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Abstract      1 

Milk proteins contained encrypted in their sequence biologically active components that can 2 

be released by enzymatic hydrolysis. Among the biological activities recognised in milk 3 

components, the antioxidant activity is of great interest. The objective of the present study 4 

was to analyse the antioxidant properties of whole, semi-skimmed and skimmed milk during 5 

simulated gastro-intestinal digestion and to identify the compounds responsible for the 6 

antioxidant activity. Simulated digestion increased the ABTS·+ radical scavenging activity of 7 

milk. In digested whole milk, the main contribution to ABTS·+ radical scavenging activity was 8 

due to high molecular weight fraction (>3 kg∙mol-1). For semi-skimmed and skimmed milk, 9 

the main contribution was due to low molecular weight fraction (<3 kg∙mol-1). Twelve major 10 

peaks were collected from low molecular weight fraction of digested skimmed milk by 11 

reversed-phase high-performance liquid chromatography and evaluated for their ABTS·+ 
12 

radical scavenging activity. Among the different fractions, three (F2, F3 and F5) showed high 13 

ABTS·+ and hydroxyl radical scavenging activity and lipid peroxidation inhibitory capacity. 14 

The compounds (free amino acids and peptides) present in these fractions were identified with 15 

nanoLC-QTOF MS/MS analysis. The amino acids tryptophan and tyrosine seemed 16 

fundamental in the ABTS·+ and hydroxyl radical scavenging capacities whereas the amino 17 

acids phenylalanine and histidine played an important role in the lipid peroxidation inhibitory 18 

activity of the peptides. The results reported in this study suggested that milk proteins could 19 

act as a carrier for the delivery of antioxidant compounds in the gastro-intestinal tract possibly 20 

protecting the gastro-intestinal tract itself from the oxidative damage. 21 

Keywords: in vitro gastro-intestinal digestion; antioxidant activity; mass spectrometry; 22 

peptides, aromatic aminoacids.   23 
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1. Introduction 24 

Antioxidant compounds are considered important for human health thanks to their ability to 25 

scavenge free radicals and contribute to prevent chronic diseases, such as cancers, coronary 26 

heart diseases, and neurodegenerative disorders (Del Rio et al. 2013). Dairy product showed 27 

antioxidant activity and have to be considered as important dietary components that contribute 28 

to the total intake of antioxidants. In milk, proteins (especially caseins) are the most important 29 

radical scavenger compounds (Clausen et al. 2009). 30 

Most bovine milk proteins, mainly β-lactoglobulin and αS1-casein, are also potential 31 

allergens and cow’s milk protein allergy is the most prevalent in infancy, reaching an 32 

incidence of about 2% to 7.5% (Bu et al. 2013). Reduction of milk protein allergenicity by 33 

technological processing such as heat treatment, lactic fermentation and enzymatic hydrolysis 34 

is a topic of major relevance to develop hypoallergenic milk products (Bu et al. 2013). 35 

Enzymatic hydrolysis is an effective means to generate bioactive peptides from intact protein 36 

sequences (Pihlanto 2006). The biological activities of these peptides include antimicrobial, 37 

anti-hypertensive, antithrombotic and antioxidative activities (Pihlanto 2006; Power-Grant et 38 

al. 2013). Antioxidant peptides and amino acids are particularly interesting for their possible 39 

contribution to health promotion and disease prevention (Power-Grant et al. 2013). 40 

The composition and the biological properties of the peptide contained in milk hydrolysates 41 

depend on the substrate, the proteolytic enzymes, the enzyme to substrate ratio and 42 

physicochemical conditions (pH, hydrolysis time and temperature of reaction) (del Mar 43 

Contreras et al. 2011). A variety of proteolytic enzymes has been used to generate milk 44 

protein hydrolysates with differing degrees of hydrolysis, containing a diverse assortment of 45 

peptides and different antioxidant activity. Digestive enzymes and combinations of different 46 

proteinases such as alcalase and thermolysin have been utilized to successfully generate 47 

antioxidant peptides from various milk proteins (Pihlanto 2006; Power-Grant et al. 2013). For 48 
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example, a peptic digest of bovine caseins produced the αS1-casein-derived peptide YFYPEL 49 

with a strong superoxide anion scavenging activity (Suetsuna et al. 2000). One potent 50 

antioxidant peptide (WYSLAMAASDI) was purified from bovine β-lactoglobulin hydrolysed 51 

with Corolase PP (Hernández-Ledesma et al. 2005). Thermolysin was utilized to generate two 52 

antioxidant peptides (LQKW and LDTDYKK) from β-lactoglobulin (del Mar Contreras et al. 53 

2011). 54 

Milk proteins are deeply transformed in the human gastro-intestinal tract because of the 55 

presence of different proteases. Peptides generated in the gastro-intestinal may have different 56 

biological properties such as antimicrobial, antioxidant, antihypertensive, etc. (Boutrou et al. 57 

2015). However, till now, little studies have been carried on the production of antioxidant 58 

compounds during the in vitro digestion of milk proteins and, above all, the nature of 59 

bioactive antioxidant compounds released during digestion has not been revealed. In vitro 60 

gastro-intestinal digestion enhance the antioxidant activity of a bovine milk-61 

based protein matrix (Power-Grant et al. 2016) as well as of a κ-casein and β-casein 62 

preparation (Petrat-Melin et al. 2015; Petrat-Melin et al. 2016). Some antioxidant peptides 63 

(such as WSVPQPK and ISELGW) and free amino acids have been generated after in vitro 64 

gastro-intestinal hydrolysis of human milk or infant formula (Raikos and Diassos 2014).  65 

At present, in vitro digestion studies focused on single isolated proteins without considering 66 

the influence of other components present in dairy products such as fat. Therefore, our in vitro 67 

digestion study was targeted on the identification of antioxidant compounds released after the 68 

in vitro digestion from complex food matrices represented by whole, semi-skimmed and 69 

skimmed bovine milk.  70 

71 
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2. Materials and methods 72 

2.1. Materials 73 

All electrophoresis, HPLC and MS/MS reagents were from Biorad (Hercules CA, U.S.A.), 74 

whereas the remaining chemicals were purchased from Sigma-Aldrich (Milan, Italy) unless 75 

otherwise stated. Amicon Ultra-4 regenerated cellulose 3 kg∙mol-1 were supplied by Millipore 76 

