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ABSTRACT 12 

The work deals with the study of free flexural vibrations of constant cross-section elastic 13 

beams ballasted by a rigid mass with rotary inertia at any longitudinal position. We analyze five 14 

sets of boundary conditions of the beam (fixed-free, fixed-fixed, fixed-pinned, pinned-pinned, 15 

and free-free) and hypothesize that the structure is perfectly rigid, where the rigid mass is 16 

applied. By employing the Euler-Bernoulli beam theory, a single parametric matrix is obtained, 17 

which provides the characteristic equation of motion of the structure. When applied to specific 18 

configurations, the proposed analytical model predicts the eigenfrequencies and eigenmodes of 19 

the beam as accurately as ad-hoc analytical models available in the literature. The accuracy of 20 

the results is also confirmed by comparison with detailed two- and three-dimensional finite 21 

element analyses of a test case. By means of a 3D finite element model, the applicability of the 22 

rigid mass hypothesis to continuous beams with a composite thickened portion is finally 23 

assessed. 24 
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1. INTRODUCTION 4 

The study of transverse vibrations of beams has always been of great interest due to the 5 

extent of practical applications and pervasiveness of beam-like machine elements. Recently, the 6 

design of beam resonators with specific eigenfrequencies has gained particular attention in 7 

many technological devices, for example: sensors
1
, energy harvesting devices

2-3
, micro-electro 8 

mechanical systems (MEMS)
4
, and vibration damping. The design of these structures requires to 9 

fulfil three main constraints: a given set of eigenfrequencies in a specific range, the global 10 

deformation of the beam under dynamic excitation, and the dimensions of the structure. The 11 

most simple and common solution to achieve these constraints is to introduce a distributed 12 

inertial element on the beam resonator in order to lower the eigenfrequencies and increase the 13 

bending strain, even by keeping the beam short. In particular, this strategy is fairly adopted in 14 

the design of energy harvesting devices
5–7

. 15 

 16 

Many works in the literature deal with the modal analysis of beam structures carrying a 17 

concentrated mass. Laura et al.
8
 study cantilever beams with a tip mass. Yoo et al. 

9
  investigate 18 

a cantilever beam with a concentrated mass located at an arbitrary position, while Low et al.
10–15

 19 

examine a beam constrained at both ends, with the concentrated mass arbitrarily located. The 20 

same problem configuration but with compliant constraints is studied by De Rosa et al. 
16,17

. 21 

The main limitation of these analytical models is that the mass carried by the beam is 22 

described as concentrated. The inaccuracy due to this hypothesis increases as the mass 23 

dimensions increase. A more accurate analytical model is developed in
18–21

, where a rotary 24 

inertia is associated to the concentrated mass. In particular, in 
18,19

 a cantilever beam is 25 

examined while a simply supported beam is investigated in 
20,21

. 26 



 

 

Frequently, the cross-section of the ballast mass is thicker than that of the beam. It comes 1 

that, as the length of the ballast mass increases a much stiffer structure is obtained. Two 2 

modelling techniques can be adopted to deal with this issue. The first technique describes the 3 

system as a beam composed by three portions, each with a specific cross-section. This model, 4 

which provides good results but is quite complex, is applied 
22

 where a Euler-Bernoulli beam 5 

theory is adopted, and also in 
23

 by using a Timoshenko beam model. The second modeling 6 

technique assumes the ballast mass as rigid, provided that its bending stiffness is higher than 7 

that of the beam. This second approach is chosen by Oguamanam
24

 and Rama Bhat et al. 
25

, 8 

which investigate a cantilever beam with a distributed mass on the free end. 9 

The aim of this work is to extend this approach to the modal analysis of elastic beams 10 

carrying a ballast mass arbitrarily located and undergoing different sets of boundary conditions. 11 

The ballast mass is described as a rigid body with mass and rotary inertia. The analysis of 12 

eigenmodes and eigenfrequencies refers to a two-dimensional space, describing the two beam 13 

portions through the Euler-Bernoulli formulation. Five sets of boundary conditions for the ends 14 

of beam are investigated: fixed-free, fixed-fixed, fixed-pinned, pinned-pinned, and free-free. 15 

These five sets of boundary conditions are analysed through a  closed-form model involving six 16 

parameters, which allow to identify each set of boundary condition. Finally, the analytical 17 

model has been implemented in a software, which can be freely downloaded at 18 

http://www.machinedesign.re.unimore.it/pubblicazioni_eng.html. 19 

The comparison, both with respect to the literature lumped-parameter models, and with 20 

respect to two- and three-dimensional finite element (FE) models, shows an excellent accuracy 21 

of the proposed method in the prediction of the eigenfrequencies and eigenmodes. Moreover, 22 

also the rigid mass hypothesis is assessed showing that it is applicable in all the configurations 23 

of practical interest. 24 

 25 

 26 
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2. MODEL DEVELOPMENT 1 

 2 

2.1 Reference configuration 3 

Figure 1a shows a cantilever beam having a length L, with a ballast mass. This configuration 4 

is assumed as reference for the analytical model development. Even if Figure 1a refers to a 5 

cantilever beam, the analytical model is developed according to a general formulation, in order 6 

to be applied to the following sets of boundary conditions: fixed-free, fixed-fixed, fixed-pinned, 7 

pinned-pinned, free-free. The beam structure in Figure 1a consists of three portions. The first, 8 

OP, is constituted by a beam with a length a and constant cross section. The second, PQ, 9 

represents a ballast mass m, with a length 2b, and an arbitrary cross section. This ballast mass is 10 

characterized by a rotary inertia, JGz , calculated in its centre of mass G with respect to the z axis 11 

