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The research on medical robotics is starting to address the autonomous execution of surgical tasks, without effective intervention of
humans apart from supervision and task configuration. This paper addresses the complete automation of a surgical robot by
combining advanced sensing, cognition and control capabilities, developed according to rigorous assessment of surgical require-
ments, formal specification of robotic system behavior and software design and implementation based on solid tools and frame-
works. In particular, the paper focuses on the cognitive control architecture and its development process, based on formal modeling
and verification methods as best practices to ensure safe and reliable behavior. Full implementation of the proposed architecture has
been tested on an experimental setup including a novel robot specifically designed for surgical applications, but adaptable to
different selected tasks (i.e. needle insertion, wound suturing).
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1. Introduction

Surgical robots provide more and more research and
application perspectives to both medical and engineering
domains. Robotics allows surgeons to improve the
quality of many critical surgical tasks or makes possible
interventions that otherwise would not be possible
[1–3].

Most surgical robots, either commercially available
such as the Da Vinci (Intuitive Surgical, Inc.) or devel-
oped by research entities like the DLR MIRO [4] and the
RAVEN II platform [5], are teleoperated systems. This

means that, despite the fact that mechanical design and
control hardware/software of such systems are highly
sophisticated, they act as mere extensions of human
surgeons, with limited (if any) autonomous capabilities
provided by assistive forces or virtual fixtures [6] on the
teleoperation master device. Embedding increasing
levels of autonomy into surgical robots and giving them
the possibility to carry out simple surgical actions auto-
matically have been the subjects of recent academic re-
search [7].

Needle insertion and suturing are among the most
studied surgical tasks in the last years. The use of Mag-
netic Resonance Imaging (MRI) or Computed Tomogra-
phy (CT) to guide a robot during the insertion of needles
(e.g. for biopsies or other purposes) has been validated in
laboratory setups or animals [8–10]. The execution of the
suturing task with the automation of knot tying in lap-
aroscopic or open surgery is described in many papers
[11–14]. Since mimicking the human gesture involved by
this operation is challenging, some works described the
use of specifically designed mechanical adapters [15].
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There are two critical aspects in any automatic or
semiautomatic surgical procedure: the safety issue and
the registration of the robotic system. The analysis of the
safety goes back to the early stage of robotic surgery and
medical robotics and it is still one of the possible
showstopper for these technologies [16, 17]. Novel de-
sign approaches are needed to integrate safety and se-
curity in the early stage of the development phase, both
at the hardware and software levels [18]. In this paper,
the use of formal models and verification tools is pro-
posed as a viable approach to address such design
issues.

The registration is the other big challenge when more
than one robot or instrument have to work together and
to exchange information (e.g. multi-robot surgical plat-
form). What makes the registration such a difficult
problem is that in medical robotics the operating envi-
ronment (i.e. human bodies) deforms during the inter-
vention [19, 20]. This effect is even more critical in
automatic procedures, when surgeons cannot manually
compensate for mismatches. Almost all registration
algorithms are based on optical tracking systems [21] for
percutaneous interventions, and endoscopic images and/
or ultrasound (US) images for laparoscopic interventions.
A precise registration can be also used to compensate for
respiratory and cardiac motions [22].

Other basic surgical tasks have received some atten-
tion in the research community. A remotely controlled
catheter guiding robot was used to automatically per-
form cardiac ablation [23]. However, an experienced
operator is required to perform all the procedures. Au-
tomatic scissors were proposed, so that surgeons can
command an assisting robotic arm to cut the thread that
he/she is holding [24]. Though all these works propose
successful automation of simple surgical actions, vali-
dated and commercially distributed autonomous surgical
robots are still hard to find. An example is ROBODOC
[25], which is a system capable of interventions on rigid
tissues (i.e. bones drilling or cutting). On the other hand,
the properties of such tissues, rather than soft ones,
greatly simplify the robotic task and allow the use of
robots with stiff mechanical structure and predefined
motion paths, which are standard features in industrial
automation.

This paper describes results obtained during a re-
search project, called I-SUR (Intelligent SUrgical Robotics,
funded by the European Union), whose goal is to develop
a robotic system that can autonomously execute selected
surgical tasks on soft tissues, by combining sensing,
cognitive capabilities and advanced control algorithms.
The tasks addressed so far during the development of the
proposed intelligent surgical robot are: the insertion of
needles into soft bodies, guided by US imaging and em-
ulating the surgical procedure for percutaneous cryoa-
blation of small tumoral masses (this task will also be
called simply puncturing); 3D vision-guided suturing of

planar wounds. The goal of this paper is to improve the
full automation of such tasks in the following aspects:

(1) puncturing: from the CT acquisition to the planning
and execution of the needle insertion, every phase
has to be done automatically by the system, validated
by the surgeon supervising the procedure, and exe-
cuted by the cognitive robotic system;

(2) suturing: from the rough identification of the wound
on an image by the surgeon, the system has to ac-
curately detect the edges of the wound, to choose the
number and location of the stitches, to plan the
motion of the robot arms to perform the suture, and
to validate at run time each stitch according to the
specifications provided by surgeons (pre-operative
knowledge).

This paper extends the analysis and implementation of
these surgical tasks described in preliminary works [26,
27]. The proposed control system is able to adapt online
the interaction between the robot and the environment
and to switch from autonomous to teleoperated mode
preserving stability.

A formal design framework is exploited to precisely
specify the US-supervised puncturing and the vision-
based suturing procedures and translate them into an
engineering design, as proposed by Bonfe et al. [28]. The
formal description enables automatic software design of
the robotic control system and provides validation-ori-
ented requirements that must be addressed during
functional tests. Thanks to the modular and component-
based architecture of the system, the same methodology
and design approach can be applied to automate both the
puncturing and suturing tasks.

The main contributions of the paper are:

. The definition of a requirements engineering approach
to software design for complex cognitive robotic sys-
tems, capable of autonomous execution of surgical
tasks. The proposed approach integrates formal
modeling and verification methods to address safety
issues from the very beginning of the development
process.

. The integration of sensing, cognition and control
capabilities into a modular software system, whose
architectural properties allow to enhance reconfigur-
ability and re-usability of its main components. Par-
ticular care is given to the implementation of robot
motion planning, control and supervision with safety-
related features, which is the most critical part of the
system;

. The experimental validation of the proposed approach
on a novel surgical robot developed within the I-SUR
project.