(Billerica MA, USA). The homogenized bovine milk (whole, semi-skimmed and skimmed 77 

milk), belonging to the same batch of raw milk, were obtained from a local producer. The 78 

different types of milk had the same total proteins (3.1 g∙100mL-1), caseins (2.6 g∙100mL-1), 79 

carbohydrates (4.8 g∙100mL-1) and calcium (120 mg∙100mL-1) content but differ for the fat 80 

content (3.60 g∙100mL-1, 1.55 g∙100mL-1 and 0.05 g∙100mL-1 in whole, semi-skimmed and 81 

skimmed milk, respectively). The absorbance was read using a Jasco V-550 UV/Vis 82 

spectrophotometer (Orlando FL, U.S.A.).  83 

 84 

2.2. In vitro gastro-intestinal digestion 85 

The two-stage in vitro digestive model was adapted from Helal et al. (2014). Aliquots (50 86 

mL) of milk were mixed with 50 mL of water. The samples were then brought to pH 2.5 with 87 

concentrated HCl and the gastric digestion was started by the addition to the 100 mL of 88 

overall digestion media of 0.2 g of NaCl and 31500 U of pepsin. The samples were incubated 89 

at 37°C in a shaking bath for 2h to simulate the gastric phase of digestion. At the end of the 90 

gastric digestion, the pH was brought to 7.5 with NaHCO3, before adding 0.8 g∙L-1 pancreatin 91 

and 5 mg∙mL-1 bile salts. The solution was then incubated at 37°C in a shaking bath for 92 

further 2h to simulate the intestinal phase of digestion. The enzymes were inactivated by 93 

heating at 95°C for 15 min, followed by cooling to room temperature. Aliquots of the samples 94 

were withdrawn after mixing milk with water (after mixing pH 6.8), after acidification to pH 95 
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2.5, at the end of the gastric digestion, after alkalinization to pH 7.5 and at the end of the 96 

intestinal digestion. Each sample was digested in triplicate. 97 

 98 

2.3. Determination of the degree of hydrolysis 99 

The determination of the degree of hydrolysis of the digested samples was carried out as 100 

reported by Adler-Nissen (1979). The hydrolysis degree was calculated as reported in 101 

equation (1):  102 

DH= (h/htot) ·100     (1) 103 

where h is the hydrolysis equivalent, defined as the concentration in milliequivalents·g-1 of 104 

protein of α-amino groups formed at the different stages of the simulated digestion, and htot is 105 

the hydrolysis equivalent at complete hydrolysis to amino acids (calculated by summing the 106 

contents of the individual amino acids in 1 g of protein and considering caseins as the only 107 

proteins in milk). According to Adler-Nissen (1979), the htot value was fixed at 8 that is the 108 

value calculated for caseins. 109 

 110 

2.4. SDS-PAGE Electrophoresis 111 

Samples of different types of un-fractionated milk taken at different times of digestion were 112 

subjected to SDS-PAGE electrophoresis using 17% polyacrylamide separating gel as reported 113 

in Helal et al. (2014). Three SDS gels were run of each milk sample. 114 

 115 

2.5. Fractionation of digested samples 116 

Samples from in vitro simulated digestion (4 mL of 5 times water-diluted sample) were 117 

subjected to ultrafiltration with Amicon Ultra-4 nominal cutoff 3 kg∙mol-1 (Millipore, Italy), 118 

at 7500g for 120 min at 4°C. At the end of the separation, two fractions were obtained: the 119 

retentate containing mainly high molecular weight compounds (HMW fraction; > 3 kg∙mol-1) 120 



 7 

and the permeate containing low molecular weight compounds (LMW fraction; < 3 kg∙mol-1). 121 

The two fractions were filled up to 4 mL with a solution of HCl 0.01 mol∙L-1 for the sample 122 

collected during the gastric phase of the digestion or potassium phosphate buffer (0.1 mol∙L-1; 123 

pH 7) for the sample collected during the intestinal phase.  124 

 125 

2.6. Reversed-phase high performance liquid chromatography (HPLC) analysis of peptides 126 

HPLC separation of the low molecular weight fractions of digested milk collected at the end 127 

of the pancreatic digestion was performed with a Jasco HPLC system equipped with a 128 

reversed phase column Hamilton HxSil C18 (Hamilton, Reno, Nevada; 250mm x 4.6mm, 5 129 

µm, 100 Å) as described in Tagliazucchi et al. (2015). The two solvents were: solvent A 130 

mixture of water-trifluoroacetic acid (0.037%) and solvent B acetonitrile-trifluoroacetic acid 131 

(0.027%). A linear gradient of solvent B in A ranging from 0% to 45% in 115 min with a flow 132 

rate of 0.5 mL·min-1 was used to separate the peptides contained in the low molecular 133 

fractions of digested milk. The photodiode array (PDA) detector was set at 214 nm. Twelve 134 

fractions from digested skimmed milk were collected and freeze-dried. These fractions were 135 

re-filled to the original volume with a potassium phosphate buffer (0.1 mol∙L-1; pH 7) and 136 

then analysed for their antioxidant activity. 137 

 138 

2.7. ABTS·+ radical scavenging activity of digested samples and HPLC fractions 139 

The antioxidant activity of the sample collected during the in vitro digestion procedure and 140 

from HPLC separation was determined using ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-141 

sulphonic acid) method as described in Re et al. (1999) both on un-fractionated and 142 

fractionated samples. The ABTS·+ scavenging capacity was expressed as milligrams of 143 

vitamin C per L of milk, by means of  a calibration curve obtained with vitamin C (ranging 144 

from 1 to 150 mg∙L-1), in the same assay conditions.  145 
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 146 

2.8 Antioxidant properties of selected HPLC fractions and amino acids 147 

The antioxidant properties of the selected HPLC fractions and amino acids were evaluated 148 

using three different assays. 149 

The ABTS assay was carried out as described in the paragraph 2.7. 150 

The capacity to scavenge hydroxyl radicals was evaluated according to a method reported by 151 