(Figure 1a). The distance between the centre of mass G and the centre of elasticity of the cross 12 

section of the beam is denoted by d (portions OP and QR). Obviously, in case the portion PQ 13 

would be a composite structure (an inner beam with a top and bottom distributed mass), the 14 

mass m and rotary inertia JGz would be those of the composite structure as a whole. Finally, the 15 

third portion, QR, is a beam with length c and the same cross-section as OP. 16 

Since the bending stiffness <EI> of the ballast mass PQ is usually higher than that of the 17 

beam portions OP and QR, we assume the portion PQ as infinitely rigid (Figure 1b). Hence, PQ 18 

is described as a rigid bar, built-in to the portions OP and QR in P and Q respectively. 19 

Consequently, PQ is described by a concentrated mass m, and a rotary inertia JSz , both applied 20 

at S, the mid-point of the PQ segment (Figure 1b). In particular, the rotary inertia JSz is obtained 21 

through the Huygens-Steiner theorem: 22 

 23 

2

Sz GzJ J md   
(1) 

 24 

In order to develop the analytical model, the following dimensionless ratios are introduced: 25 
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 2 

The parameter  represents the ratio between the ballast mass and the mass of the beam itself, 3 

while  is the ratio between the rotary inertia of the ballast mass and that of the beam. Finally,  4 

is the ratio between the length of the ballast mass and the length of the beam. 5 

 6 

2.2 Dynamic equilibrium 7 

The motion of the beam portions OP and QR can be studied independently by applying 8 

appropriate compatibility conditions, which reproduce the rigid kinematic link between points P 9 

and Q. To this aim, a local abscissa is defined along the length of each beam portion (Figure 10 

1b): -axis on OP and -axis on QR with domains 0 a   and 0 c   respectively. For 11 

the beam portion OP, we define  ,v t as the transverse displacement (y direction) at time t of 12 

the centre of elasticity at coordinate . Thus, the equation of motion of OP can be written as 
26

: 13 

 14 

   2 4

2 4
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v t v t
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 15 

where  is the density of the beam material, A the cross section of the beam, E the Young’s 16 

modulus of the beam material, and I the inertia moment about the z axis of the cross-section of 17 

the beam. 18 



 

 

Similarly, for the beam portion QR we denote  ,w t  as the transverse displacement at 1 

time t of the elastic centre of the cross section at coordinate. Therefore, the equation of motion 2 

can be written in the following form: 3 

 4 

   2 4

2 4

, ,
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w t w t
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t
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 5 

A solution of equations (5) and (6) can be expressed as the product of two functions: one of 6 

them is a function of the position ( or ) and the other one is a harmonic function of time t. 7 

Since the two beam portions belong to the same vibrating system, the two harmonic functions 8 

must coincide. Thus, the solution of equations (5) and (6) can be conveniently expressed by the 9 

following functions for OP and QR respectively: 10 

 11 

     , sin nv t V t    (7) 

     , sin nw t W t    (8) 

 12 

where V and W are the amplitudes of the transverse displacement in OP and QR respectively. 13 

Substitution of equations (7) and (8) into equations (5) and (6) respectively, yields the 14 

following ordinary differential equations: 15 

 16 

   4 0IV

nV V     (9) 

   4 0IV

nW W     (10) 

 17 



 

 

where the Roman superscript indicate the differentiation order with respect to the curvilinear 1 

abscissa, while the term 
4

n  is defined as:  2 

 3 

4 2

n n

A

EI


   

(11) 

 4 

A solution of the ordinary differential equations (9) and (10) may be expressed as: 5 

 6 

         1 2 3 4cos sin cosh sinhn n n n nn n n nC C CV C         (12) 

         1 2 3 4cos sin cosh sinhn n n n nn n n nD D DW D         (13) 

 7 

2.3 Boundary conditions 8 

The inC  and inD  coefficients (eight in total) in equations (12) and (13) respectively, 9 

together with the 
n  coefficient have to be determined from the boundary conditions at the ends 10 

of each beam portion OP and QR respectively. In particular, four boundary conditions apply to 11 

the ends of each beam portion. These boundary conditions involve the displacement functions 12 

Vn() (12) and Wn() (13) and their derivatives up to the third order. Repeated differentiations of 13 

equations (12) and (13) give the following equations: 14 

 15 

         1 2 3 4sin cos sinh coshn n n n n n n

I
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1 2 3 4cos sin cosh sinhn n n n n n n n n
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         3 3 3 3
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         1 2 3 4sin cos sinh coshn n n n n n n

I
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 1 

From Table 1, which collects the five sets of boundary conditions here examined, it appears 2 

that only four among the equations (12)-(19) are used to completely define each set of boundary 3 

conditions. Although different equations are used for each set of boundary conditions, it is 4 

possible to define the following system of four parametric expressions (involving inC
 
and 5 

inD coefficients), which conveniently summarize all of them: 6 

 7 
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 8 

By substituting the values collected in Table 2 to the six parameters 1 ,2 ,3 ,4 ,5 ,6 , the 9 

specific four equations are obtained for each of the five sets of boundary conditions here 10 

considered.  11 

The remaining four parameters of equations (12) and (13) can be determined from the 12 

compatibility conditions between the beam portions OP and QR through the rigid link PQ. The 13 

rigid link PQ provides two compatibility conditions, the first dealing with the displacement, the 14 

second with the rotation of each beam portions at points P and Q. The first condition correlates 15 

the transverse displacement of points P and Q, which can be conveniently written as: 16 

 17 



 

 

       I

n n nW Q V P a c V P    (21) 

 1 

The second condition equals the rotation of the cross-sections of the beam portions at points P 2 

and Q, yielding the following equation: 3 

 4 

   I I

n nV P W Q  (22) 

 5 

The remaining two equations are obtained by imposing the static equilibrium of the rigid link 6 

PQ (Figure 1b): first, the equilibrium of forces along the transverse y direction; second, the 7 

equilibrium of moments about the z-axis. The first condition deals with shear force T, which 8 

varies discontinuously between points P and Q due to the inertial force, Fim , of the concentrated 9 

mass m (at point S) and can be written as: 10 

 11 

   n n imT P T Q F    (23) 

