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Abstract

In this paper we present a segmentation proposal method which employs a box-hy-

potheses generation step followed by a lightweight segmentation strategy. We intro-

duce diversity in segmentation strategies enhancing a generic model performance ex-

ploiting class-independent regional appearance features. Foreground probability scores

are learned from groups of objects with peculiar characteristics to specialize segmen-

tation models. We demonstrate results comparable to the state-of-the-art on PASCAL

VOC 2012 and a further improvement by merging our proposals with those of a re-

cent solution. The ability to generalize to unseen object categories is demonstrated on

Microsoft COCO 2014.
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1. Introduction

Automatic object segmentation is among the oldest topics in computer vision, and

apparently one of the hardest, in view of the results obtained thus far. Other topics,

such as image recognition and image search, have increased from a poor to a solid

performance in just a decade. While first ignoring location information altogether [1,5

2, 3], recognition and search have recently reintroduced locality where it now plays

an important role [4, 5]. We can obtain object localization in the form of a set of

box-hypotheses [6, 7] or precise segmentation masks [8, 9, 10].

Inspired by interactive segmentation, where every object is perfectly inscribed in

a user-placed bounding-box and then segmented, our goal is to start from a set of10

automatically obtained bounding-boxes and for each of them extract a precise segmen-

tation [11]. A clear problem with respect to the interactive segmentation setting is that
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Figure 1: Segmentation strategy diversification is employed to produce diverse proposals.

the number of object candidates to analyze is in the order of 1000 per image and not

only 1 per object, leading to large running times ([11] reports 6 to 10 minutes per im-

age). We aim to develop a method to refine box-hypotheses scalable to thousands of15

proposals.

As objects may be discriminated from the background on the basis of their edge

information, their texture, or other appearance cues, it is unlikely that there exists one

single model for generic object segmentation [12, 13]. Differentiation and combina-

tion of several segmentation strategies is necessary to control object diversity [5]. One20

extreme approach for diversity is to build a new segmentation model for each new class

of objects [11, 14]. A recognition step is thus required to select the appropriate model.

Class-specific segmentation models are hard to apply in large-scale applications [15],

and they are by definition not applicable to an unknown class of objects. We use the

progress in the field of segmentation to strive for a class-independent approach [10, 9],25

while introducing diversity in the segmentation strategy to enhance its generic perfor-

mance where needed.

Our approach starts with box-hypotheses built from edge statistics [6]. On the basis

of lightweight superpixel features, we assess the probability of belonging to the fore-

ground. The use of spatially-smooth visual features (e.g. geodesic distance) allows30

for accurate segmentations while avoiding any time-consuming regularization [16].

Rather, we rely on a simple threshold of the foreground probabilities to generate the
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binary segmentations. We also avoid any proposal re-ranking [4, 9] delegating the

ranking to the stage of the box-hypotheses. These choices allow for a fast segmenta-

tion proposal generation.35

During training, diversity is included by unsupervised clustering, sorting objects

into different types on the basis of regional appearance features. Ideally, each cluster

contains a specific group of objects suited for a specific segmentation approach. For

each group of objects, specialized segmentation models are learned. The same fea-

tures are used to assign an unknown object to one of these clusters when applying the40

algorithm.

Our contributions are:

1. We propose a fast and class-independent segmentation technique, starting from

recent methods for generating box-hypotheses;

2. By grouping objects into clusters, each suited for a specific segmentation strat-45

egy, we effectively achieve object-group diversity, reaching state-of-the-art re-

sults on PASCAL VOC 2012. We demonstrate how the learned segmentation

strategies generalize to unseen categories on the Microsoft COCO 2014 dataset.

3. We further demonstrate a considerable improvement in segmentation accuracy

over the state-of-the-art by enhancing the diversity after merging with a recent50

segmentation strategy [10].

The objects clusters obtained while diversifying the segmentation models are also used

to highlight when our method or [10] are providing the best candidates. The high-

light illustrates the importance of segmentation model diversity in the success of the

integrated solution.55

2. Related Work

Object localization with candidate segmentations has attracted a lot of attention in

the last years [17, 10, 18, 11, 19, 9, 4, 12], mainly due to the improvement that precise

localization offers in object recognition settings [8, 20].