The paper is organized as follows: Sec. 2 introduces the
surgical tasks selected as case studies and the robotic
setup prepared for experiments. Section 3 describes the
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proposed methodology to collect the requirements and
translate them into control-oriented specifications.
Section 4 describes the proposed system architecture
and its component-based software implementation.
Finally, use case scenarios and results collected during
the execution of the addressed surgical tasks are shown
in Sec. 5, which is followed by conclusions in Sec. 6.

2. Surgical Tasks and Robotic Setup

This paper focuses on the development of a control ar-
chitecture for a novel surgical robot prototype. The robot
is designed to autonomously perform different surgical
tasks with a minimal mechanical reconfiguration. Con-
sequently, the control architecture is developed with the
same focus on flexibility and reconfigurability. In the
following, we briefly introduce surgical requirements of
the considered tasks and the experimental robotic setup.

2.1. Needle insertion

Among possible applications of needle insertion, the
particular case of percutaneous cryoablation of small
renal tumors has been addressed more intensively, in
order to emphasize the potential benefits of the pro-
posed technology and the pre- and intraoperative anal-
ysis that it allows.

Percutaneous cryoablation is the act of killing tumoral
cells by means of cycles of freezing and thaw [29].
Freezing is applied by hollow needles in which liquid
nitrogen or argon gas is circulated, so that an iceball is
grown surrounding the needle tip. More needles may be
required to create a sufficiently large iceball covering the
whole tumor. Since the clinical objective is to destroy the
tumor and limit damages to healthy tissues, accurate
planning and execution of needle positioning is crucial.
The surgical workflow can be resumed as follows:

. Preoperative CT/MRI images are analyzed by the
surgeon to plan the required number of needles and
where to place their tip. The expected size of the ice-
ball is evaluated from isotherm maps provided by the
cryoablation needle manufacturer and from surgeon
experience.

. Needles are inserted through the skin into the tumoral
mass, avoiding as much as possibile bones, nerves and
other organs. Intraoperative US imaging is used for
needle insertion guidance and iceball formation mon-
itoring. During this phase, it is important to align the
US probe so that both the tumor and the needle appear
on the US image. In case of needle trajectory mis-
alignments, due to the deformation of soft tissues, its
orientation can be corrected if the needle is up to 2 cm
within the body, otherwise it must be extracted and
inserted again.

. After the cryoablation freezing/thaw cycle, needles
must be extracted giving particular care to the force
required for removal. In fact, incomplete iceball melt-
ing can hardly be detected from US monitoring and if
the needle is still trapped by residual ice its extraction
would cause bleeding and organ damages.

It is commonly acknowledged by both surgeons and
robotics researchers that using accurately calibrated
mechanical arms, guided by properly registered US
image processing, needle insertion could be executed
more precisely. Moreover, robotic end-effectors equipped
with force/torque sensors would promptly detect needle
trapping conditions and react accordingly. Within the
I-SUR project, the automation of this surgical task has
been addressed following an increasing-complexity ap-
proach, which means that three cryoablation scenarios
were considered: from the simplest case of a small tumor
that can be treated with a single needle, whose insertion
trajectory is specified manually by an expert surgeon, up
to the most complex case of a tumor requiring up to five
needles for treatment, whose positioning is fully auton-
omously planned from CT/MRI image analysis for opti-
mal tumor coverage to robot motion generation. With
this approach, the requirements for each case builds on
those of previous ones by adding issues and desired
features, but also technical solutions developed and
validated for one case can be reused to address the next
level.

2.2. Suturing

Since the aim of the I-SUR project is to develop modular
and reconfigurable cognitive control architectures for
autonomous surgical robots, a different surgical task has
also been addressed, namely the act of suturing (i.e.
closing a wound in a biological tissue by means of a
thread). Even for the automation of this task, an in-
creasing-complexity approach can be applied to define
the following case studies:

(1) Simple planar suture of a linear incision on a flat
surface.

(2) Complex planar suture of an irregular incision on a
flat surface.

(3) Complex suture on nonplanar surface
(4) Tubular suture, a challenging task even for expert

surgeons, required for example to repair blood ves-
sels (i.e. aortic anastomosis).

In any of the previous cases, the suturing action requires
the use of two tools, generaly a needle holder and a
forceps. Semi-automatic suturing instruments also exist,
especially for laparoscopic operations (e.g. Covidien
Endo StitchTM, as will be described later). Even if dif-
ferent suturing techniques exist, the surgical workflow
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can be generalized as an iterative process, whose itera-
tions require the following steps:

(1) Plan the stitching point on the tissue, according to
length and depth of the wound.

(2) Insert the needle on one edge of the wound using the
needle holder.

(3) Grab the needle with the forceps and switch it back
to holder.

(4) Insert the needle on the other edge and push it
further.

(5) Grab the needle with the forceps and pull, return to
Step 1.

Within the I-SUR project, the automation of the suturing
action has been implemented referring to the simplest
case (i.e. linear wound on a planar surface). However, the
solutions developed for this case are expected to be ap-
plicable, with proper refinements, also to cases 2 and 3,
while tubular sutures seems too much challenging for
the current state-of-the-art robotic technologies.

2.3. Robotic setup

The surgical robotic setup developed to execute both
emulated cryoablation and wound suturing has been
deployed in two slightly different configurations. For the
puncturing case study, the system is prepared as shown
in Fig. 1, assembling the following parts:

– A UR5 industrial robot (Universal Robots A/S), a 6
Degrees-Of-Freedom (DOF) manipulator with a 5 kg
payload and a reach radius of up to 850mm, holding a
US probe thanks to an ad hoc adapter.

– A robot specifically developed for surgical applica-
tions and based on a macro-micro mechanical design
approach [30], that will be called ISUR (Intelligent
SURgical) robot. The macro unit is a parallel robot,
whereas the micro unit is composed of up to two se-
rial arms, holding a cryoablation needle or a suturing
device according to the desired task. The surgical tool
is mounted on a 6-DOF force/torque sensor (ATI
Mini40, ATI Industrial Automation) with a resolution
of 0.01N/0.00025Nm for control and monitoring
purposes. Further details about the mechanical sys-
tem, designed by the RELab of ETH Zürich (partner of
the I-SUR project), are described by Muradore
et al. [27].

– A phantom accurately reproducing a human abdomen,
manufactured at the Centre for Biorobotics of Tallinn
University of Technology (another partner of the I-
SUR project), that is shown as a red box in Fig. 1. More
details about the anatomical characteristics of the
phantom and its CT and US compatibility are de-
scribed in a previous work [31].