 12 

where the inertial force Fim is defined as: 13 

 14 

     2 sin I

n n n nimF t V Pm P V b      (24) 

 15 

Moreover, the bending moment M and shear force T for the beam portions OP and QR 16 

satisfy the following expressions:  17 

 18 

     , sinII
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     , sinIII

n n nT t EI V t    (26) 
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(27) 

     , sinIII
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(28) 

 1 

By extracting the term 
2

n  from equation (11) and taking advantage of equations (2) and 2 

(4), after little rearrangement which involves equations (23), (24), (26) and (28) we obtain: 3 

  4 

            4 2 0III III I

n n n n nV P W Q a c V P a c V P               (29) 

 5 

With regard to the second static condition, the discontinuity of moments is due to three 6 

different contributions: the bending moment originated by the shear force  nT Q , the bending 7 

moment generated by the inertia force Fim (equation (24)) of the concentrated mass, and the 8 

inertia moment Mjm due to the rotation of the rigid link PQ. Hence, the following expression is 9 

obtained: 10 

 11 

       2n n im n jmM P M Q F S b T Q b M     (30) 

 12 

where the inertia moment Mjm is defined as: 13 

 14 

   2 sinI

jm Sz n n nM J V P t   (31) 

 15 



 

 

Finally, by extracting the term 
2

n  from equation (11) and taking advantage of equations 1 

(2)-(4), after some algebraic manipulations which involve equations (24), (25), (27), (28), (30), 2 

(31), we obtain: 3 

 4 

       

              2 34 2 2 0

II II III

n n n

I I

n n n

V P W Q W Q a c

a c V P V P a c a c V P



    

     

        

 (32) 

 5 

 6 

2.4 General solution 7 

 8 

The eight boundary and equilibrium conditions (20), (21), (22), (29) and (32) provide the 9 

following linear algebraic system in the eight unknowns Cin e Din: 10 

 11 

 
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 12 

where the square matrix H  collects the coefficients of the set of equation: 13 
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 1 

The linear system (33) has a non trivial solution if and only if the determinant of the 2 

H matrix equals zero: 3 

 det 0H  (35) 

 4 

Equation (35) is the characteristic transcendental equation of the system that can be solved for 5 

the variable n , obtaining infinite roots. According to equation (11), each root identifies a 6 

circular frequency n  of the n-th eigenmode of the beam. For each circular frequency n  it is 7 

possible to determine the Cin and Din constants through the set of equation (33). Since the 8 

determinant of the characteristic matrix H  is zero, for each circular frequency n  the equations 9 

of the system are linearly dependent. Therefore, we need to set an arbitrary value for one of the 10 

unknown constants and then calculate the remaining ones. Upon substitution in equations (12) 11 



 

 

and (13) of the parameters Cin and Din , the expressions of the eigenmodes associated to each 1 

circular frequency n  are obtained, up to a multiplicative coefficient. 2 

In conclusion, this method, which will be called from now on Rigid Mass (RM) model, 3 

provides the eigenfrequencies and eigenmodes of an elastic beam under generic constraints, 4 

carrying a ballast rigid mass. It is observed that, by simply setting the semi-length b of the 5 

ballast mass equal to zero, the RM model simplifies to a model that describes the inertial 6 

element (m, JSz) as concentrated. This model, from now on called Concentrated Mass (CM) 7 

model, is analogous to the models retrieved in the literature 
18–21

. If, in addition, also the rotary 8 

inertia JSz of the ballast mass is set to zero, the CM model describes a concentrated mass without 9 

inertial effects 
8–17

. 10 

11 



 

 

3. MODEL VALIDATION 1 

 2 

In order to simplify the calculation procedure, the RM model has been implemented in a 3 

software (named Beam Frequency Calculator (BFC)), through the commercial tool Visual Basic 4 

6.0. The software can be freely downloaded from the web at 
27

. Appendix 1 describes, for a 5 

particular configuration, all the details of the software and its application. 6 

In this section the assessment of the model is performed in three steps. The first assessment 7 

compares the CM model to analogous model taken from the literature. The second assessment, 8 

which is focused on a case study, compares the RM model with a two-dimensional FE model, a 9 

three-dimensional FE model, and finally with the literature models. The third assessment deals 10 

with the applicability of the rigid mass hypothesis.  11 

 12 

3.1 Comparison between the CM model and literature models 13 

In order to assess the correctness of the proposed model, in this section we compare the CM 14 

model to analogous models retrieved from the literature (either considering concentrated mass 15 

with rotary inertia or a concentrated mass without rotary inertia). The comparison is performed 16 

for all the five sets of boundary conditions considered in Section 2. The CM model is solved 17 

through the BFC software 
27

. 18 

Four analytical models taken from the literature are used for comparison. First, the model 19 

presented in 
15

 for the case of a cantilever beam with a tip mass with rotary inertia. Second, the 20 

model proposed in 
8
, which is applied both to the case of a fixed-fixed beam and to the case of a 21 

fixed-pinned beam with intermediate concentrated mass without rotary inertia. Third, the model 22 

proposed in 
17

 for a pinned-pinned beam configuration having an intermediate concentrated 23 

mass with rotary inertia. Fourth, the model presented in 
21

 for the case of a free-free beam 24 

without any inertial element. 25 

Table 3 compares, for each of the five sets of boundary conditions, the first four normalized 26 

eigenfrequencies provided by the literature models with those provided by the CM model. 27 



 

 

Specific values of the non-dimensional parameters m/mbeam , J/(mbeam*L
2
), a/L have been 1 

considered for each configuration. 2 

 3 

3.2 Comparison with respect to a cantilever having an intermediate ballast mass 4 

Figure 2 shows the sketch of a cantilever with an intermediate ballast mass, eccentric with 5 

respect to the midplane of the beam. This configuration is taken as reference in this second step 6 

of assessment of the RM model. The structure consists of a beam with rectangular cross-section. 7 