Ajibola et al. (2011) with some modifications. The assay consisted of mixing 50 µL of 3 152 

mmol∙L-1 TPTZ (2,4,6-Tri(2-pyridyl)-s-triazine) dissolved in HCl 50 mmol∙L-1, 50 µL of 3 153 

mmol∙L-1 FeSO4, 50 µL of sample or vitamin C (at concentration ranging from 1 to 10 154 

mmol∙L-1), and 50 µL of 0.01% (v/v) hydrogen peroxide, in a clear bottom 96-well plate. The 155 

mixture was incubated for 1h at 37°C and the absorbance was measured at 540 nm using a 156 

microplate reader.  157 

The ABTS and hydroxyl radical scavenging capacities were expressed as milligrams of 158 

vitamin C per L of milk or, in the case of the amino acids as mg vitamin C per mmol of amino 159 

acid. 160 

The ability to inhibit lipid peroxidation was carried out using a linoleic acid emulsion system 161 

(Ajibola et al. 2011). For that purpose, 200 µL of sample at concentration of 2 mmol∙L-1, 200 162 

µL of 99.5% ethanol and 2.6 µL of linoleic acid were mixed and the total volume was 163 

adjusted to 500 µL with sodium phosphate buffer, 50 mmol∙L-1, and pH 7.0. The mixture was 164 

incubated at 40°C in the dark for seven days. The amount of generated lipid hydroperoxide 165 

was measured by the FOX assay as reported by Tagliazucchi et al. (2010). The lipid 166 

peroxidation inhibitory activity of the samples was expressed as percentage of inhibition 167 

respect to a control reaction without the sample. 168 

 169 
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2.9. Peptide profile determination with nanoflow liquid chromatography accurate mass 170 

quadrupole time-of-flight mass spectrometry with electrospray ionization (LC-ESI-QTOF MS) 171 

The fractions with the highest antioxidant activity were subjected to QTOF MS/MS analysis 172 

for peptide identification. Nano LC/MS and tandem MS experiments were performed on a 173 

1200 Series Liquid Chromatographic two-dimensional system coupled to a 6520 Accurate-174 

Mass Q-TOF LC/MS via a Chip Cube Interface (Agilent Technologies). Chromatographic 175 

separation was performed on a ProtID-Chip-43(II) including a 4mm 40 nL enrichment 176 

column and a 43 mm × 75 μm analytical column, both packed with a Zorbax 300SB 5 μm 177 

C18 phase (Agilent Technologies). The mobile phases composition and the gradient were the 178 

same as reported by Tagliazucchi et al. (2015). The mass spectrometer was tuned, calibrated 179 

and set with the same parameters as reported by Dei Più et al. (2014). 180 

For peptide identification and sequencing, MS/MS spectra were converted to .mgf and de 181 

novo peptide sequencing was performed using Pepnovo software 182 

(http://proteomics.ucsd.edu/ProteoSAFe/). The following parameters were considered: 183 

enzyme, none; peptide mass tolerance, ± 40 ppm; fragment mass tolerance, ± 0.12 Da; 184 

variable modification, oxidation (M) and phosphorylation (ST); maximal number of PTMs 185 

permitted in a single peptide 3. 186 

A search for the biological activity of peptides identified was carried out through the BIOPEP 187 

database (http://www.uwm.edu.pl/biochemia/biopep/start_biopep.php). Confirmation of 188 

peptides sequence in bovine milk proteins was performed using Peptide Match 189 

(http://research.bioinformatics.udel.edu/peptidematch/index.jsp). 190 

 191 

2.10. HPLC analysis of tyrosine and tryptophan 192 

The amount of tyrosine in F2 and tryptophan in F5 was determined according to Frank and 193 

Powers (2007). Derivatization was carried out by mixing 50 µL of sample with 50 µL of OPA 194 
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(ortho-phthalaldehyde) solution (consisting of 7.45 mmol∙L-1 of OPA and 11.4 mmol∙L-1 of 3-195 

mercaptopropionic acid in potassium tetraborate buffer 0.2 mmol∙L-1 pH 9.5). The HPLC 196 

separation of the derivatized amino acids was carried out with the same C18 column as 197 

reported in paragraph 2.6 using a binary gradient of mobile phase A (30 mmol∙L-1 potassium 198 

phosphate buffer with 0.4% tetrahydrofuran pH 7.0) and mobile phase B (50% acetonitrile 199 

and 50% water). The gradient started at 0% B for 0.5 min then linearly ramped up to 48% B 200 

in 22 min. The mobile phase composition was raised up to 60% B in 12 min, then 100% B in 201 

1 min and maintained for 4 min in order to wash the column. Flow rate was 1 mL∙min-1. The 202 

detection was performed at 340 nm. 203 

 204 

2.11. Statistical analysis  205 

All data are presented as mean ± SD for three independent in vitro digestion experiments 206 

performed on the same milk sample. Two-way univariate analysis of variance (ANOVA) with 207 

Tukey post-hoc test was applied to determine significant differences (P < 0.05). Correlations 208 

between variables were assessed using Pearson's method. All analyses were performed with 209 

GraphPad Prism version 6.00 (GraphPad software, San Diego, CA). 210 

211 
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3. Results and discussion 212 

 213 

3.1 Assessment of protein hydrolysis during simulated digestion of whole, semi-skimmed and 214 

skimmed milk 215 

Simulated gastro-intestinal digestion of whole, semi-skimmed and skimmed milk resulted in 216 

the partial hydrolysis of the milk proteins with formation of peptides with a molecular weight 217 

lower than 10 kg∙mol-1 as showed by electrophoresis (data not shown). As detailed in Table 1, 218 

the degree of hydrolysis (DH) of the different types of milk at time 0h was similar and not 219 

statistically different (average DH value 2.9 ± 0.3) regardless of milk type. DH increased 220 

significantly (P< 0.05) during the peptic digestion for all the samples but with some 221 

differences. The DH after peptic digestion was higher for samples with low fat content 222 

(skimmed>semi-skimmed>whole milk). The pancreatic digestion produced a high and 223 

significant (P< 0.05) increase in DH for all the digested samples. The degree of protein 224 

hydrolysis was different considering the various types of milk and in particular was higher for 225 

milk poor in fat respect to the milk rich in fat, despite having the same protein content. 226 