– A couple of PHANTOM Omnir (Sensable) haptic
devices, with 6 sensed DOF and force feedback on the

translational DOF, allowing bilateral teleoperation of
the robots.

The setup allows to emulate a cryoablation operation
using real cryoablation probes (IceRodTM from Galil
Medical, Inc.), apart from the actual freezing/defreezing
cycles, since refrigerating gas circulation machines could
not be installed in the academic laboratory hosting the
experimental setup because of obvious safety issues. A
3D optical tracking system (Accutrack 500, Atracsys LLC,
a system with active markers and a mean position error
of 0.19mm) is used to estimate relative coordinate
transformations among the robots and the phantom.
Finally, the setup includes an ultrasound imaging device
whose images are visualized on a dedicated graphical
interface for the surgeons and processed in real time to
detect the position of needle tip, using the algorithm
developed by Mathiassen et al. [32], and provide
intraoperative adaptation of robot motion trajectories, as
required by the surgical workflow previously described.

For the suturing task, the ISUR robot is equipped with
two arms (i.e. the micro unit, mounted on the moving
platform of the macro unit parallel robot). Instead of
installing needle holder and forceps on such arms, whose
use would require a larger workspace and more complex
maneuvers, a semi-automatic instrument Endo StitchTM

UR5 

industrial 

robot ISUR 

robot

Phantom

US

probe

Fig. 1. Experimental setup for the needle insertion task.
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(by Covidien) has been mounted on the right arm. The
Endo Stitch is a specific tool for internal suturing during
laparoscopic surgery, with two jaws: a tiny needle can be
held in one jaw and passed to the other jaw by closing
the handles and flipping a toggle levers. These operations
have been automated by reverse engineering. The left
arm of the ISUR robot micro unit, instead, has a gripper
at its end effector, which is needed to grasp and move
away the thread to avoid knots during the procedure.
Even though the Endo Stitch is designed for laparoscopic
interventions, the current setup of the ISUR robot is only
addressing uses in open surgery suture, to simplify mo-
tion planning and execution issues.

The mechanical setup is shown in Fig. 2. The adapter
holding the Endo Stitch is endowed with two motors: the
first one for closing the jaws (and so executing the stitch)
and the second one for switching the needle from one
jaw to the other when the stitch is done.

The planning and monitoring of the task is vision
based. A 3D camera system is used for the registration of
the phantom with the micro-macro ISUR robot, for the
detection of the wound, for the planning of the stitches
and for compensating misalignment and mis-registration
during the execution.

A phantom is used to reproduce the human skin. The
phantom is a silicon-made pad with two layers having
different stiffness and color. The difference in color is
exploited by the camera system to detect the wound and
to track the Endo Stitch tool and detect its correct in-
sertion within the wound, whereas an admittance con-
troller takes care of the contact of the tool with the soft
tissue.

3. Requirements Engineering and Design
Specification

3.1. Development process

The design of cognitive autonomous robots for surgical
applications must ensure a safe and reliable behavior of
the final system. A careful use of formal modeling and
verification tools is commonly acknowledged as a viable
approach to address safety issues, especially within
complex and software intensive design projects [33–35].
For this reason, design specifications for supervision,
reasoning and control logic have been formalized using a
requirements engineering approach, following the vali-
dation-oriented methodology described in a preliminar
form in a previous work [28]. In particular, the proposed
methodology aims to collect human knowledge about the
desired surgical procedures and related safety issues,
translate it into a formal model and automatically gen-
erate control-oriented specifications of the prescribed
system behavior. The latter is then mapped into the su-
pervision logic of the final software architecture, whose
correctness properties can be further verified using
formal tools.

In the initial phase of the development process, the
knowledge of expert and specialized surgeons (e.g.
urologists practicing cryoablation tasks) is captured to
define, for each surgical task, a detailed definition of the
main procedures (\best practice") to be performed, the
elements of the domain (i.e. tools, gestures, preoperative
and intraoperative data), the critical events related to
the surgical actions and how they could be addressed to
preserve safety. In the I-SUR case, this phase required
surgeons interview, participation of developers and
engineers to real surgical operations and execution of
such operations on artificial phantoms and augmented
reality simulators developed during the project, as de-
scribed by Muradore et al. [36]. Then, surgical require-
ments are expressed using a goal-oriented methodology
called FLAGS (Fuzzy Live Adaptive Goals for Self-adap-
tive systems [37]), which is focused on the essential
objectives of an operation and on complications that
may arise during its execution. The result of the
knowledge formalization is a goal model, technically
defined as a set of formal properties expressed in the
Alloy language [38], which is a specification language
expressing structural and behavioral constraints for
complex software systems, based on First-Order Logic
(FOL) and Linear Temporal Logic (LTL [39]). For ex-
ample, a leaf goal of the cryoablation procedure, related
to its safe completion, requires to avoid forbidden
regions (i.e. bones, nerves, other organs) during needle
insertion. The goal is specified by the following LTL
formula:

G½MP ¼> !ðFR ^ ðFR:needle ¼ MP:needleÞÞ� ð1Þ

Endo Stitch

Tool adapter

(with motors)

Load

cell

6-DOF 

arm

(with 

gripper)

Fig. 2. Experimental setup for the suturing task.
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asserting that whenever (i.e. Globally) a movement is
performed (event MP), the needle entity associated to the
movement must not touch a forbidden region (event FR).

The advantage of using a formal language for
requirements specification is that the goal model can be
automatically transformed into a sequence of operations
and adaptations, satisfying the goals of the surgical
procedure, thanks to the features of the Alloy Analyzer
tool [40]. As a result, the process provides a sequential
model equivalent to a state machine, representing the
whole system behavior that guarantees the achievement
of the root goal and does not violate safety constraints.
Using this approach the requirements analysis is focused
on the objectives of a surgical task, rather than the way
(i.e. the operational sequence) in which they are
obtained, since the latter is generated automatically by
formal reasoning.

To enforce reconfigurability and reusability of the
control software architecture, modular design is also
commonly recommended. The state model obtained after
goal-oriented analysis can be used for modular software
design provided that its overall logic is refined and par-
titioned into the structural units of the system, as will be
further described in next subsection, implementing a
collaborative and coordinated behavior compatible with
the requirements. This task is performed applying de-
composition methods from classical discrete systems
theory and using UML (Unified Modeling Language [41])
as a modeling tool, being the latter the current gold
standard in object-oriented and component-based soft-
ware design.