Two ballast masses of different thickness are attached along the free length of the beam to the 8 

upper and bottom face respectively. On the whole, the region containing the ballast masses has a 9 

mass m (see Section 2). 10 

The same steel material is assumed (Young’s modulus 210 GPa, Poisson’s ratio 0.3, and 11 

mass density 7850 kg/m
3
) both for the beam and for the inertial elements. We examined all the 12 

five sets of boundary conditions described in Table 1. In particular, in the case of asymmetric 13 

constraints (fixed-free and fixed-pinned) the fixed constraint is applied to the left end of the 14 

beam that is the farthest from the ballast mass. 15 

 16 

3.2.1 RM model 17 

The configuration in Figure 2 has been studied applying the RM model in its full formulation 18 

(ballast mass described as rigid and with finite length). Thus, in accordance with the sketch in 19 

Figure 1b, the beam in Figure 2 can be described by the geometric and inertial properties 20 

collected in Table 4 (RM model). The analysis has been performed through the BFC software.  21 

Tables 5 and 6 report the first four eigenfrequencies provided by the RM model, and by the 22 

two- and three-dimensional FE models (see Section 3.2.2 and Section 3.2.3) respectively, for 23 

each set of boundary condition. Moreover, Tables 5 and 6 presents the percentage relative error, 24 

which was calculated with respect to the FE model. 25 

Figure 3, 4, 5, 6 and 7 present, in normalized form, the first four eigenmodes provided by the 26 

RM model (hollow circles) for the fixed-free, fixed-fixed, fixed-pinned, pinned-pinned and free-27 



 

 

free constraint respectively. The hollow circles are not plotted where the ballast mass occurs, in 1 

order to make it clearly visible. 2 

 3 

3.2.2 Two-dimensional FE model 4 

The two-dimensional FE model describes the configuration in Figure 2 and was 5 

implemented through the commercial FE software ABAQUS V6.9.1 
28

. The two beam portions 6 

have been described through linear Euler beam elements (B21H), with full integration. 7 

According to a convergence procedure, the element length was set to 0.05 mm, giving a total of 8 

1500 elements. 9 

The rigid mass linking the beam portions was described thorough a kinematic “wire 10 

connector”, available in ABAQUS. This is a rigid kinematic link between the ends (P and Q) of 11 

the beam portions, which equals their corresponding kinematic degrees of freedom (Figure 1). A 12 

mass m and a rotary inertia JSz (according to Table 4) are imputed to the midpoint of this 13 

kinematic link. The material of the beam is described as linear elastic with the mechanical 14 

properties of steel defined in Section 3.2. 15 

Five different models have been implemented, one for each set of boundary conditions in 16 

Table 1, giving the results presented in Table 5, which is organized as described in Section 17 

3.2.1. 18 

 19 

3.2.3 Three-dimensional FE model 20 

The three-dimensional FE model describes in details the configuration in Figure 2 and is 21 

assumed as the reference solution for the modal analysis of this case study. As the previous two-22 

dimensional FE model, it was implemented through the ABAQUS software 
28

. The whole 23 

structure has been described through eight-noded, linear, hexahedral elements (C3D8R), with 24 

reduced integration and hourglass control 
28

. According to a convergence analysis, not reported 25 

here for the sake of brevity, the element side length was set 0.25 mm, except in the thickness of 26 

the beam direction, where six layers of elements with the same transverse side length as above 27 



 

 

were applied (Figure 8). On the whole, the mesh consists of 320,000 elements, 346,983 nodes 1 

and 1,040,949 degrees of freedom. As in the previous two-dimensional FE model, the material 2 

was described as linearly elastic, according to the values of Section 3.2. Five different models 3 

have been implemented, one for each set of boundary condition described in Table 1. 4 

Table 6 displays, for all the constraint conditions, the results provided by this computational 5 

model, organized as described in Section 3.2.1. Figures 3, 4, 5, 6 and 7 show, in normalized 6 

form, the first four eigenmodes provided by the computational model (solid line) for the fixed-7 

free, fixed-fixed, fixed-pinned, pinned-pinned and free-free constraint respectively. 8 

 9 

3.2.4 Literature models 10 

To the aim of evaluating the accuracy of the literature models in the prediction of the modal 11 

response of a beam carrying a ballast mass in arbitrary position, they are applied to the case 12 

study in Figure 2. The CM model was used as a substitute of the literature models due to its 13 

optimal agreement with the models taken from the literature (see Discussion section), to its 14 

easiest implementation, and to the need to investigate many sets of boundary conditions. The 15 

values of the geometric and inertial properties used in this comparison are collected in Table 4, 16 

for concentrated mass and rotary inertia and concentrated mass without rotary inertia 17 

respectively. 18 

Table 6 shows, for all the constraint conditions in Table 1, the results provided by the CM 19 

model in both forms (with and without rotary inertia), organized as described in Section 3.2.1. 20 

Figures 3, 4, 5, 6 and 7 display, in normalized form, the first four eigenmodes provided by the 21 

CM model, with rotary inertia (hollow triangles) and without rotary inertia (crosses), for the 22 

fixed-free, fixed-fixed, fixed-pinned, pinned-pinned and free-free constraint respectively. 23 

 24 

3.3 Assessment of the rigid mass hypothesis 25 

This last step aims at assessing the applicability of the rigid mass hypothesis (Section 2). 26 

Therefore, the analysis evaluates the sensitivity of the analytical model to the ratio between the 27 



 

 

bending stiffness of the ballast mass cross-section and that of the beam cross-section. Figure 2 1 

highlights that both the beam and the ballast masses contribute to the bending stiffness of the 2 

ballast mass cross-section. Hence, it is possible to define the bending stiffness ratio  as 3 

follows: 4 

  5 

mass

beam

EI

EI


 

 

 (36) 

 6 

where massEI   and beamEI   are calculated for a generic cross section, which can eventually 7 

be inhomogeneous (Appendix 2). The investigation was performed referring to the 8 

configuration of Figure 2, for two constraint conditions: fixed-free and fixed-fixed (Table 1). 9 

