) real part of fo1(z,p) projections of
the Gaussian Wigner function (4) for pg = 0.

Figure 2. (a) fii(z,p) and (b) fu(x,p) projections of the Gaussian Wigner function (4) for
po=1

(with M = g99 002 — 0%)), in the Kronig-Penney potential introduced above. The results are
shown in Figures 1 and 2. We have chosen b = 0.2 and V; = 10 as characteristic parameters of
the Kronig-Penney potential, and zo = 0, oz = 0.2, 011 = 0 and o499 = 0.3, with pg = 0 (Figure
1) and py = 1 (Figure 2).

The projection onto the m = 0 band space shows a maximum centered at z = 0,p = 0
surrounded by lower maxima and negative minima (not seen), due to interference effects. The
projections onto the higher band subspaces show an oscillating structure along the p = 0 line,
with two other peaks located symmetrically about p = 0; they are of equal height in the py = 0
case (Figure 1), while in the py = 1 case (Figure 2) the one at positive p is higher. The oscillating



EDISON 16 TOP Publishing
Journal of Physics: Conference Series 193 (2009) 012123 doi:10.1088/1742-6596/193/1/012123

Al o
; UU TR

X

Figure 3. fy(z,p) at p = 0 as a function of z, for py = 1.

structure at p = 0, shown in Figure 3, is due to the interference of different contributions to
the sum in equation (3), which have an almost gaussian profile. This effect is similar the one
observed in Schrodinger cat states.

4. Conclusions and outlook

We have calculated the Floquet projections of a Gaussian shaped Wigner function in a Kronig-
Penney periodic potential. These are important intermediate results, needed in the study of the
multiband dynamics of a group of carriers in a semiconductor by the Wigner-function approach.
The algorithms and techniques for the calculation of these projections will be included in a
large-scale numerical computation, which is underway, with the aim of describing a coherent
interband transition by the Wigner-function approach.
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