The CPMC approach [4] uses multiple graph-cut computations at pixel-level to60

compute segmentation candidates from seeds placed on a grid over the image. The
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region level affinities proposed in [9] have inspired our foreground probability score.

Differently from our work, however, in the reference they are computed on bigger

regions and transferred to a superpixel graph regularized in a CRF.

The approach in [19] is based on the idea that objects of different categories have65

similar local shapes. As a consequence, masks can be transferred from other objects

and slightly adapted to the object of interest. The Geodesic Object Proposals tech-

nique [10] is based on geodesic distances to automatically placed foreground and back-

ground seeds. The use of a spatially-smooth feature as the geodesic distance makes the

costly use of regularizing superfluous. We adopt the same tactic in our method.70

In [12] the importance of segmentation in object recognition is stressed, along with

a numerical demonstration of the importance of differentiating among segmentation

techniques. The technique presented in [17, 21] combines edge detection, hierarchi-

cal segmentation and object proposals based on region grouping. Selective Search [5]

uses segmentation strategy diversification by changing the criterion on which adjacent75

regions are being merged. The diversification enlarges the search space for possible ob-

jects. Both [11] and [18] use size as a cue to differentiate segmentation models, based

on the idea that the relevance of visual features is related to object size. While [11] uses

class-specific shape priors, [18] only relies on class-independent probabilistic models.

In order to diversify segmentation strategies without including class information, we80

leverage regional level features, including size, in a hierarchically structured decision

model.

In the interactive segmentation approach presented in [13], segmentation models

are adapted to each object using two manually traced polygons to learn the optimal

parameters of the segmentation model (e.g. feature importance). Our solution strives85

to a similar specialization in an automatic setting.

3. From Bounding Boxes to Segmentation Masks

Starting from a bounding-box R we want to outline the contained object. Locality

in segmentation is of fundamental importance, and thus only a close neighborhood of

the object is considered in the segmentation process.90
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Figure 2: When segmenting the train, only its close neighborhood is used in the segmentation process. The

foreground seed is placed at the center of the bounding-box.

We assume that the object is fully contained in R, by labeling the outside region as

background. The area surrounding R, obtained by enlarging it by a 50% factor, defines

the background area (used to model background information). We further assume that

the center of R belongs to the object, using it as the foreground seed (Figure 2).

A superpixel over-segmentation of the image is computed, and each superpixel is95

labeled according to the area of maximum overlap. We obtain two sets of superpixels:

the background seeds B and the foreground seed F (i.e. the superpixel containing the

center of R).

A set of features (9 in total), presented below, is extracted from each superpixel and

used in a supervised setting to compute a foreground probability score.100

From F and B two color histograms are extracted representing the RGB color dis-

tributions of foreground and background (Cf andCb respectively). For each superpixel

Si, we compute the similarity of its color histogram CSi
with respect to Cf and Cb,

and the difference between the two.

The geodesic distance to foreground and background seeds is another important105

feature of our framework. Following [10], a graph over the superpixel over-segmen-

tation is created where the edges between adjacent nodes are weighted using an edge

probability score [22].

The geodesic distance between superpixel Si and Sj , G(Si, Sj), is the sum of the

edge costs on the shortest path between the two, that can be computed with Dijkstra’s110
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Figure 3: Visualization of the superpixel features extracted from an object, detected by the bounding-box R

(best viewed in color).

algorithm. For each superpixel Si inside R we compute the geodesic distance to the

foreground seed F , G(Si,F), and to the background seeds B, G(Si,B), computed as:

G(Si,B) = arg min
Sj∈B

G(Si, Sj). (1)

G(Si,F), G(Si,B) andG(Si,F)−G(Si,B) are added to the feature set of superpixel

Si.115

Location information for superpixel Si are included computing the x and y coor-

dinates relative to the center of R. Figure 3 visualizes the features used in our model.

As it can be observed, when R touches the border of the image but the object does not,

the geodesic distance to background seeds has a different interpretation depending on

the observed superpixel Si. The more Si is near the image border, the more unreliable120

G(Si,B) become, because of the increasing distance to the nearest background seed.

This observation led us to add the Euclidean distance to the nearest background seed

as the last feature of the method.