In order to simplify the procedure, the bending stiffness ratio was varied by changing only 10 

the value of the Young’s modulus of the inertial element Emass , while keeping constant all the 11 

other parameters. Since the sensitivity analysis was performed through the three-dimensional 12 

FE model presented in Section 3.2.3, the same geometry and mass properties of the structure 13 

were used all along. Therefore, where the ballast masses are introduced, the cross-section of the 14 

structure comprises three layers with different Young’s modulus. 15 

Table 7 summarizes the values adopted for the elastic modulus of the ballast mass and the 16 

corresponding values of the bending stiffness ratio  Figures 9 and 10 show for the fixed-free 17 

and fixed-fixed beam respectively, the percentage relative error of the RM model on the first 18 

four eigenmodes, as a function of the bending stiffness ratio . The relative error was calculated 19 

with respect to the three-dimensional FE model. 20 

21 



 

 

4. DISCUSSION 1 

 2 

The RM model consists of an algebraic system of eight linear equations in eight unknowns, 3 

represented, in matrix notation, by (39). These equations depend on the elastic and geometric 4 

properties of the beam and on the inertial properties of the rigid ballast mass. In addition, they 5 

include 6 parameters (i , i = 1..6), which are a function of the set of boundary conditions of the 6 

structure being examined. 7 

By examining the RM model, we observe that by setting to zero some of the model 8 

parameters, the model reduces to the classical analytical model presented in the literature
6–11,14,15

 9 

that describe the added ballast mass as concentrated. In particular: 10 

 b = 0: concentrated ballast mass;  11 

 Jsz = 0: ballast mass without rotary inertia; 12 

 m = 0: ballast mass without mass. 13 

Table 3 shows the excellent accuracy of the CM model when compared to the classical 14 

models from the literature, for all the eigenfrequencies and sets of boundary conditions 15 

examined. Therefore, the CM model unifies, in a general approach and for several sets of 16 

boundary conditions, the literature models. 17 

Table 5 highlights that the results from the RM model and from the two-dimensional FE 18 

model closely match. The perfect agreement between the two methods, which testifies the 19 

accuracy of the RM model, is imputable to the same underling hypotheses (Euler beam 20 

formulation and rigid mass). 21 

Two observations can be made by examining Table 6. First, the RM model provides very 22 

accurate results also in comparison with the three-dimensional FE model, with an error ranging 23 

from 0.7% to 2%. In particular, the RM model always exceeds the FE model prediction since it 24 

assumes a rigid mass and does not account for the shear deformability of the beam. Second, 25 

literature models (represented by the CM model) provide an error ranging from 1.6% (at the 26 



 

 

first eigenfrequency for the fixed-free constraint), up to a maximum of 54% (at the fourth 1 

eigenfrequency for the fixed-pinned constraint). In particular, the forecasts of the literature 2 

models without rotary inertia either overestimate or underestimate the numerical forecasts. This 3 

alternate error is connected to a poor accuracy in the calculation of the eigenmode as can be 4 

seen from the diagrams in Figures 3-7. By contrast, the literature models with rotary inertia 5 

always underestimate the numerical forecasts, with higher percentage relative errors. This is due 6 

to the fact that the underestimation of the stiffness in the region of the ballast mass (PQ). On the 7 

whole, in comparison to the literature models (represented by the CM model) the RM model 8 

predicts much more accurately the eigenfrequencies of the beam for whichever constraint is 9 

considered. 10 

Figures 3-7 highlight the excellent agreement between the RM model (hollow circles) and 11 

the three-dimensional FE model (solid line). A little discrepancy between these models occurs 12 

only at the fourth eigenfrequency of the fixed-pinned beam (Figure 5). This is imputable to the 13 

complex curvature in the transition region between the beam and the ballast mass, which is 14 

described by the FE model. In addition, the straight deformed shape of the ballast mass (solid 15 

line in Figures 3-7) fully justifies the rigid mass hypothesis for the case study here examined.  16 

Figures 3-7 highlight that the concentrated mass model without rotary inertia (crosses) and 17 

the concentrated mass model with rotary inertia (hollow triangles) provide with fair accuracy 18 

only the first or second eigenmodes depending on the set of boundary conditions. By contrast, 19 

the predictions of the higher eigenmodes, which are fairly complex, are completely wrong. In 20 

conclusions, the models that describe the mass as concentrated, artificially alter the stiffness of 21 

the structure, thus providing an incorrect mode shape prediction. 22 

From Figures 9 and 10 we can see that for both beam configurations examined, the error of 23 

the RM model decreases as the bending stiffness ratio  increases. Obviously, this can be 24 

attributed to the hypothesis of rigid mass underling the RM model. In the case of the fixed-free 25 

beam (Figure 9), with exception of the third eigenmode, the error is lower than 11% up to  26 



 

 

equal to 50. The higher error for the third eigenmode (10% at a bending stiffness ratio equal to 1 

200) is imputable to the significant bending strain occurring in this eigenmode near the rigid 2 

mass (solid line in Figure 3). Finally, Figure 9 highlight that the bending stiffness ratio does not 3 

affect the accuracy of the first eigenfrequency prediction for this constraint condition.  4 

Figure 10 shows a higher error than in Figure 9 for all the eigenfrequencies at corresponding 5 

values of . On the whole, however, the error is more uniform between eigenmodes. This, once 6 

again, can be attributed to the higher deformation occurring for the eigenmodes in this 7 

constraint condition (fixed-fixed), which, consequently, can be less accurately described by the 8 