Finally, the UML model of the modular system is
verified using formal tools for Model Checking [42]
(namely, the tool Symbolic Model Verifier, SMV [43]), to
prove that the design model preserves the properties
expressed by the goal model. This task requires the for-
malization of an appropriate semantics of the UML be-
havioral specification (i.e. State Diagrams of system
components), compatibly with the operational features
of its run-time implementation. This step will be further
analyzed in Sec. 3.3.

3.2. System design

The autonomous robotic system designed in this project
is supervised and controlled by the following modules: a
Surgical Interface, the Robot Controllers and the Sensing
system with Reasoning and Situation Awareness capa-
bilities. The Surgical Interface is a software-intensive
system allowing surgeons and technicians to drive the
system during both the preoperative and the intrao-
perative phase. In the first one, the focus is on detailed
planning of the surgical intervention, while during the
execution of operations the interface provides real-time
visual navigation of the surgical scenario and, if

necessary, allows the surgeons to take control of the
system by switching into a teleoperated mode.

The Robot Controllers are the units implementing
control of surgical actions and tasks sequencing during
the intraoperative phase. The event-driven behavior
extracted from the goal model is mapped into the robot
control logic, which is specified by a UML State Diagram.
Needs for a safe behavior require a strict coordination of
these components with both the Surgical Interface and
the Sensing/Reasoning module. The latter is a composite
sub-system implementing advanced Sensing algorithms
and Reasoning for Situation Awareness, whose role is to
provide support to the planning task, during the preop-
erative phase, and prompt identification of anatomical
changes or discrepancy between the tasks being exe-
cuted and the nominal surgical plan, during the intrao-
perative phase. Bayesian Networks and Particle
Filters [44] are used to detect the occurrence of unde-
sired events and critical situations, so that appropriate
corrective actions can be triggered.

In the following, the logic behavior of the Robot
Controller, with integrated safety mechanisms, and its
interactions with other modules is described for each
surgical case study. For the puncturing case, the starting
point of the procedure is the automated planning of
cryoablation needles placement, a feature embedded in
the Surgical Interface. A cryoablation planning algorithm
(also called cryo-planner in the following), a novel con-
tribution in itself described more precisely by Torricelli
et al. [45], elaborates preoperative medical images to
calculate the optimal placement of cryoprobe needles,
providing full tumor coverage with the expected iceball
and not interfering with other organs (i.e. forbidden
regions). The plan generated by the cryo-planner spe-
cifies for each needle the skin entry point and the target
point on the tumor. The needles placement is referred to
the center of the tumor, therefore the task plan, once
validated by the surgeon, must be mapped into the op-
erational space of the robot by means of the registered
coordinate transformations calculated by the Sensing/
Reasoning module. During the actual needle insertion
task, the US probe is first placed on the surface of the
body, aligned with the expected needle tip trajectory, and
then the planned needles are one by one mounted on the
robot end-effector, when the latter is placed into a given
needle changing pose, and then automatically inserted.
Similarly, once that the cryoablation freezing cycle is
completed, the needles are expected to be extracted one
at a time, monitoring the applied force to detect if the
iceball is not completely melt and consequently a needle
is trapped. The complete behavioral specification of the
robot control logic for needles insertion, compatible with
the previously described workflow, is given by the UML
State Diagram shown in Fig. 3.

The suturing surgical task instead, as addressed
within the ISUR project, requires a more complex
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coordinated motion of the two arms installed on the
moving platform of the parallel macro-unit, but on the
other hand its control logic is simpler. In fact, the adop-
tion of a semi-autonomous suturing device like the Endo
Stitch prescribes a well-defined sequential behavior. The
sequence of required robot motions is schematized in
Fig. 4.

Assuming that a Right Arm mounts the Endo Stitch
and an assisting Left Arm has a gripper to grasp the
thread, the procedure starts with the right end-effector
(EER) at P0 (see Fig. 4) and the left end-effector (EEL) at a
relative distance from EER. Then, both end-effectors
move to target poses such that EER reaches P1 and EEL
keeps the initial distance. The application of a stitch
requires to insert the EER inside the wound with the
clamp oriented along the cut (EEL holds in place) and
then rotate it to clamp the left border of the wound in P3.

After that the Endo Stitch executes the bite and switch
action, the EER goes to a target above P1, stopping when a
proper thread tension is detected. Finally, the EEL grasps
the thread and pulls it away, while EER moves to keep a
proper thread tension and the sequence is repeated on
the right border of the wound and again from the be-
ginning for the next stitch. The suture planning is also
done automatically and it consists of a pre-operative and
an intra-operative phase. The first analyzes 3D images of
the wound and calculates the required number of stit-
ches, according to the length of the incision. The second
one updates the wound detection after the execution of
each stitch, since this action inevitably modifies the
wound shape, and refines accordingly the proper place-
ment of next stitch. The complete behavioral specifica-
tion of the suturing task, that takes these requirements
into account, is shown by the UML State Diagram of
Fig. 5.

As can be seen, the hierarchical features of UML State
Diagrams allow to embed exception handling mechan-
isms, by means of transitions exiting composite states. In
both state machines, in fact, the robotic task can be
stopped because of an exception event, that can be
triggered either by the surgeons, through the Surgical
Interface, or by the Sensing/Reasoning and Situation
Awareness module. Events that are monitored and han-
dled by the latter to preserve safety are: the needle is too

AutonomousMode

InsertionTask

InsertNeedle

WaitCryoCycle

ExtractionTask

include / ExtractionTaskSeq

MoveToChangeNeedle

include / InsertionSeq

WaitNeedleRemoved

TaskStopped

e_TaskConfigured

e_NeedleRemoved

e_ForceLimit,
e_FRTooClose,
e_NeedleLost

e_TaskAborted

e_TaskCompleted

WaitUSInPlace

WaitIceballConfig

e_NeedleMounted

e_TumorReached 
/ [ NewTarget ] 

TeleoperationMode

e_TeloperationReq

e_AutoReq

e_USInPlace

e_CryoCycleFinished

e_TumorReached 
/ [ TargetsListEmpty ] [InsSel] 

[CryoSel] 

[ExtSel] 

WaitNeedleMounted

e_ChgPoseReached

e_TaskRecovered

Fig. 3. UML State Diagram of the behavioral specification for
cryoablation needles insertion.