The Edge Boxes technique [6] is used, with default settings, to produce a set of

box-hypotheses. For each candidate region we compute one segmentation mask. To125
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set the number of segmentation proposals per image, we adjust the average number of

box-hypotheses to consider. The purpose of Edge Boxes is to cover all objects with as

few candidates as possible. The more tight a bounding-box is to an object, the better it

is. The overlap metric used to measure object hypotheses accuracy does not evaluate if

a bounding-box fully contains an object or not. Instead, this is a crucial property for our130

method since the area outside the box is used to initialize background seeds. Leaving

part of the object outside the box would potentially lead the background region to leak

in the foreground object. For this reason we enlarge each proposed bounding-box by

20%, that was found to work well in practice. The segmentation masks proposed by

our method are ranked relying on the candidates ordering provided by Edge Boxes.135

Learning. For each object belonging to the training set, all the superpixels inside its

bounding-box are extracted and described with the aforementioned visual features.

Each superpixel is labeled as foreground if the overlap with the ground-truth segmen-

tation mask is greater than 50%, background otherwise.

We formulate the problem of computing foreground probabilities as a supervised140

binary classification, where foreground (background) superpixels are the positive (neg-

ative) samples. A Random Forest classifier is set to output a foreground probability

score in the range [0, 1] so that simply thresholding the scores at 0.5 provides a binary

segmentation.

In the following, we will refer to the segmentation model learned on the entire145

training set as Generic Segmentation Strategy (GSS).

Since in our approach bounding-box candidates come from an automatic method,

the tightness of each box to the detected object can not be estimated. Using ground-

truth bounding-boxes in training would potentially lead our model to fail in test (where

tightness varies greatly). Thus, we decided to compute box-hypotheses also in training,150

and select the tightest one that fully contains the object.

4. Diversifying Segmentation Strategies

Segmentation algorithms’ performance are heavily influenced by several object

characteristics like object saliency, scene cluttering and occlusion. Depending on the
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specific segmentation method, the relative impact of these characteristics changes.155

Knowing in advance how an object looks like could potentially be helpful to con-

figure the selected segmentation algorithm to perform best on the specific object. When

segmenting an unknown object, such specific information are not available, but we can

rely on region properties extracted from the object area (i.e. the bounding-box R). For

example, the size of the object can be estimated from the size of R, along with its po-160

sition in the image. A positive property of region features is that they do not exploit

ground-truth information and thus they can be computed identically for training and

testing objects.

The diversification of segmentation strategies works as follows: (i) we form groups

of objects that share similar region characteristics; (ii) for each group a separate seg-165

mentation model is learned. The idea is that a segmentation model learned on a group

of objects is adapted to their characteristics and thus can segment them better than the

generic model (learned on all objects). At testing time, the same region properties are

used to infer the group to which each unknown object belongs, along with its segmen-

tation model. The extension of our solution exploiting diversified strategies will be170

referred to as Segmentation Strategy Diversification Tree (SSDT).

4.1. Region Features

We design the object region features to encode relevant characteristics for segmen-

tation. Although some object properties potentially impact any kind of segmentation

algorithm (e.g. weak object edges), we design the following features to influence the175

behavior of our specific segmentation method. Given the bounding-boxR capturing an

object extent, we measure:

• Size: the size of R captures the approximate object size, and it potentially im-

pacts the informativeness of superpixel features.

• Appearance w.r.t. surroundings: The color difference between the inner part180

ofR and its surroundings are a rough measure of the color saliency of the object.

• Internal complexity: The internal structure complexity of R encode a descrip-

tion of the object edges.
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Figure 4: The root node, containing all objects, is hierarchically split in clusters using N different region

features. Each node of the tree has a separate segmentation model, that is more specialized the more deep in

the tree the node is. At testing time, the path that maximizes diversity is chosen and the segmentation models

on the path are used to compute alternative segmentation masks.

• External complexity: The structure complexity of the surroundings of R are a

reasonable measure for scene cluttering.185

• Location: As shown in Figure 3, knowing the location of the object with respect

to the image borders gives insights on geodesic feature reliability.