RM model. 9 

On the whole, the hypothesis of a rigid ballast massis fully justified when the bending 10 

stiffness ratio is high, as usually occurs in practice. For example, assuming the same material 11 

for the beam and ballast massand a ratio between the cross-section in the region of the ballast 12 

massand that of the beam equal to 2, 4 or 8, the bending stiffness ratio  equals 8, 64, and 512 13 

respectively. In the case study in Figure 2, the ratio  is 3350. When the stiffness ratio is higher 14 

than 1000, the error is lower than 3% on the first four eigenfrequencies, thus comparable to a 15 

computational model. 16 

In conclusion, the assessment of the RM model testifies its great accuracy for a wide range 17 

of beam configurations with ballast mass. The method can be applied to whichever beam 18 

section, including inhomogeneous section beam. Since the model relies on the Euler-Bernulli 19 

beam theory, its accuracy decreases when thick beams are examined, in particular in the 20 

prediction of the higher eigenmodes. Much more details about this can be found in the works 21 

from Grant 
29

 and Han et al. 
30

. 22 

 23 

24 



 

 

5. CONCLUSIONS 1 

 2 

The paper develops the Rigid Mass (RM) model for the modal analysis of a constant cross-3 

section beam, carrying a ballast mass for resonance tuning. As main hypotheses, the model 4 

describes the beam according to the Euler-Bernoulli formulation and the ballast mass as rigid, 5 

with mass and rotary inertia. Five sets of boundary conditions can be examined through the RM 6 

model, which reduces to a square matrix (dimension eight per eight) that provide the 7 

characteristic equation and thus the eigenfrequencies and eigenmodes of the structure. When 8 

reduced to describe the ballast mass as a concentrated mass either with or without inertia, the 9 

RM model provides results that match closely those of the analogous models from the literature. 10 

A very good agreement is obtained also in the comparison between the RM model and the two- 11 

and three-dimensional FE models. By contrast, the literature models describing the ballast 12 

massas a concentrated mass either with or without rotary inertia, can lead to noticeable errors in 13 

the eigenfrequencies and eigenmodes prediction. With regard to the rigid mass hypothesis, the 14 

results show that it is a good approximation for the great majority of the resonator structures 15 

occurring in practice. 16 

 17 
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Notation 1 

a Length of the left beam portion (Figure 2) 

A Cross-section area of the beam 

Ai Cross-section area of the i-th layer of the inhomogeneous section 

b Half-length of the ballast mass (Figure 2) 

c Length of the right beam portion QR (Figure 2)  

Cin i-th parameter of the n-th eigenshape of the beam portion OP 

Din i-th parameter of the n-th eigenshape of the beam portion QR 

E Young’s modulus of the beam material 

Ec Elastic centre of the inhomogeneous section 

Ei Young’s modulus of the material of the i-th layer of the inhomogeneous section 

Emass Young’s modulus of the ballast mass material 

Fim Inertia force in the transverse direction arising from the ballast mass 

G Centre of mass of the ballast mass 

hE 

Distance between the centre of elasticity of the inhomogeneous section and the 

longitudinal axis of the beam 

hi Thickness of the i-th layer of the inhomogeneous section 

H  Characteristic matrix of the set of equations of motion 



 

 

Iz Inertia moment of the cross-section of the beam about the z-axis 

Iiz’ 

Inertia moment of the cross-section of the i-th layer of the inhomogeneous section 

about the z’-axis 

JGz 

Inertia moment of the inertial element m, calculated in the centre of mass, about 

the z-axis 

JSz 

Inertia moment of the inertial element m , calculated in point S (Figure 1b), about 

the z-axis 

L Total length of the beam 

m Mass of the ballast mass 

MJm Moment originated by the inertial angular acceleration on the mass m 

Mn (, t) 

Bending moment acting at  coordinate and time t of the beam portion OP for the 

n-th eigenmode 

Mn (, t) 

Bending moment acting at  coordinate and time t of the beam portion QR for the 

n-th eigenmode 

r Width of the inhomogeneous section beam 

Tn (, t) 

Shear force acting at  coordinate and time t of the beam portion OP for the n-th 

eigenmode 

Tn (, t) 

Shear force acting at  coordinate and time t of the beam portion OP for the n-th 

eigenmode 



 

 

t Time coordinate 

v(, t) 

Transverse displacement of the centre of mass of the beam portion OP at  

coordinate and time t 

Vn () 

Amplitude of the transverse displacement of the centre of mass of the beam 

portion OP for the n-th eigenmode 

w (, t) 

Transverse displacement of the centre of mass of the beam portion QR at  

coordinate and time t 

Wn () 

Amplitude of the transverse displacement of the centre of mass of the beam 

portion QR for the n-th eigenmode 

yi Ordinate of the geometric centre of the i-th layer of a inhomogeneous section 

z Axis normal to the page and directed outward in the xyz reference system 

 Ratio between the mass of the ballast mass and the mass of the beam 

n n-th root of the transcendental equation 

 Ratio between the rotary inertia of the ballast mass and that of the beam 

 Ratio between the length of the ballast mass and the free length of the beam 

 Curvilinear abscissa of the beam portion QR 

 Curvilinear abscissa of the beam portion OP 

 Mass density of the beam material 



 

 

 
Equivalent average mass density of the material constituting the inhomogeneous 

section 

i
Average mass density of the material of the i-th layer of the inhomogeneous 

section 

 

Bending stiffness ratio between the cross section of the ballast mass and that of 

the beam 

1,...,6 Parameters to define the specific set of boundary conditions 

n Circular frequency of the n-th eigenmode 

I, II,...,IV Derivation order 

<EI>beam Bending stiffness of the cross-section of the beam section 

<EI>mass Bending stiffness of the cross-section of the ballast mass 

<EIiz’> Equivalent bending stiffness of the inhomogeneous cross-section 
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APPENDIX 1 1 

The model developed in this work (RM model) has been implemented in software through 2 

the commercial tool Visual Basic 6.0, and can be freely downloaded from the web 
27