Fig. 4. Sequence of motions for a suturing task executed with
the Endo StitchTM tool.

AutonomousMode

ApplyStitch

MoveOverWound

TaskStopped

e_TaskConfigured

e_ForceLimit,
e_ToolLost

e_TaskAborted

e_TaskCompleted

WaitStitchesPlan

TeleoperationMode

e_TeloperationReq
e_AutoReq

GetDesiredStitchPose

e_StitchPoseReceived

e_OverWoundReached

MoveInsideWound

e_OverWoundReached

RotateToWoundBorder

e_WoundBorderTouched

BiteAndSwapNeedle

e_NeedleSwapped

DisengageNeedle

e_NeedleDisengaged

PullThread

e_ThreadPulled

HookThread

e_ThreadHooked

PushThread

e_ThreadPushed

e_TaskRecovered

Fig. 5. UML State Diagram of the behavioral specification for
the suturing task.
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close to a forbidded region (e.g. a bone or another organ
not involved in the cryoablation), namely e FRTooClose

in Fig. 3; the force applied by the robot exceeds a given
limit, namely e ForceLimit in both Figs. 3 and 5; the
surgical tool is not properly tracked by US or stereo
image processing algorithms, namely e NeedleLost in
Fig. 3 and e ToolLost in Fig. 5. Whatever is the excep-
tion event, if the task execution can be restarted after
appropriate validation of the surgeons, the transitions
marked by the e taskRecovered event are executed.
Otherwise, the system allows the surgeon to teleoperate
the robot, which is assumed to be the safest mode of
operation.

3.3. Model checking

Formal verification of the UML design model requires the
definition, first of all, of its operational semantics,
according to the execution model of the target imple-
mentation framework. In particular, the proposed UML
design has been implemented using the component-
based Orocos framework [46] and rFSM (reduced Finite
State Machines), an execution engine for hierarchical
state machines written in Lua. The salient features of the
operational semantics of an rFSM model [47] and its
differences with the one defined by the UML standard
can be summarized as follows:

. in UML events are supposed to be stored in a queue
and processed one at a time to evaluate the enabled
transition set of the state machine. Instead, rFSM col-
lects all events occurred since the last executed ma-
chine step and uses them to evaluate enabled
transitions and execute the next step, after which the
whole set of occurred events is cleared;

. conflicting transitions are solved according to different
structural priority schemes: UML gives higher priority
to transitions whose source state is at lower hierar-
chical levels, while rFSM reverts the rule;

. rFSM does not support concurrency (i.e. so-called
AND-states), since it assumed that this feature is pro-
vided by the higher level execution framework of the
Orocos components deployer.

Assuming that an rFSM machine is embedded into a
given Orocos component with input and output event
ports to interact with rFSM machines in other compo-
nents, it is possible to formalize the UML design model
implemented in Orocos-rFSM as a modular transition
system, following the approach described by Bonfè
et al. [48]. In particular, the formal model of a component
embedding an rFSM machine is a structure:

C ¼ ðS;T; P; rÞ; ð2Þ
where S is a (hierarchical) set of states, T is a set of
transitions, P = PI [ PO is a set of \port" variables, each

one of a given data type (including event), and r 2 S is the
root state. The full system is then defined as an ordered
set of components and interconnections, together with a
scheduling function. Such a formal model can be easily
translated into the input language of the SMV tool [43], a
model checker well-known for being able to efficiently
handle the state-space explosion problem and allowing
users to specify desired properties with either Compu-
tation Tree Logic (CTL) or Linear Temporal Logic (LTL).

The previously described rFSM events collection
mechanism is different from the PLC-like execution
model described by Bonfè et al. [48] and requires a
specific adaptation. In particular, each event must be
associated to an SMV module, whose internal boolean
state is set true if the event has occurred and is reset
when the event is cleared by the execution of the step of
its \container" rFSM module. The module in SMV code is
the following:

MODULE rFSM_EV(Event, Clear)

VAR

Occurred : boolean;

ASSIGN

init(Occurred):=0;

next(Occurred):= case

!Occurred & Event : 1;

Occurred & Clear : 0;

1 : Occurred;

esac;

The SMV module related to an rFSM machine will
include an rFSM EV for each input and output event:

MODULE rFSM_Robot(ExecStep,e_ForceLimit,..)

VAR

e_ForceLimit_ev: rFSM_EV(e_ForceLimit,

(Exec = FINISHED));

Exec : fIDLE, STEP, FINISHEDg;
The module has a boolean input ExecStep that trig-

gers the execution of its step, which is managed by the
scheduling function mentioned before. When the step
execution is completed, the enumerated variable Exec

takes the value FINISHED and consequently input events
are cleared. Finally, the hierarchical structure of the UML
State Diagram specifying the behavior of an rFSM module
is then encoded according to the same rules proposed by
Bonfè et al. [48].

An SMV program is completed by the declaration of a
main (i.e. container) module and by the specification of
desired safety properties of the system. The SMV tool is
then able to perform an exhaustive search of the state-
space of the model, to confirm that such properties are
never violated in any admissible execution path of the
system. If instead a property is violated, SMV presents a
counterexample (i.e. a path ending in a state not satis-
fying the property). As said before, the desired properties
can be expressed using LTL, so that it is possible to verify
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that the design model achieves the very same goals de-
fined during the requirements specification, as described
in Sec. 3.1 (for example, Eq. (1)).

The proposed verification procedure considers a dis-
crete model of the surgical system in which robot motion
is abstracted at an atomic level. Including a continuous
model of motion into the verification process and then
applying model checking algorithms for hybrid sys-
tems [49] is also possible, but at the price of an expo-
nential growth of the computational complexity. On the
other hand, formal verification of the hybrid model could
consider a reduced version of the task state machine,
modeling only the critical phases of the surgical proce-
dure in which the robot is actually interacting with the
patient. The puncturing task has been addressed with
this approach, as described by Muradore et al. [50], and
results obtained from different model checking tools for
hybrid systems are presented by Bresolin et al. [51].