Results showed that the presence of fat reduces the proteolysis both at gastric and intestinal 227 

level. The exact mechanism is not known and currently under investigation. It could be 228 

expected that, since surface plays a very important part in enzyme action, fats may reduce 229 

surface tension and so lower surface energy, hence retard protein digestion. 230 

The DH value measured after gastro-intestinal digestion with our model was lower than those 231 

determined by Picariello et al. (2015) which found a degree of hydrolysis for skimmed milk 232 

between 34.5 and 58 depending on the substrate to digestive enzyme ratio. Simulated 233 

digestion of isolated κ- and β-casein resulted in a hydrolysis degree between 40 and 55 234 

(Petrat-Melin et al. 2015; Petrat-Melin et al. 2016). 235 

 236 
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3.2. ABTS·+ radical scavenging activity of digested whole, semi-skimmed and skimmed milk 237 

All three types of milk showed ABTS·+ radical scavenging activity before the digestion 238 

(Table 2), but with some differences. Skimmed milk had a significant minor radical 239 

scavenging activity respect to whole milk (P< 0.05). The higher value of ABTS·+ radical 240 

scavenging activity in samples with more fats can be due to the reactivity of lipid soluble 241 

antioxidants, such as α-tocopherol and carotenoids (Re et al., 1999), and fat globule 242 

membrane proteins with ABTS·+ radical. More than 90% of the antioxidant activity in all the 243 

analysed types of milk was in the > 3 kg∙mol-1 high molecular weight fraction (HMW) 244 

underlining the role of protein in the total radical scavenging activity of milk. Clausen et al. 245 

(2009) found that caseins are quantitatively the highest radical scavengers in milk whereas the 246 

lower contribution of the low molecular weight fraction (LMW) is due to ascorbate and 247 

especially urate. Caseins have a high content of antioxidative amino acids such as tyrosine, 248 

tryptophan and phosphoserine, and quenching of free radicals by oxidation of these amino 249 

acids was proposed as the explanation (Clausen et al. 2009; Cervato et al. 1999).  250 

After acidification of the milk samples to pH 2.5 (corresponding to the time zero of the gastric 251 

digestion), the ABTS·+ radical scavenging activity decreased significantly in all three types of 252 

milk. This decrease was caused by a drop in the ABTS·+ value of the HMW fraction whereas 253 

the value in the LMW fraction was unaffected. The gastric pH value (pH 2.5) is near to the 254 

isoelectric point of casein (pI 4.6) and this determines changes in casein aggregation with a 255 

masking of antioxidant sequences of amino acids, which can explain the decrease in ABTS·+ 256 

radical scavenging activity after acidification. After 120 min of peptic digestion, the total 257 

ABTS·+ value increased non-significantly respect to the time zero of gastric digestion in all 258 

the milk types. However, the ABTS·+ radical scavenging activity was always lower than the 259 

original value found in the different types of milk before the digestion except than in the 260 

LMW fractions. The main contribution to ABTS·+ value, for all the types of milk beverages 261 
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after peptic digestion, was due to HMW fraction. The HMW fraction ABTS·+ radical 262 

scavenging activity decreased, from the milk richest to the milk poorest in fats.  263 

The passage into the alkaline media, from 120 min of the gastric digestion (pH 2.5) to time 0 264 

min of the pancreatic digestion (pH 7.5), led to an increase in the ABTS·+ radical scavenging 265 

activity in total and LMW and HMW fractions of all the types of milk beverages. 266 

After 120 min of pancreatic digestion there was a high increase in the ABTS·+ value, for all 267 

the three types of milk beverages. Whole milk showed the highest increase whereas there 268 

were no statistically differences between semi-skimmed and skimmed milk.  269 

The distribution of the radical scavenging activity between the LMW and HMW fractions was 270 

different considering the diverse types of milk. In digested whole milk, the main contribution 271 

to ABTS·+ radical scavenging activity was due to HMW fraction. For semi-skimmed and 272 

skimmed milk, the main contribution was due to LMW fraction. During in vitro gastro-273 

intestinal digestion of bovine milk, protein hydrolysis determines the formation of low 274 

molecular weight peptides with ABTS·+ radical scavenging activity probably due to 275 

unmasking and liberation of some amino acids sequences with antioxidant activities that are 276 

buried or inactive in the intact proteins. Hydrolysates obtained after peptic, tryptic and 277 

chymotryptic hydrolysis of milk proteins showed radical scavenging activity (Pihlanto 2006; 278 

Hernández-Ledesma et al. 2005).  There is a clear correlation (Pearson coefficient r=0.928; 279 

P< 0.05) between the DH and the amount of ABTS·+ radical scavenging activity found in 280 

LMW fractions. The whole milk sample showed the lowest DH after pancreatic digestion and 281 

only 38% of ABTS·+ radical scavenging activity was found in the LMW fraction. The 282 

percentage of ABTS·+ radical scavenging activity in the LMW fraction increased to 79% and 283 

90% in semi-skimmed and skimmed milk samples, respectively, according to the increase in 284 

the hydrolysis degree. The fat content negatively influenced the LMW ABTS·+ radical 285 

scavenging activity at the end of the digestion. Indeed, the presence of fat may lead to 286 
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peroxidative phenomena during gastro-intestinal digestion causing depletion of antioxidant 287 

compounds. This fact may results in a lower ABTS·+ reactivity in the samples richest in fat. 288 

 289 

3.3. Antioxidant properties of the HPLC fractions from the permeate of digested skimmed 290 

milk 291 

The peptides in the LMW fractions of digested milk were separated in the HPLC C18 column 292 

and detected at 214 nm with PDA. As reported in Figure 1, the LMW fractions of the three 293 

different types of milk showed the same HPLC pattern with the only difference in the 294 

intensity of the peaks.  295 

Due to its high ABTS·+ radical scavenging activity, the LMW fraction of skimmed milk was 296 

selected for MS/MS experiments with the aim to identify the compounds responsible for the 297 

activity. 298 

Twelve fractions from skimmed milk permeate (Figure 1C) were collected, freeze dried and 299 

evaluated for their ABTS·+ radical scavenging activity. Only seven fractions were found to 300 

have a considerable ABTS·+ radical scavenging activity (Figure 2).  301 

Three fractions (F2, F3 and F5) were found to be the major contributors on the ABTS·+
 302 

radical scavenging activity of the skimmed milk LMW fraction. These three fractions were 303 