Size (SIZE) is computed as the area ofR, the appearance w.r.t. surroundings (COLOR-

DIFF) is the color histogram comparison between the foreground seed and the back-

ground seeds. Internal and external complexities (FGD COMPLEX and BGD COMPLEX190

respectively) are encoded in 8-bin edge magnitude histograms computed on an edge

probability map [22]. The location feature (LOC) is computed as the percentage of the

perimeter of R that touches the image border.

4.2. Hierarchical Object Clustering

Starting from the entire training set of objects Oall, and focusing on a region feature195

feat, we split the set in two using a k-means clustering computed on feat. Two non-

overlapping sets of objects are identified, O1 and O2. For example, selecting SIZE as

the region feature, O1 and O2 separate small objects from big objects. We can repeat

the procedure by spliting O1 in O11 and O12, and O2 in O21 and O22. Proceeding in

this way, we would obtain a binary tree of object groups. The splitting continues until200
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the fourth level of the tree is reached or the number of object to be splitted is lower

than K (200 in our experiments).

Since the available region features are 5, at each node we compute 5 binary splits

(one per feature), thus obtaining a pyramid of object clusters (see Figure 4). The root

of the tree contains all objects, the leaves contain only a small portion of objects, with205

peculiar region properties.

For each node we now compute a separate segmentation model, that is tailored to

the characteristics of the objects belonging to that node. Moving from the root to the

leaves, segmentation models become more and more specialized. Using k-fold cross-

validation (k = 5 in our experiments) we measure segmentation accuracies for all210

objects of the node, in all the nodes of the tree. The segmentation accuracy of an object

can be traced from the root to a leaf following a specific path.

The purpose of the tree is to diversify segmentation strategies, that is creating seg-

mentation models complementary to those available at shallower levels. To measure

the complementarity of the segmentation model of node i to its father, we select from215

its objects Oi the subset O+
i , containing the objects that have an accuracy gain mov-

ing from the father to the child. We then measure the average accuracy gain on these

objects (∆i), i.e. the average difference between the segmentation accuracies of the

objects of O+
i using the two models. The complementary score of a node is computed

as:220

Ci =
|O+

i |
|Oi|

·∆i (2)

For all the nodes (except for the root) a complementary score is computed.

At testing time, for each candidate object, multiple paths can be taken, since at

each node the object belongs to one cluster per feature. The path with the highest

complementary score is thus chosen at every tree level.

Each of the 5 region features employed in the tree splits the available objects in two225

groups, using k-means. It is useful, for presentation purposes, to label each of the ob-

tained group with the peculiar characteristic it has after the splitting. Splitting using the

SIZE feature separates small objects from big objects. Splitting on the COLOR DIFF

feature, separates objects with high fgd-bgd contrast from objects with low fgd-bgd
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Table 1: Results using the Generic Segmentation Strategy (GSS) on the validation set of PASCAL VOC

2012. Here no diversification strategy is applied.

Method # ABO Cov. R50 R70 Time

CPMC[4] 646 .703 .850 .784 .609 250s

GOP [10] 652 .720 .815 .844 .632 1s

GSS 655 .701 .781 .837 .601 3.0s

GOP [10] 1018 .733 .834 .853 .665 1.1s

GSS 991 .717 .790 .860 .628 3.4s

contrast. In the same way, the LOC feature separates object far from/near to image230

border. For the FGD COMPLEX and BGD COMPLEX features, the clustering is per-

formed on 8-bin histograms, representing the strength of the edges inside/outside the

bounding-box. Empirically, we found that a splitting on these features separates object

with weak internal/external edges from the ones with strong internal/external edges.

5. Experiments235

We evaluate segmentation proposals accuracies on the PASCAL VOC 2012 seg-

mentation dataset [23]. The segmentation quality of a proposed segmentation w.r.t. a

ground truth mask is measured with the intersection over union metric [23] (also called

overlap), defined as the ratio between the intersection of the two masks divided by their

union. To evaluate a set of proposals, three measures are used: the average best overlap240

(ABO), the covering and the recall [4]. The ABO measures the best segmentation ac-

curacy achieved by all proposals for any given object, averaged over the entire dataset.

The recall is the percentage of objects that have a best overlap greater than a specific

threshold. The covering measure is defined similarly to the ABO but it is weighted

by the object size. This measure highlights the segmentation performance on bigger245

objects. In every experiment the average number of proposals per image is reported for

each method for a clear comparison.