4. System Architecture

4.1. Implementation and deployment

Software development for the proposed cognitive surgi-
cal robotic system involves efforts from different re-
search teams and, consequently, the integration of
different software technologies. The core part of the ro-
botic control system is implemented using Orocos com-
ponents and runs on PCs with Ubuntu 12.04 Linux
operating system and Xenomai hard-real time extension,
while the Surgical Interface is developed using Microsoft
.NET Framework and the low-level control (i.e. regula-
tion of joints positions, velocities and currents) of
the ISUR robot exploits National Instruments LabView
2013 and a CompactRIO control platform. Networked
distribution of Orocos components is supported by
CORBA [52] interoperability, while interconnection of
Orocos-based software and other modules requires the
development of socket-based exchange of TCP or UDP
packets on Ethernet connection. A careful choice of net-
work topology and the use of high-speed switches
allowed to obtain a frequency of 1 kHz for the interaction
between the Orocos-based high-level control system, that
will be further described in Sec. 4.2, and the ISUR low-
level control. Within the proposed architecture, the
central role is played by the Task Supervisor, which
contains the rFSM-based implementation of the UML
State Diagrams described in Sec. 3.2, specifying the
event-driven behavior required to coordinate robot
actions and supervise the overall task execution. The
cognitive part of the system is completed by Sensing
software, which is in this case implementing real-time US
image processing for needle tracking [32], and a Situa-
tion Awareness module, implementing Bayesian Net-
works [44] processing data received from Sensing and

robot control software to detect events and exceptions
(e.g. forbidden regions touched, force limits exceeded,
etc.).

The Surgical Interface manages the interaction with
surgeons by showing intra-operative images, 3D ren-
dering of the full robotics system in its current pose and
accepts commands and inputs when required to progress
with the task. Finally, a PHANTOM Omni haptic device,
which is the master device when the robotic system is
switched into the teleoperated mode, is installed on
a dedicated PC together with a specifically designed
interface software, a choice motivated only by issues
related to device driver stability.

As described in Sec. 2, the experimental setup for the
puncturing task includes two different robots: the ISUR
robot, performing needle insertion, and a commercial
UR5 robot, holding an ultrasound probe. Motion planning
and control for the two robots are executed by duplicated
instances of the same components, running on different
platforms to simplify the interaction with low-level
control hardware, as shown by the final deployment
schematized in Fig. 6(a). The high-level control system
for each robot is in charge of: searching valid Cartesian
paths, satisfying task requirements and avoiding colli-
sions among the two robots and other obstacles; gener-
ating timed trajectories satisfying dynamic constrains
(i.e. maximum velocity and acceleration); generating low-
level (i.e. joint position) commands for the control
hardware. It is also useful to remark that the execution of
the puncturing task does not require simultaneous mo-
tion of the two robots, so that their movements can be
planned one at a time.

The suturing task, instead, requires a different setup
and, consequently, a slightly different software deploy-
ment. In particular, the mechanical setup of the ISUR
robot embeds two micro-units and no additional arms
are required. Moreover, coordinated and simultaneous
motion of the dual-arm robot requires a different con-
figuration of the motion planning and control algorithms,
as will be further analyzed in next subsection. Finally, the
Sensing software is implemented within the ROS [53]
environment, which can be straighforwardly connected
to Orocos components, and performs the identification of
wound borders by analyzing images from a Bumblebee 2
(Point Grey Research, Inc.) stereo camera with a 1024�
768 resolution. The overall scheme of the deployed
architecture is shown in Fig. 6(b).

4.2. Task supervision and control

The main objective of the proposed architecture is to
embed autonomous behavior into a surgical robotics
setup. Therefore, the nominal mode of operation of the
control system corresponds to the automatic execution of
supported surgical tasks. The components allowing the
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(b) Suturing task

Fig. 6. Cognitive control architecture for autonomous surgical robotics.
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ISUR robot to implement the autonomous behavior are
shown in Fig. 7.

The main director of the system is the Task Supervisor
component, embedding the task state machine translated
in Lua language using the rFSM framework. Any other
component of the system interacts with the supervisor
by means of events, such as the completion of a motion
step or inputs from the Surgical Interface. In this way,
each software component is developed to provide con-
text-independent basic functionalities and its reusability
is increased, since task-dependent coordination and
configuration is demanded to the supervisor.

The only other component which is strictly task de-
pendent is the Task Frame Generator: this component
contains all the computations required to transform the
data generated by preoperative planning tools, using
transformation matrices calculated during both offline
and online registration, so that the proper target points
are assigned for motion planning. In particular, the re-
quired transformations are: between the reference
frames of the two robots; from the end-effector of each
robot to the specific tool tip; from US or stereo camera
image coordinates to the robot frame; from the origin of
patient/phantom 3D model to the robot frame. The latter
is particulary important for the puncturing task, since
the output of the cryo-planner software [45] (i.e. optimal
needles placement) is referred to the center of the tumor.
This output is post-processed by the Task Frame Gen-
erator also to find an adequate placement of the US
probe that guarantees visibility of the needle during the
insertion.

As shown in Fig. 7, the Task Frame Generator com-
ponent can set the required motion command in two
alternative ways, depending on the state of the task. In
the first one, a goal pose is sent to a sampling-based
Motion Planner. The Motion Planner generates online
a collision-free path exploting the RRT-Connect [54]

algorithm implemented by the the Open Motion Planning
Library (OMPL [55]). For the puncturing case, the plan-
ner considers one robot at a time and the output is the
path for the 6 DOF pose of the robot tip. For the suturing
case, instead, simultaneous motion of two arms is re-
quired, so that the output is a composite path for the full
12 DOF dual-arm pose. In any case, the path is then
transformed into a timed trajectory by the Trajectory
Generator, applying multi-axis/multi-segment interpola-
tion algorithms [56].

In the second way, the Task Frame Generator sends a
motion primitive, specified by a fully predefined path,
directly to the Trajectory Generator for interpolation.
This alternative solution is necessary since sampling-
based planning algorithms do not guarantee anything
about the shape of the path, which is instead important
for a correct execution of the surgical gestures. For the
puncturing case, the only required motion primitive is a
linear path connecting the skin entry point to the target
on the tumor, while for the suturing task the motion
primitives are those required to replicate the pattern
schematized in Fig. 4 and described in Sec. 3.