further characterized for their ability to scavenge hydroxyl radical and to inhibit lipid 304 

peroxidation. All of the three fractions exhibited a certain degree of hydroxyl scavenging 305 

activity. Fraction F2 was the most active against hydroxyl radical whereas fraction F3 showed 306 

the highest lipid peroxidation inhibitory activity (Table 3). 307 

The compounds responsible for the antioxidant activity of these three fractions were 308 

tentatively identified with mass spectrometry.  309 

 310 

3.4. NanoLC-ESI-QTOF-MS/MS analysis of the HPLC collected fractions 311 
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Figure 3 shows the full MS spectra of the fractions F2, F3 and F5. Each peak was selected for 312 

peptide identification by MS/MS ion scan using de novo sequencing software. Results from 313 

peptide identification were subjected to a manual evaluation, and the validated peptide 314 

sequences explained most of the major peaks in the MS spectra.  315 

In the lowest part of the MS spectra of fraction F2 (Figure 3A) the most intense signals were 316 

identified as the amino acids (iso)leucine (Lx; m/z=132.1037) and tyrosine (Y; 317 

m/z=182.0851), and the dipeptide GP (m/z=173.0840). Additional intense signals were 318 

identified as the dipeptide GLx (m/z=189.1246) and the tripeptides VVD (m/z=332.1821) and 319 

LSH (m/z= 356.1945). The list of compounds identified in fraction F2 is shown in Table 4 320 

together with the MS data, the protein precursor and the potential bioactivity.  321 

In the lowest part of the MS spectra of fraction F3 (Figure 3B) the most intense signals were 322 

identified as the amino acid phenylalanine (F; m/z=166.1055) and the dipeptide GP 323 

(m/z=173.0819). An additional signal at m/z of 120.0859 was assigned to the amino acid 324 

threonine. In the peptidic part of the spectra the most intense signals corresponded to the 325 

dipeptides VLx (m/z 231.1736), ALx (m/z= 203.1415) and QLx (m/z=260.1639) and the 326 

tripeptide SLxT (m/z= 320.1849). The list of compounds identified in fraction F3 is shown in 327 

Table 4 together with the MS data, the protein precursor and the potential bioactivity.  328 

An additional free aromatic amino acid, tryptophan (W; m/z=205.2208), gave an intense 329 

signal in the fraction F5 (Figure 3C). The most intense signals in the peptidic part of the MS 330 

spectra of fraction F5 were identified as the tetrapeptide SAPL (m/z=387.2272) from β-331 

lactoglobulin (f36-39) and the αS1-casein-derived (f8-13) peptide HQGLPQ (m/z=340.1831; 332 

double-charged ion). Additional high signals were attributed to the peptide TKIPA from β-333 

lactoglobulin (f76-80) present both as double-charged (m/z=265.1741) and mono-charged 334 

(m/z=529.3435) ions and the αS2-casein-derived peptides ITVDDK (f71-76) as double-335 

charged ion (m/z=345.6897) and FPQ (f92-94) with m/z value of 391.2055. The peptide 336 
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AMEDIK (αS1-casein f53-58) was present in the spectra both in reduced and oxidized (at 337 

methionine level) forms with m/z values of 353.6766 and 361.6770, respectively (Table 5). 338 

 339 

3.5. Identification of antioxidant compounds in HPLC fractions F2, F3 and F5 340 

To identify the amino acids and peptides with the most potential antioxidant activity, the 341 

antioxidant properties of the peptides constitutive amino acids was determined (Table 6). 342 

Tryptophan was the amino acid with the highest ABTS·+ value followed by cysteine and 343 

tyrosine. The rest of the amino acids analysed did not exhibit antioxidant activity with this 344 

method at 2 mmol∙L-1 concentration. Tyrosine and cysteine were also the amino acids with the 345 

highest hydroxyl radical scavenging activity followed by methionine and tryptophan. The 346 

amino acids phenylalanine and histidine showed the highest ability to inhibit lipid 347 

peroxidation. The amino acid tryptophan appeared to be the most effective as antioxidant 348 

since it showed high activity in all the assays. 349 

Therefore, only the peptides containing the amino acids with antioxidant properties as well as 350 

the corresponding free amino acids were considered as potential radical scavengers. 351 

Among the different compounds identified in fraction F2, tyrosine seemed fundamental in the 352 

ABTS·+ and hydroxyl radical scavenging capacities of the fraction, and to play a role in the 353 

inhibition of formation of lipid hydroperoxide. Tyrosine was further quantified in the fraction 354 

resulting in a concentration of 2.2 ± 0.1 mmol∙L-1 of milk. The free tyrosine standard showed 355 

an ABTS·+ radical scavenging activity of 124.7 ± 12.3 mg of vitamin C∙mmol-1 of amino acid, 356 

which resulted in an ABTS·+ value of 274.3 mg of vitamin C per 2.2 mmol of tyrosine. 357 

Considering that the ABTS·+ radical scavenging activity of the fraction F2 was 303.1 mg of 358 

vitamin C∙L-1 of milk, we concluded that the 90% of the ABTS·+ radical scavenging activity 359 

of this fraction is due to the presence of free tyrosine. Free tyrosine also accounted for the 360 

36.5% of the total hydroxyl radical scavenging activity of this fraction. Tyrosine is an 361 
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aromatic amino acid, which is known for its antioxidant activity. The antioxidant properties of 362 

tyrosine is due to the presence of the phenolic moiety (aromatic ring with a hydroxyl group), 363 

which makes tyrosine a good scavenger of free radicals and metal chelator (Pihlanto 2006). 364 

Two additional peptides (LSH and GP), which contained amino acids able to scavenge 365 

hydroxyl radical may account for the remaining scavenging capacity and lipid peroxidation 366 

inhibitory activity of the fraction F2. The peptide LSH contained the amino acids serine and 367 

histidine, which displayed hydroxyl radical scavenging capacity and strong lipid peroxidation 368 

inhibitory activity (Table 6). The dipeptide GP is of particular interest because it displayed 369 

multifunctional properties (Table 4).  370 

Fraction F3 contained some peptides with previously demonstrated radical scavenging 371 

activity, which can explain the high value of ABTS·+
 and hydroxyl radical scavenging activity 372 

found in this fraction. The αS1-casein-derived peptide YPEL (146-149) demonstrated radical 373 

scavenger activity against DPPH, superoxide anion and hydroxyl radicals (Suetsuna et al. 374 