. In the 3 

following we describe the simple procedure to perform an analysis. 4 

From the main window of the software, click on the START button (or on FileNew, or on 5 

the New button) to open the data logging interface (Figure 11). This window is organized in 6 

four input sections: the first collects the beam dimensions, the second the set of boundary 7 

conditions, the third the properties of the cross-section of the beam and the fourth the geometric 8 

and material properties of the ballast mass. 9 

In order to describe how to use the software, in the following we will describe the calculation 10 

of the first four eigenfrequencies and eigenmodes of the case study (Section 3.2) in Figure 2, 11 

considering a simply supported configuration. 12 

First, we define the length a = 50 mm of the beam portion OP, the length 2b = 25 mm of the 13 

region PQ where the ballast massis introduced, and the length c = 25 mm of the beam portion 14 

QR. Second, we select the proper boundary condition (pinned) at each ends of the beam (O, R) 15 

among that available (fixed, pinned, free). Third, we introduce the elastic properties of the 16 

material and the geometric properties of the cross-section of the two beam portions (OP, QR). 17 

For the most common cross-sections, these data can be defined through a simple automatic 18 

calculation tools by clicking on the “Calc beam section properties” button. As an alternative, we 19 

can type the values in the proper field. For this configuration we have: E = 210000 MPa, Beam = 20 

7850 kg/m
3
, A = 10 mm

2
, and I = 0.833 mm

4
. Finally, we have to introduce the inertial 21 

properties of the ballast mass. Again a simple automatic calculation tool is available by clicking 22 

on the “Calc mass property” button. For this configuration we have to define the following 23 

values: m = 2.9438E-2 kg, Jsz = 2.2691E-6 kg m
2
. 24 

In addition, by clicking on the “Option” button we can personalize the analysis through the 25 

following three options. First, the number of eigenfrequencies to be calculated. Second, the 26 



 

 

convergence criteria in the solution of the transcendental equation (35). Third, the resolution of 1 

the diagrams containing the plot of the eigenmodes. 2 

Clicking on the “Frequency Analysis” button the calculation starts. Once the solution process 3 

is concluded, the window of the results appears (Figure 12). On the left, we can see the 4 

diagrams of the normalized eigenmodes, while on the right a table summarizes the 5 

eigenfrequencies and eigenmodes. A scroll bar is available, in case the window is larger than the 6 

screen. By selecting “Export Results” it is possible to save the results of the analysis in a text 7 

file containing both the eigenfrequencies and the eigenmodes. 8 
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APPENDIX 2 1 

In case of a inhomogeneous beam (Figure 13) having a constant width r, and constituted by n 2 

homogeneous layers with a thickness hi , Young’s modulus Ei and mass density i, the 3 

equivalent bending stiffness is can be written as 
31

:  4 

 
3

2

'

1 12

n
i

z i i i E

i

h
EI E f A y h



 
    

 
  (A1) 

 5 

where hE is the distance between the centre of elasticity of the inhomogeneous section and the 6 

longitudinal axis of the beam 7 

Similarly, the equivalent mass density   of the composite material results in the following 8 

expression: 9 

 10 

1

1

n

i i

i

n

i

i

A

A



 







 (A2) 
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Table and figure captions 1 

Table 1 Sets of boundary conditions of the beam. 2 

Table 2 Values of the parameters 1 , 2 , 3 , 4 , 5 , 6 as a function of the set of boundary 3 

conditions. 4 

Table 3 Comparison between the RM model reduced to concentrated mass with or without 5 

inertia and analogous models from the literature. 6 

Table 4 Geometric and inertial parameters of the case study (Figure 2) for the 7 

implementation of the RM model and of the two-dimensional FE model. 8 

Table 5 Comparison between the results provided by the RM model and by the two-9 

dimensional FE model for the first four eigenfrequencies of the case study (Figure 2). 10 

Table 6 Comparison between the results provided by the three-dimensional FE model, by the 11 

RM model, by the concentrated mass model and by the concentrated mass and inertia 12 

model, for the first four eigenfrequencies of the case study (Figure 2). 13 

Table 7 Young’s modulus of the material of the ballast mass, corresponding bending stiffness 14 

both of the ballast massand of the beam and bending stiffness ratio . 15 

 16 

 17 

Figure 1 Sketch of the beam structure with ballast mass (a) and simplification of the structure 18 

into two beam portions connected by a rigid link (b). 19 

Figure 2 Sketch of the beam structure considered as case study in Section 3 (dimensions in 20 

mm) 21 

Figure 3 First four eigenmodes for the fixed-free beam 22 

Figure 4 First four eigenmodes for the fixed-fixed beam 23 

Figure 5 First four eigenmodes for the fixed-pinned beam 24 

Figure 6 First four eigenmodes for the pinned-pinned beam 25 

Figure 7 First four eigenmodes for the free-free beam 26 



 

 

Figure 8 Image of the mesh performed on the three-dimensional FE model 1 

Figure 9 Plot of the percentage relative error in the prediction of the eigenfrequency as a 2 

function of the bending stiffness ratio, for a fixed-free beam 3 

Figure 10 Plot of the percentage relative error in the prediction of the eigenfrequency as a 4 

function of the bending stiffness ratio, for a fixed-fixed beam  5 

Figure 11 Data logging interface in the BFC software 6 

Figure 12 Results window of the BFC software 7 

Figure 13 Sketch of the cross-section of a composite beam  8 
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End conditions of beam  O R  Boundary Conditions at O  Boundary Conditions at R  
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Table 1 11 
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 13 

 14 

15 



 

 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

End conditions of beam 

 O R  1  2  3  4  5  6  

Fixed – Free 1 0 -1 1 1 1 

Fixed – Fixed 1 0 1 1 1 1 

Fixed – Pinned 1 0 1 -1  tan nc   tanh nc  

Pinned – Pinned 1 1 1 -1  tan nc   tanh nc  

Free – Free -1 0 -1 1 1 1 

 11 

Table 2 12 

13 



 

 