The superpixel over-segmentation is computed using geodesic k-means [24], pro-

viding about 1000 superpixels per image. Color distributions are modeled with 128-bin
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Table 2: Segmentation accuracies on PASCAL VOC 2012 of the Segmentation Strategy Diversification Tree

(SSDT) w.r.t. the Geodesic Object Proposals solution [10].

Method # ABO Cov. R50 R70 Time

GOP [10] 2008 .750 .850 .868 .697 1.4s

GSS 2015 .734 .801 .864 .654 4.5s

SSDT 2025 .741 .810 .878 .685 5s

GOP [10] 3983 .762 .857 .882 .714 1.7s

SSDT 4030 .760 .816 .903 .718 9.5s

Bag of Words histograms compared with the Histogram Intersection metric.250

All experiments are computed on a Intel Core i7 machine with 16GB of RAM. A

public implementation of our method along with the trained models and object clusters

is available online 1.

5.1. Generic Model Performance

In the first experiment we compare the object proposals segmentation accuracy of255

GSS with CPMC [4] and Geodesic Object Proposals (GOP) [10]. In this setting only

the generic segmentation model, learned on all objects of the training set, is used. Near

duplicates removal is applied to avoid multiple identical segmentations. The experi-

ments are presented for 650 and 1000 proposals, to be directly comparable with the

other techniques.260

In Table 1, a numerical analysis is presented. The ABO of GSS is comparable

with the one of CPMC while the other metrics highlight a big difference in how the

two methods behave. We achieve a lower covering w.r.t. CPMC but a higher recall

at 50, meaning better accuracies on small objects but worst on big objects. CPMC,

using costly pixel-level segmentations, runs almost 100 times slower than our method.265

Limiting our segmentations to the generic model only does not allow our method to

compete favorably w.r.t. the GOP approach, that is the most accurate.

1http://imagelab.ing.unimore.it/segmprops/
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Figure 5: Segmentation results obtained through segmentation strategy diversification. Two cases are ana-

lyzed: splitting on bounding-box size and splitting on the box internal complexity. On the left, the object tree

split is presented. On the right, several examples per node are presented comparing the results obtained with

the generic model (LEV0) and the specialized model (LEV1). Learning specialized segmentation strategies

helps in segmentation: for example, the model learned for objects with strong internal edges (row 3) avoids

the excessive shrinking of the generic model capturing the true objects extents.

5.2. Adding Diverse Proposals

In this section, SSDT presented in Section 4 is employed to measure the effective-

ness of segmentation strategy diversification.270

The more bounding-boxes we use, the more objects we find, but as stated in [6],

1000 box-candidates are sufficient to cover almost every object with 50% of overlap.

Segmentation strategy diversification, on the other hand, does not allow to find new

objects, but enhances segmentation performance on the ones already detected. To rely

on a sufficiently high number of detected objects we decided to start diversifying seg-275

mentation strategies only for proposing more than 1000 object candidates. This means

that, while for 650 and 1000 proposals we only use the generic model, for 2000 and

4000 we use more than one model per object exploiting the object tree. Specifically,

to obtain 2000 proposals per image on average, we use two segmentation models per

bounding-box: the generic one, and one from the first level of the tree; to obtain 4000280
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proposals we leverage the entire depth of the tree.

In Figure 5, a visual comparison of segmentation results using different segmenta-

tion models is presented. The purpose of the image is to show how choosing a special-

ized segmentation strategy instead of the generic one affects the final segmentation. As

can be observed, the specialized segmentation models (computed at level 1 of the tree)285

are capable of producing a different set of masks w.r.t. the generic one.

In Table 2, the effectiveness of diversifying segmentation models for our method

is tested comparing with the Geodesic Object Proposal solution. SSDT achieves very

high recall values, but it suffers, as previously noted for GSS, on big objects, achieving

lower covering results. We will further investigate this behavior in the next section.290

The gap between SSDT and GOP almost disappears at 4000 proposals, showing how

the proposal of alternative segmentations for each detected object is able to enhance

segmentation accuracy.