The surgical robot must interact with the environ-
ment during the execution of the task. The regulation of
the interaction behavior in the operational space is
guaranteed by the Variable Admittance Control compo-
nent. Admittance control and impedance control [57] are
very effective schemes to achieve a desired robot/envi-
ronment interaction, specified by a virtual multi-dimen-
sional mass-spring-damper system. Loosely speaking,
impedance control is more suitable for backdrivable
robots while admittance control is more suitable for stiff
robots. The robot specifically developed for this project,
described in Sec. 2, has a stiff and not backdrivable
structure. Therefore, a variable admittance controller has
been implemented for the high-level control of the robot,
introducing the possibility to modify online the stiffness
of the interaction model without loosing passivity and,
hence, stability of the closed-loop system [58]. Thanks to
this dynamic behavior, the controller is adapted during
the execution of the task, so that the robot is, for exam-
ple, more compliant when approaching the surgical tool
to the skin and stiffer when the tool (e.g. the needle) is
pushed towards the final target.

A side effect of admittance control is to provide pos-
sible deviations from the reference trajectory, in case of
environment interaction. Moreover, motion primitives
provided by the Task Frame Generator are defined as
incremental motions starting from current pose of the
robot. As a result, the desired pose calculated by the
Variable Admittance Control component is not always
guaranteed to preserve a safe distance from collisions. To
cope with this issue, the desired pose to be commanded
to the low-level controller of the robot is validated by a
specific State Validator component, that verifies that the
pose is kinematically reachable and safely far from

Fig. 7. Software components for ISUR robot motion planning
and control (autonomous mode).
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collisions, otherwise the command is discarded and
motion stops (the user may then decide to switch the
system into teleoperated mode). More details about in-
verse kinematics of the ISUR robot and collision checking
algorithms exploited for this purpose are described by
Preda et al. [59].

Undesired events and direct surgeon requests may
force the system into a teleoperated mode, in which the
motion planning sub-system is not active and the sur-
geon takes control of the robots by means of dedicated
haptic interfaces. Force feedback to such haptic devices is
provided implementing a bilateral teleoperation control
scheme [60]. Theoretical stability issues related to the
autonomous/teleoperated mode switching have been
addressed in the design of control algorithms [58]. Here,
we can add that the software components Motion Plan-
ner and Trajectory Generator are replaced, in tele-
operated mode, by components implementing the
Transparency Layer and the Passivity Layer (according to
the definitions of Ferraguti et al. [58]). Smooth mode
switching is also supported by the fact the Variable Ad-
mittance Control component is designed to accept either
pose commands, as required in autonomous mode, or
wrench (i.e. 6 DOF force/torque vector) commands, as
required by bilateral teleoperation.

5. Experiments

5.1. Puncturing

The automonous surgical robot and its cognitive control
architecture have been tested during an experiment
emulating a full cryoablation task, requiring the insertion
of five needles, to validate the safety mechanisms em-
bedded in the supervision system and the stability of
control algorithms. The operations of the robotic system
are described by the UML Sequence Diagram of Fig. 8.

The timeline of the Task Supervisor shows the states
of the corresponding state machine along the nominal
behavior of the robotic system. The system is actually
able to manage deviations from the nominal case (i.e.
undesired events) thanks to the design of the UML State
Diagram of Fig. 3. A similar experiment, but ending with
an undesired bending of the needle and the consequent
request for a teleoperated mode switching, is reported by
Ferraguti et al. [58], to demonstrate the stability of the
control system during the commutation from autono-
mous mode to bilateral teleoperation.

In the nominal case, the surgical procedure is started
when the ISUR robot and the UR5 robot are in a home
position and the surgeon has confirmed the needle
placement provided by the cryoablation planner. The

HS : Surgeon

SI : SurgicalInterface TS : TaskSupervisor TG : 
TrajectoryGenerator

1 : StartInsertionSeq
2 : (e_StartInsertion)

A: WaitUSInPlace

7 : PlanPath

11 : (e_ChgPoseReached)

C: WaitNeedleMounted
12 : NeedleMounted

D: MoveToApproach

13 : (e_NeedleMounted)

17 : changeStiffness

E: MoveToSkin
19 : genTraj

20 : (e_MoveFinished)

F: MoveToTarget

G: WaitNeedleRemoved

MP:MotionPlanner

8 : LoadPath
9 : genTraj / startMove

10 : (e_MoveFinished)

14 : PlanPath

16 : startMove
15 : LoadPath

to Variable
Admittance
Control18 : (e_MoveFinished)

21 : genTraj
22 : (e_MoveFinished)

MP-UR5 / 
TG-UR5 

3 : PlanPath 4 : LoadPath
5 : genTraj / startMove

6 : (e_USInPlace)

B: MoveToChangeNeedle

Fig. 8. UML Sequence Diagram describing the puncturing experiment.
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UR5 robot is then moved along a collision-free trajec-
tory, generated by the Trajectory Generator according to
the path received by the Motion Planner, to a position
allowing the needle tracking algorithm to detect the
needle in the US image plane and the ISUR robot is
moved to a position allowing the surgeon to mount the
needle onto the end-effector. The system is required to
wait for an acknowledgment from the surgeon, verifying
the correct installation of the needle. Once that the
needle is mounted, the ISUR robot moves towards the
final target in three steps: first a collision-free trajectory
to an approach position is generated and executed, then
a sequence of two motion primitives (i.e. two aligned
linear trajectories of specified lengths) is executed to get
in contact with the skin and then penetrate it. During
these operations, the stiffness of the Variable Admit-
tance Controller is modified to ensure a precise inser-
tion of the needle within the soft tissue. The stability
during this phase is guaranteed by the technique pre-
sented by Ferraguti et al. [58]. The robot is finally
stopped and waits for the disconnection of the needle

from its end-effector, then the sequence is repeated for
the other four needles.

Figure 9 shows images captured during the actual
execution of the experiment. Each image is related to a
given state of the task sequence. The safe execution of
the task is also demonstrated by the fact that forces
applied by the ISUR robot at the needle tip are limited
within prescribed bounds, as shown in Fig. 10.

Clinical effectiveness of the emulated cryoablation
experiment is related to the correct implementation of
the supervision and control systems, which is the focus
of this paper, but also to the accurate registration and
calibration of the robotic setup. The detailed explanation
of the methods used for the latter operation has been
published by Muradore et al. [27]. The overall accuracy
of the needle tip positioning with respect to the tumor,
verified during system testing, was 5.4 mm. Surgeons
involved during the validation of these results admitted
that this error is not acceptable for real applications.
On the other hand, more precise execution of robot
manufacturing and software-based compensation of

(a) (b)

(c) (d)

(e) (f)

Fig. 9. Images captured during the puncturing experiment.
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related tolerances should reduce the error within the
millimetric bound.