 1 

 2 

Structure under 

examination 
m/mbeam J/(mbeam*L

2
) a/L Reference Mode 

fadim 

reference 

model 

fadim  

RM model 

Fixed – free tip 

mass and inertia 
0.6 0.4 1 

15
 

1 1.12305 1.12305 

2 2.08695 2.08695 

3 4.98723 4.98723 

4 8.02840 8.02840 

Fixed-fixed  

intermediate mass 
0.6 0 0.75 

8
 

1 4.25570 4.25570 

2 6.68237 6.68237 

3 10.19053 10.19053 

4 13.96990 13.96990 

Fixed-pinned  

intermediate mass 
0.6 0 0.75 

8
 

1 3.31928 3.31928 

2 6.29730 6.29730 

3 9.93266 9.93266 

4 13.29452 13.29452 

Pinned-pinned  

intermediate mass  

and inertia 

0.6 0.4 0.75 
17

 

1 1.94099 1.94099 

2 3.79828 3.79828 

3 5.57670 5.57670 

4 9.59831 9.59831 

Free-free  

no mass 
0 0 0 

21
 

1 4.73005 4.73005 

2 7.85321 7.85321 

3 10.99561 10.99561 

4 14.13717 14.13717 

 3 

Table 3 4 



 

 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

Geometric and 

material properties 
RM model CM model 2D FE model 

  With Inertia Without Inertia  

a (mm) 50 62.5 62.5 62.5 

b (mm) 12.5 0 0 12.5 

c (mm) 25 37.5 37.5 25 

m (kg) 2.9438E-2 2.9438E-2 2.9438E-2 2.9438E-2 

Jsz (kg m
2
) 2.2691E-6  2.2691E-6  0 2.2691E-6  

 10 

 11 

Table 4 12 

13 



 

 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

Model Type 

Eigenmode I Eigenmode II Eigenmode III Eigenmode IV 

Freq. 

(Hz) 

Err 

% 

Freq. 

(Hz) 

Err 

% 

Freq. 

(Hz) 

Err 

% 

Freq. 

(Hz) 

Err 

% 

F
ix

ed
 

- 

F
re

e
 

RM model 39.05 0.1 420.30 0.0 1587.40 0.0 2325.27 0.0 

FE 2D 39.00  420.31  1587.50  2325.70  

F
ix

ed
 

- 

F
ix

ed
 

RM model 255.45 0.0 1019.92 0.0 2316.82 0.0 5991.26 0.0 

FE 2D 255.35  1020.00  2317.00  5991.80  

F
ix

ed
 

-

P
in

n
ed

 RM model 188.00 0.0 775.98 0.0 2301.83 0.0 5925.05 0.0 

FE 2D 187.93  775.92  2301.80  5925.50  

P
in

n
ed

 
- 

P
in

n
ed

 

RM model 128.54 0.0 688.18 0.0 1679.59 0.0 4876.72 0.0 

FE 2D 128.52  688.27  1679.70  4877.10  

F
re

e 
- 

F
re

e
 

RM model 519.26 0.0 1583.91 0.0 2303.23 0.0 5992.77 0.0 

FE 2D 519.24  1584.20  2303.60  5993.30  

 8 

 9 

Table 5 10 

 11 

 12 

 13 

 14 



 

 

Model Type 

Eigenmode I Eigenmode II Eigenmode III Eigenmode IV 

Freq. 

(Hz) 
Err % 

Freq. 

(Hz) 
Err % 

Freq. 

(Hz) 
Err % 

Freq. 

(Hz) 
Err % 

F
ix

ed
 -

 F
re

e 

FE 3D 38.76  415.03  1549  2294.6  

RM model 39.05 0.7 420.3 1.3 1587.4 2.5 2325.27 1.3 

CM model without 

inertia 
38.38 -1.0 373.7 -10.0 1193.95 -22.9 2828.96 23.3 

CM model 37.66 -2.8 280.17 -32.5 774.89 -50.0 1430.31 -37.7 

F
ix

ed
 -

 F
ix

ed
 

FE 3D 253.5  1005.1  2288.9  5905.8  

RM model 255.45 0.8 1019.92 1.5 2316.82 1.2 5991.26 1.4 

CM model without 

inertia 
177.59 -29.9 1159.84 15.4 2839.86 24.1 3810.3 -35.5 

CM model 175.77 -30.7 557.94 -44.5 1429.2 -37.6 3787.47 -35.9 

F
ix

ed
 -

P
in

n
ed

 

FE 3D 185.53  763.24  2274.1  5813.2  

RM model 188 1.3 775.98 1.7 2301.83 1.2 5925.05 1.9 

CM model without 

inertia 
118.36 -36.2 1093.43 43.3 2140.14 -5.9 3515.94 -39.5 

CM model 118.36 -36.2 500.76 -34.4 1428.46 -37.2 2678.07 -53.9 

P
in

n
ed

 -
 P

in
n

e
d

 

FE 3D 126.36  675.51  1648.3  4785.4  

RM model 128.54 1.7 688.18 1.9 1679.59 1.9 4876.72 1.9 

CM model without 

inertia 
84.78 -32.9 765.42 13.3 1988.24 20.6 2950 -38.4 

CM model 84.42 -33.2 455.79 -32.5 1032.1 -37.4 2678.07 -44.0 

F
re

e 
- 

F
re

e 

FE 3D 515.08  1554.5  2269.6  5875.1  

RM model 519.26 0.8 1583.91 1.9 2303.23 1.5 5992.77 2.0 

CM model without 

inertia 
410.96 -20.2 1181.19 -24.0 2828.44 24.6 3791.07 -35.5 

CM model 344.88 -33.0 777.07 -50.0 1411.93 -37.8 3783.27 -35.6 

 1 

Table 6 2 



 

 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

Emass <EI>mass <EI>beam 
  

(GPa) (Nm
2
) (Nm

2
) 

632.2 1750 0.175 10000 

210 591 0.175 3375 

59.3 175 0.175 1000 

28.25 87.6 0.175 500 

4.95 17.5 0.175 100 

2.375 8.76 0.175 50 

0.4423 1.75 0.175 10 
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