The number of box-candidates given by Edge Boxes would allow to generate 2000

segmentation proposals per image on average without segmentation strategy diversifi-295

cation. We did this experiment, doubling the number of considered bounding-boxes per

image; results are reported in Table 2 under the GSS label. To reach 4000 proposals,

multiple segmentations per bounding-box are necessary, since many of the bounding-

boxes proposed by Edge Boxes overlap and are filtered out. This experiment shows

that, once objects are correctly detected, it is more effective to stop proposing new300

boxes, focusing instead on diversifying segmentation models for each box.

5.3. Merging Object Candidates

In this experiment, we investigate segmentation diversity by mixing the proposals

from our solutions (both GSS and SSDT) with the ones of Geodesic Object Propos-

als [10]. We chose GOP because on one hand it is a state-of-the-art technique that305

is both class-independent and fast, as our algorithm, and on the other hand it starts

from different initializations (seeds instead of boxes) producing free-form segmenta-

tions (instead of ours box-constrained masks). Mixing the segmentations from different

methods has been done before [17]. Our contribution in this section is to highlight the
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Table 3: Comparison of segmentation proposals accuracies on the validation set of PASCAL VOC 2012.

Method #Props ABO Covering Recall@50 Recall@70 Time

CPMC [8] 646 0.703 0.850 0.784 0.609 250s

GSS 655 0.701 0.781 0.837 0.601 3.0s

GOP [10] 652 0.720 0.815 0.844 0.632 1.0s

GSS+GOP 660 0.718 0.815 0.848 0.650 2.4s

GSS 991 0.717 0.790 0.860 0.628 3.4s

GOP [10] 1018 0.733 0.834 0.853 0.665 1.1s

GSS+GOP 1023 0.740 0.834 0.865 0.684 3.0s

C.I.O.P. [9] 1536 0.718 0.840 0.820 0.624 119s

SCG [17] 2000 0.751 0.835 0.870 0.661 5s

SSDT 2025 0.741 0.810 0.878 0.685 5s

GOP [10] 2008 0.750 0.850 0.868 0.697 1.4s

SSDT+GOP 2028 0.769 0.852 0.896 0.726 4.1s

Sel. Search [5] 4374 0.735 0.786 0.891 0.597 2.6s

MCG [17] 4000 0.801 0.862 0.914 0.761 30s

SSDT 4030 0.760 0.816 0.903 0.718 9.5s

GOP [10] 3983 0.762 0.857 0.882 0.714 1.7s

SSDT+GOP 3991 0.785 0.860 0.911 0.763 7.1s

complementarity of the two methods through visual examples and quantitative analy-310

sis, with the aim of a deeper understanding of the algorithms’ behavior.

To propose N segmentation candidates per-image on average, we generate N/2

with our method andN/2 with GOP. Both methods have their specific way of assessing

candidates quality, used internally to sort the proposals. When merging the set of

proposals coming from our method with the one proposed by GOP, one candidate at315

a time from each list is taken, and results are filtered to avoid near duplicates. The

results of the two separate approaches along with the ones of the merged solution,

compared with several state-of-the-art algorithm, are presented in Table 3. As it can be
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Figure 6: Distribution of the actual number of segmentation candidates provided by SSDT and by Geodesic

Object Proposals when 2000 proposals are requested on average.

observed, the performance of our solutions alone become more and more competitive

with respect to the state-of-the-art the more proposals are added through diversification.320

The contribution of our method to the merged solution follows the same trend: while at

650 proposals the merged solution is comparable with the performance of GOP alone,

at 4000 the gap on ABO is more than 2 points. Notably, the merged solution at 2000

proposals achieves better results than both GOP and SSDT alone at 4000.

Simple image Average image Complex image

#PROPS SSDT : 460

#PROPS GOP : 770

#PROPS SSDT: 2028

#PROPS GOP: 1988

#PROPS SSDT: 3465

#PROPS GOP: 3235

Figure 7: Number of proposals output by our method (SSDT) and GOP in very different images taken from

the VOC 2012 dataset.
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Analysis. We conducted an extensive analysis on the merged solution SSDT+GOP325

4000 (2000 proposals per method). The first interesting observation is that when we

ask the two methods to provide 2000 proposals per-image on average, the actual num-

ber of candidates per-image varies greatly. This is a desirable property, since the algo-

rithms should adapt to the segmentation complexity of a scene [25]. For simple images