2000). The presence of the tyrosine residue seems to be very important for the antioxidant 375 

properties of the peptide YPEL since its deletion from the sequence halves the radical 376 

scavenging activity (Suetsuna et al. 2000). This peptide also gave an intense signal in the MS 377 

spectra suggesting that it may be present in high amounts in the fraction F3. The tetrapeptide 378 

VRYL (αS2-casein 205-208) forms part of the antioxidant peptide PYVRYL, derived from 379 

ovine casein hydrolysate (López-Expósito et al. 2007). The sequence RYL played an 380 

important role in the activity since it still showed antioxidant activity (De Gobba et al. 2014a). 381 

The peptide AVPYPQ (β-casein 177-182) is a precursor of two well-known antioxidant 382 

peptides, namely VPYPQ and PYPQ, identified in human milk submitted to gastro-intestinal 383 

digestion (Raikos and Dassios 2014; Hernández-Ledesma et al. 2007). The domain PYPQ is 384 

primary in determining their antioxidant properties. However, the peptide VPYPQ showed a 385 

higher antioxidant activity than the peptide PYPQ.  386 
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This fraction also showed the best lipid peroxidation inhibitory activity. It contained the free 387 

amino acid phenylalanine, which had strong inhibitory activity towards lipid peroxidation 388 

(Table 6). This compound is therefore expected to be the primary contributor to the lipid 389 

peroxidation inhibitory activity of fraction F3. 390 

Tryptophan is a potent radical scavenger, which contains an indole group that is involved in 391 

the stabilization of the tryptophan radical through resonance or delocalization of the unpaired 392 

electron (Pihlanto 2006). Tryptophan in fraction F5 was quantified resulting in a value of 1.3 393 

± 0.1 mmol∙L-1 of milk. The free tryptophan standard showed an ABTS·+ radical scavenging 394 

activity of 219.2 ± 16.1 mg of vitamin C∙mmol-1 of amino acid, which corresponded to a 395 

value of 285 mg vitamin C per 1.3 mmol of tryptophan. Considering that, the ABTS·+ radical 396 

scavenging activity of the fraction F5 was 450 mg of vitamin C∙L-1 of milk, tryptophan 397 

accounted for the 63.3% of the ABTS·+ radical scavenging activity in this fraction. Based on 398 

the data in Table 3 and 6 free tryptophan also accounted for the 59.9% of the hydroxyl radical 399 

scavenging activity of fraction F5. Additional peptides with potential radical scavenging 400 

activity were found in the fraction F5. For example the peptides DAYPSGA (αS1-casein 157-401 

163) and DAYPS (αS1-casein 157-163) are precursors of the antioxidant peptide AYPS (De 402 

Gobba et al. 2014b). Interestingly, this last peptide was identified, after casein hydrolysis, in a 403 

fraction with high antioxidant activity together with the peptides RYPS and SRYPS, 404 

suggesting that the sequence YPS could be primary for the antioxidant properties of these 405 

peptides. This peptides (DAYPSGA and DAYPS) contained the amino acid tyrosine which 406 

displayed strong ABTS and hydroxyl radical scavenging capacities and the amino acids 407 

proline and serine active against the hydroxyl radical (Table 6). Several antioxidative 408 

peptides contain the sequence YL or YI in their structure such as the tripeptides YYL, YLY, 409 

YYI, YIY (Saito et al. 2003) and RYL (De Gobba et al., 2014a) as well as the longer peptides 410 

YIPIQY, FALPQYLK, GYLEQ, YLKT and PYVRYL (De Gobba et al., 2014b; López-411 
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Expósito et al. 2007). The amino acids phenylalanine and histidine played an important role in 412 

the lipid peroxidation inhibitory activity of the peptides (De Gobba et al. 2014a). Therefore, 413 

the peptides present in fraction F5 containing these amino acids could be considered the major 414 

contributor to the lipid peroxidation inhibitory activity of this fraction. The peptides FPQ 415 

(αS1-casein 92-94) and HQGLPQ (αS1-casein 8-13) also gave very intense peak in the MS 416 

spectra (Figure 3), suggesting that they could be present at high concentration in fraction F5. 417 

 418 

3.6. Milk proteins as a carrier for the delivery of antioxidant compounds in the gastro-419 

intestinal tract 420 

Various evidence suggests that oxidative stress is closely associated with the onset and 421 

progression of several chronic diseases (Willcox et al. 2004). Therefore, it is generally 422 

speculated that antioxidants in the diet can be helpful in counteracting the onset of these 423 

diseases. However, the link between in vitro and in vivo antioxidant capacities has not been 424 

clearly established. With regard to this, despite the large number of in vitro studies reporting 425 

the antioxidant activity of bioactive peptides, the in vivo effect of milk-derived antioxidant 426 

peptides on human health remains unclear (Power-Grant et al., 2013).  427 

The gastrointestinal tract is constantly exposed to reactive oxygen species, from the diet or 428 

generated in the gastro-intestinal tract itself. Reactive radical species can derive from dietary 429 

iron, which in the gastric environment (i.e. in presence of oxygen, acidic pH and H2O2) may 430 

promote Fenton reaction generating superoxide anion and hydroxyl radicals (Halliwell et al. 431 

2000). Reactive oxygen species in the gut can initiate, in presence of transition metals, the 432 

lipid peroxidation of dietary poly-unsatured fatty acids, resulting in the production of lipid 433 

hydroperoxydes and advanced lipoxidation end products, which can be further absorbed and 434 

involved in the pathogenesis of some cardiovascular diseases (Tagliazucchi et al. 2010). In 435 

addition, dietary heme proteins are powerful pro-oxidant which can initiate gastric lipid 436 
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peroxidation (Tagliazucchi et al., 2010). Indeed diet can also be a source of lipid 437 

hydroperoxide, lipo-oxidation end-products and hydrogen peroxide (Halliwell et al. 2000). An 438 

additional source of free radical rise from the activation of immune cells naturally present in 439 

the gastro-intestinal tract by diet-derived bacteria and toxins (Halliwell et al. 2000). Severe 440 

oxidative stress in the gastrointestinal tract has been involved in the pathogenesis of colorectal 441 

cancer and in inflammation-based gastro-intestinal tract diseases (Kim et al. 2012).  442 