5.2. Suturing

The second surgical task under study is the suturing of a
planar and linear wound. Figure 11(a) shows the phan-
tom pad where the skin is in yellow and the muscular
layer below in red. The wound has an ellipsoidal shape
and can be easily and accurately detected by a 3D vision
system by color thresholding. Vision system calibration
and its registration in the operational space of the robot
has been performed using the calib3d module of the
OpenCV library [61], that implements well-known
chessboard-based methods. The absolute average error
of this registration on the experimental setup was 0.57
mm. When the edge of the wound are detected and de-
scribed in mathematical terms (Fig. 11(b)), it is possible
to run the algorithm that selects the number of stitches
needed to close the wound and their position with re-
spect to the edges. In Fig. 11(c) the nominal position of
the stitches on the left edge are indicated with red
squares whereas the ones on the right edge with purple
squares. This distribution comes from surgical specifi-
cations on stitch-to-stitch and stitch-to-edge distances,
both required to be equal to 5mm.

This is the initial step of the sequential procedure that
executes the stitches one-by-one in an autonomous way.
After the execution of each stitch the system has to:

(1) verify that the two edges perfectly overlap nearby
the stitch (i.e. no red tissue should be visible around
the stitch),

(2) check the actual position of the stitch with respect
to the nominal position (in particular the stitch-
to-stitch and stitch-to-edge distances have to be
monitored),

(3) determine the edges of the wound and re-plan the
stitches position according to the actual shape of the
wound and the position of the previous stitches.

Once that the sensing module has detected the
wound and stitches distribution has been planned, re-
lated data are passed to the motion planning and con-
trol subsystem for the execution of the task. Online
sensing during task execution allows to track the Endo
Stitch and verify its correct insertion within the wound.
Moreover, online sensing would also be required to
detect the thread by means of 3D image processing, so
that the left arm of the ISUR robot can properly plan its
grasping. However, thread detection turned out to be
not reliable with the technology used in the current
setup. As a workaround, preliminar experiments with
manual motion of the ISUR robot arms revealed the
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Fig. 10. Forces applied by the robot during puncturing.
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Fig. 11. (a) Two-layer phantom pad, (b) edges detection and
(c) nominal position of the stitches at the beginning of the
procedure.
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possibility to mount a small rod, instead of a gripper, on
the left arm to simplify the task of pulling away the
thread with a sweeping motion.

The overall control architecture and its interaction
with the sensing module has been tested in parallel with
the mechanical assembly of the dual-arm version of the
ISUR robot, replacing the physical system with a

specifically developed 3D viewer. The viewer animates a
full CAD model of the robot, so that it can accept joint
position commands just like the low-level controller of
real robot. The 3D meshes shown by the viewer are ex-
actly those used for collision-checking in the motion
planner, which allows to visually verify the planned paths
and the logical sequence of the task. Figure 12 contains

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 12. Frames from a simulated execution of the suturing task.
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an excerpt of a full run of the stitching sequence de-
scribed in Sec. 3.2.

More precisely, the frames show: A, the arms in their
initial position; B, after an online planning, the two arms
are moved over the wound; C, the tip of the Endo Stitch is
positioned inside the wound; D, the Endo Stitch is ro-
tated to touch one edge of the wound; E, both arms are
moved following motion primitives to pull the thread; F,
the left arm is moved around the thread with a motion
primitive; G, the left arm pushes the thread; H, the two
arms are moved back over the wound following a colli-
sion-free path planned online.

5.3. General assessment

The clinical partner in the I-SUR consortium (San Raf-
faele Hospital) did an evaluation of the robotic system at
the end of the project, involving four urologists and a
health manager and applying the so-called Health Tech-
nology Assessment approach [62]. The surgeons evaluat-
ed the following aspects:

. Technical efficacy and safety features: even though
accuracy of the current prototype is an issue, surgeon
assistance provided by the Reasoning system satisfied
surgical requirements, especially those prescribing
that the system should be able to easily and promptly
switch into a teleoperated mode; automated planning
phases were evaluated as important and satisfying.

. Usability: surgeons evaluated positively extensibility
of the prototype, even though some concerns were
expressed about limiting the suturing task, in the
present setup, to planar and regular wounds; the me-
chanical configuration of the robot has its fixed base
connected to the bed, but surgeons suggested that a
better solution would be to connect the base to the
ceiling, to increase the workspace for human opera-
tors; finally, key factors evaluation summarized as
follows (mean values with marks from 0: not impor-
tant/extremely bad to 5: very important/extremely
good):

– Expected utility/generalization: 4.8
– More safety margins: 4.0
– Supervisory control: 4.1
– Team coordination: 3.8
– Expected safety improvement: 3.6
– Increased resource perception: 3.4
– Trust in automation: 3.1

6. Conclusions

In this paper, we presented a robot control and coordi-
nation software architecture for the automation of sim-
ple surgical tasks, namely needle insertion and suturing.
Design specifications were defined using a requirements

engineering approach, allowing a formal verification of
behavioral requirements and the generation of hierar-
chical finite state machines for the automated supervi-
sion of robotic tasks. Then, the proposed architecture has
been implemented using component-based design tools
in order to properly handle the distributed nature of the
system and apply state-of-the-art robotics software de-
sign principles.

The proposed approach has been validated on an ex-
perimental setup including a novel surgical robot with a
modular mechanical structure and, for the US-guided
needle insertion case study, an additional industrial ma-
nipulator holding the US probe. The goals of the experi-
mentswas to show first the feasibility of full surgical robot
automation and the flexibility and reconfigurability of the
proposed software architecture, which is the focus of this
paper. Clinicians involved during the execution of the
experiments evaluated positively the possibility to
promptly and smoothly switch the system from the au-
tonomous to the teleoperated mode and the full auto-
mation of the pre-operative planning phase. Moreover, it
was suggested to mount the fixed base of the ISUR robot
on the ceiling, instead of the bed, to increase the work-
space and to allow manual surgeons intervention.

Future work aims at:

. extending the proposed cognitive control architecture
to address other mechanical setups, including the
possibility to operate in a laparoscopic environment
and take into account kinematic constraints and fric-
tion forces related to the tool-trocar interactions;

. detecting and compensating intra-operative organ
motion;

. extending the suturing case to complex wounds on
non-planar surfaces;

. improving the accuracy of the overall system, by
means of a proper refinement of mechanical
manufacturing and calibration.
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