(e.g. low clutter, high fgd/bgd separablity) we expect few proposals, while for highly330

complex scenes (e.g. low contrast, strong textures) a wide coverage of all possible

object locations/sizes is requested. In Figure 6 the two methods are compared measur-

ing the distribution of object proposals on the entire validation set of PASCAL VOC

2012. While the average number of proposals is about 2000 for both, their distribu-

tions are different. This behavior is due to the technique used to asses the number of335

proposals for each specific image: where Edge Boxes searches for non-overlapping

box-candidates with sufficient quality (i.e. edge support), GOP relies on the number of

non-overlapping segmentations computed from a fixed number of seeds. A visual ex-

ample is presented in Figure 7, where the number of proposals output by each method

is reported for three sample images.340

The second result is that the objects clusters computed with SSDT effectively high-

light strengths and weaknesses of both our method and GOP. For each object of the

validation set, given the merged set of proposals SSDT+GOP 4000, we can check

which of the two methods has provided the best candidate. Aggregating this informa-

tion for all objects in each cluster of the tree provides an average quality measure for345

the two methods. We call αours the percentage of objects that our method is able to

cover with better accuracy. When all objects are considered αours = 43%, but the situ-

ation changes greatly depending on the group of object that we analyze. For objects far

from image border αours = 49% while for big objects αours = 31%. In Figure 8, four

clusters of objects are analyzed: the first two depict situations in which our method350

excels, the last two presents two clusters where GOP is generally the most accurate.

5.4. Generalization on COCO 2014

In this section we test the generalization capabilities of our method on the recently

proposed Microsoft COCO 2014 dataset [15]. The COCO dataset is composed of
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Figure 8: Visualization of segmentation results on PASCAL VOC 2012 for SSDT and GOP [10]. On the left

the analyzed group of objects is presented. For each object the best object candidate obtained by SSDT and

by GOP are reported. The first two rows present objects groups for which SSDT generally obtains better seg-

mentations than GOP, the opposite applies in the last two rows. SSDT and GOP are indeed complementary

and the use of both allows to greatly enhance the segmentation diversity of a set of proposals.

82783 training images and 40504 validation images used for testing. In this experiment355

we use the segmentation models learned on VOC 2012 and we test on the validation

images of COCO. Results are presented in Table 4. The first observation is that COCO

is much more challenging than VOC 2012, since all methods have a drop in perfor-

mance of about 30%. A possible explanation for the performance loss can be found

18



Table 4: Segmentation accuracies on Microsoft COCO 2014 validation set. All methods marked with * are

trained on Pascal VOC2012, the others are trained on the COCO training set.

Method #Props ABO R50 R70

RIGOR [26] 1650 .530 .576 .348

SCG [21] 2000 .530 .575 .324

MCG [21] 2000 .565 .615 .352

SSDT* 2035 .518 .569 .344

GOP [10]* 2066 .524 .572 .358

SSDT+GOP* 2051 .545 .605 .392

MCG [21] 4000 .585 .665 .395

SSDT* 4018 .558 .629 .385

GOP [10]* 4037 .546 .588 .381

SSDT+GOP* 4032 .567 .635 .424

in the higher percentage of small objects in the COCO corpus w.r.t. VOC 2012 [15];360

small objects are generally more difficult to detect and to outline by superpixel-based

approaches like ours and MCG [21]. The SSDT learned on VOC 2012 is capable of

obtaining comparable results to SCG [21] and RIGOR [26], showing that the regional

appearance features used to specialize our segmentation strategies are generic enough

to be effective on previously unseen object categories. Moreover, when SSDT propos-365

als are merged with GOP proposals we observe the same performance gain measured in

VOC 2012. Differentiating segmentation strategies is again a key factor to boost object

proposals quality. The merged solution (learned on VOC 2012) is able to achieve com-

parable results to MCG, a state-of-the-art object proposal technique learned on COCO.

370

6. Conclusions

We have presented an effective segmentations proposals technique initialized by

bounding-boxes, which is fast enough to be scalable to thousands of proposals per

image. We demonstrated that diversifying segmentation strategies works both when
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applied to our method and when used to integrate diverse algorithms. Our method375

lies in between generic segmentation models and class-specific solutions, providing

diversity while maintaining class-independence for state-of-the-art results.
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