Bioactive peptides might exert direct protective effects in the gastro-intestinal tract by 443 

scavenging reactive oxygen species and reducing the oxidative stress. The gastrointestinal 444 

tract is in contact with digested food proteins and therefore, with a significant amount of food 445 

derived peptides. With this view, milk proteins can be considered as a carrier for the delivery 446 

of antioxidant compounds in the gastro-intestinal tract. In milk, antioxidant amino acids and 447 

peptides are preserved from oxidation and degradation since they are encrypted in the protein 448 

sequences. The simultaneous action of intestinal proteases determines a slow and continuous 449 

release of antioxidant peptides and amino acids from the parent proteins protecting the gastro-450 

intestinal tract itself from the oxidative damage and the onset of oxidative diseases. The low 451 

bioavailability of protein-derived bioactive peptides supports this hypothesis, suggesting that, 452 

at least in part, the physiological effect of bioactive peptides on the organism could derive 453 

from a biological effect in the gastro-intestinal tract. 454 

455 
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4. Conclusion 456 

Our results indicate that the amino acids tyrosine and tryptophan, released during in vitro 457 

gastro-intestinal digestion and some identified tyrosine-containing peptides were the major 458 

responsible for the radical scavenging activity of digested milk, whereas phenylalanine and 459 

histidine-containing peptides played a crucial role in the lipid peroxidation inhibitory capacity 460 

of digested milk . Many previous studies were carried out with the aim to identify antioxidant 461 

peptides released from bovine milk after proteases treatment. Despite numerous antioxidant 462 

peptides having been identified, it is likely that they lack a real physiological systemic effect 463 

because they can be further degraded by membrane-bound amino-peptidase in the intestine or 464 

they can be poorly absorbed due to their size and thus possibly are no longer available to elicit 465 

a biological response. However, we propose that the biological activity of these antioxidant 466 

compounds can be relevant for the gastro-intestinal tract. In our view, antioxidant compounds 467 

can be slowly and continuously released from milk proteins protecting the gastro-intestinal 468 

tract itself from oxidative damage. 469 

Further studies should be carried out to elucidate the in vivo contribution of these antioxidant 470 

compounds to the antioxidant status of the gastro-intestinal tract after milk consumption.  471 
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Figure captions  

Fig. 1 UV-chromatograms of the low molecular weight fractions (< 3 kg∙mol-1) obtained from 

the whole (A), semi-skimmed (B) and skimmed (C) bovine milk after in vitro gastro-intestinal 

digestion. Twelve fractions (from F1 to F12) were collected from the low molecular weight 

fraction of skimmed milk (see panel C). Detection was achieved at 214 nm. The showed 

chromatograms are representative of three independent experiments. 

Fig. 2 Antioxidant activity of the high-performance liquid chromatography-collected fractions 

from permeate (< 3 kg∙mol-1) obtained from skimmed bovine milk after in vitro gastro-

intestinal digestion. Bars with different letters are different from one another (P < 0.05) based 

on two-way ANOVA analysis of variance and subsequent Tukey’s post hoc test. 

Fig 3 Mass spectrum of high-performance liquid chromatography fraction F2 (A), F3 (B) and 

F5 (C) from nanoLC-qTOF MS/MS analysis of the permeate (< 3 kg∙mol-1) obtained from 

skimmed bovine milk after in vitro gastro-intestinal digestion. Identified compounds are 

reported in Tables 4 and 5. The showed mass spectra are representative of three independent 

experiments. 
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Table 1  

Degree of hydrolysis (DH) of bovine milk proteins before and after in vitro gastro-intestinal 

digestion. Data are means ± SD; n=3 

Sample  Whole milk Semi-skimmed milk Skimmed milk 

Before digestion 3.1 ± 0.5a 2.8 ± 0.5a 3.1 ± 0.2a 

After peptic digestion 7.2 ± 0.6b 7.4 ± 0.2b 8.8 ± 0.7c 

After pancreatic digestion 20.8 ± 0.4d 24.3 ± 0.3e 30.7 ± 0.8f 

a–f significant differences are shown by different letters (Tukey’s test, P < 0.05). 
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Table 2.  
 
Changes in antioxidant activity determined with ABTS assay on the different types of milk during 
digestion (LMW: low molecular weight fraction, HMW: high molecular weight fraction). Results 
are expressed as mg of vitamin C∙L-1 of milk. Data are means ± SD; n=3 
 

Sample 

Before 
digestion 

Gastric digestion Pancreatic digestion 

After mixing 
pH 6.8 

Time 0 min  
pH 2.5 

Time 120 min pH 
2.5 

Time 0 min 
 pH 7.5 

Time 120 min 
pH 7.5 

Whole milk      

Total 622.3 ± 44.5 282.4 ± 19.3a 415.2 ± 9.1a 881.0 ± 39.9a,b,c 3374.3 ± 104.6a,b,c,d

LMW 
 (< 3 kg∙mol-1) 

27.6 ± 4.7 13.6 ± 4.0 80.5 ± 9.5 180.6 ± 16.7a,b,c 1267.7 ± 100.2a,b,c,d

HMW 
 (> 3 kg∙mol-1) 

597.2 ± 24.9 280.0 ± 21.8a 367.7 ± 30.5a 719.9 ± 22.4b,c 2044.6 ± 183.1a,b,c,d

Semi-skimmed milk      

Total 571.4 ± 22.4 221.7 ± 24.6a,e 268.6 ± 3.6a,e 642.7 ± 18.5a,b,c,e 2657.1 ± 39.6a,b,c,d,e

LMW  
(< 3 kg∙mol-1) 

39.4 ± 6.2     16.6 ± 3.2 62.5 ± 5.1 169.1 ± 14.2a,b,c 2104.6 ± 80.6a,b,c,d,e

HMW 
 (> 3 kg∙mol-1) 

527.0 ± 38.1 203.1 ± 16.4a,e 198.1 ± 12.9a,e 484.8 ± 27.0a,b,c,e 489.6 ± 21.1a,b,c,e 

Skimmed milk      

Total 515.3 ± 15.2e 176.5 ± 27.1a,e 229.6 ± 8.0a,e,f 592.7 ± 23.4a,b,c,e 2751.2 ± 46.9a,b,c,d,e

LMW 
 (< 3 kg∙mol-1) 

42.5 ± 10.8 14.7 ± 5.2 76.3 ± 9.1 146.9 ± 12.1a,b,c 2481.4 ± 110.1a,b,c,d,e,f

HMW 
 (> 3 kg∙mol-1) 

462.8 ± 34.7e 146.9 ± 23.4a,e,f 143.4 ± 11.6a,e,f 420.1 ± 19.6b,c,e,f 351.8 ± 38.6a,b,c,e 

 

a indicates significantly different respect to the same sample before the digestion (Tukey’s test, P < 0.05). 
b indicates significantly different respect to the time 0 of gastric digestion (Tukey’s test, P < 0.05). 
c indicates significantly different respect to the time 120 of gastric digestion (Tukey’s test, P < 0.05). 
d indicates significantly different respect to the time 0 of pancreatic digestion (Tukey’s test, P < 0.05). 
e indicates significantly different respect to whole milk at the same time and pH (Tukey’s test, P < 0.05). 
f indicates significantly different respect to semi-skimmed milk at the same time and pH (Tukey’s test, P < 0.05). 
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Table 3. Radical scavenging properties and lipid peroxidation inhibitory activity of the reversed 
phase-high performance liquid chromatography fractions F2, F3 and F5 of < 3 kg∙mol-1 permeate 
obtained from skimmed bovine milk after in vitro gastro-intestinal digestion. 
 

 
 

 

 

 

 

 

 

Data are means ± SD (n = 3). Values in the same columns with different lowercase letter are significantly different 
(Tukey’s test; P< 0.05). 
 

 
ABTS radical 
scavenging 

Hydroxyl radical 
scavenging 

Inhibition of lipid 
peroxidation 

 mg vitamin C∙L-1 % of inhibition 

F2 303.1 ± 12.8a 4643.1 ± 153.6a 21.0 ± 3.6a 

F3 476.0 ± 27.7b 1084.4 ± 61.9b 97.4 ± 4.7b 

F5 450.0 ± 25.3b 457.8 ± 28.1c 58.9 ± 7.3c 
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Table 5. Compounds identified in the reversed phase-high performance liquid chromatography 
fraction F5 of < 3 kg∙mol-1 permeate obtained from skimmed bovine milk after in vitro 
gastro-intestinal digestion 

 
 

Fraction 
Observed 
mass (m/z) 

Calculated 
massa 

Peptide sequenceb Protein precursor Bioactivityc 

      

F5      

 205.2208 205.2262 W various proteins 
 
Antioxidant 
 

 231.1734 231.1703 LxV various proteins 

 
Glucose uptake stimulating 
peptide (LV/IV); 
DPP IV inhibitor (LV) 
 

 231.1734 231.1703 VLx various proteins 

 
Glucose uptake stimulating 
peptide (VL); 
DPP IV inhibitor (VL/VI)
 

 265.1741 529.3344 TKIPA 
β-lactoglobulin 

f (76-80) 
/ 

 295.1655 295.1652 YLxx various proteins 

 
DPP IV inhibitor (YL/YI);
ACE inhibitor (YL)  
Fragment of antioxidant 
peptides 

 

 317.6827 634.3923 YKVPK 
αS1-casein 
f (104-108) 

/ 

 340.1831 679.3522 HQGLPQ 
αS1-casein 

f (8-13) 
/ 

 345.6897 690.3668 ITVDDK 
αS2-casein 
f (71-76) 

/ 

 353.6766 706.3440 AMEDIK 
αS1-casein 
f (53-58) 

/ 

 387.2272 387.2165 SAPL 
β-lactoglobulin 

f (36-39) 
/ 

 391.2055 391.1976 FPQ 
αS2-casein 
f (92-94) 

/ 

 446.5737 1337.6808 HIQKEDVPSER 
αS1-casein 
f (80-90) 

/ 

 552.2430 552.2227 DAYPS 
αS1-casein 
f (157-161) 

Precursor of antioxidant 
peptides 

 680.3035 680.2886 DAYPSGA 
αS1-casein 
f (157-163) 

Precursor of antioxidant 
peptides 

aMonoisotopic mass 
bLx indicates leucine or isoleucine 
cPotential bioactivities were achieved from the BIOPEP database; ACE: Angiotensin Converting Enzyme; DPP IV: 
Dipeptidyl peptidase IV  
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Table 6. Antioxidant properties of pure amino acids and the dipeptide glycine-proline. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Three letters code 
b% of inhibition referred to a control reaction without amino acids (set as 100% of peroxidation). Amino acids were 
tested at concentration of 2 mmol L-1 
n.d. not detected activity 
Data are means ± SD (n = 3). Values in the same columns with different lowercase letter are significantly different 
(Tukey’s test; P < 0.05). 

Amino acidsa 
ABTS radical 
scavenging 

Hydroxyl radical 
scavenging 

Inhibition of lipid 
peroxidation 

 mg vitamin C∙mmol-1 amino acid % of inhibitionb 

Trp 219.2 ± 5.9a 211.1 ± 3.1a 31.7 ± 1.1a 

Tyr 124.7 ± 3.8b 769.7 ± 9.5b 4.9 ± 0.2b 

Cys 162.5 ± 4.4c 766.4 ± 8.7b n.d. 

Met n.d. 450.9 ± 6.4c 11.3 ± 0.8c 

Thr n.d.   64.1 ± 2.1d n.d. 

Pro n.d.   59.1 ± 3.4d n.d. 

His n.d.   55.3 ± 2.8d,e
 80.3 ± 2.3d 

Arg n.d.   39.4 ± 1.4e 13.8 ± 1.1c 

Lys n.d. n.d. n.d. 

Asp n.d. n.d. n.d. 

Glu n.d. n.d. n.d. 

Phe n.d. 165.6 ± 8.3f 91.4 ± 5.6e 

Leu n.d. n.d. n.d. 

Ile n.d. n.d. n.d. 

Gly n.d. n.d. n.d. 

Val n.d. n.d. n.d. 

Ala n.d. n.d. n.d. 

Ser n.d. 188.1 ± 7.3g 50.3 ± 1.7f 
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Figure 1 
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Figure 2 
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Figure 3 

 


