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s0005 1 THE CONCEPT (LET YOUR DATA TALK)

p0005 In the food area, as in most research fields, the system complexity to be faced
is increasing both in the way of producing food and in the consumer expecta-
tions evolved, together with the targets of regulatory authority and society
needs and issues. Food production is connected to environmental, socio-
economic challenges; food consumption with health, safety and nutritional
attitudes. Among the emerging research areas there are the study and making
of functional food, the use of nanotechnology, the assessment of food authen-
ticity, including provenance and organic production, and the monitoring and
improvement of the quality of food processing. From the point of view of
food and food-processing characterization this implies that we need to extract
information and obtain models capable of inferring the underlying relation-
ships that link the compositional profile and the processing conditions to very
general end properties of foodstuff, such as the healthiness, the consumer per-
ception, the link to a territory and so on. Moreover, the implication of the pro-
duction chain on food quality has also to be assessed.

p0010 In this respect, the research attitude cannot be purely ‘deductive’: theory-
driven hypothesis could be not only inefficient but even difficult to formulate.
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This is why and where researchers may benefit from new technological tools
(analytical instrumentation, hardware and algorithms/software development)
to come back to an ‘inductive’ data-driven attitude with a minimum of
a priori hypothesis as a first efficient step to progress faster and further.

p0015 To this aim exploratory data analysis (EDA) is well suited. EDA is well
known in statistics and sciences as that operative approach to data analysis
aimed to improve understanding and accessibility of the results. Without for-
getting the soundness of statistical models and hypothesis formulation, which
is intrinsically connected to the concept of ‘analysis’ in its scientific meaning,
the focus is moved to ‘exploration’, which, as a word, leads to more exotic
thoughts and feelings, such as unravelling mysterious threads or discovering
unknown worlds. As a matter of fact, EDA does relate to the process of
revealing hidden and unknown information from data in such a form that
the analyst obtains an immediate, direct and easy-to-understand representation
of it. Visual graphs are a mandatory element of this approach, owing to the
intrinsic ability of the human brain to get a more direct and trustworthy inter-
pretation of similarities, differences, trends, clusters and correlations through
a picture, rather than a series of numbers. As a matter of fact, our perception
of reality is that we believe what we are able to see.

p0020 The other axiom of EDA is that the focus of attention is on the data, rather
than the hypothesis. This means, figuratively, that it is not the analyst ‘asking’
questions to the data, as in an interrogation, instead the data are allowed to
‘talk’, giving evidence of their nature, the relationships which characterize
them, the significance of the information which lies beneath what has been eval-
uated on them – or even the complete absence of any of this, if it is the case.

p0025 One of the milestone references for EDA is the comprehensive book by
Tukey [1]. Tukey, in his work, aimed to create a data analysis framework
where the visual examination of data sets, by means of statistically significant
representations, plays the pivotal role to aid the analyst to formulate hypoth-
eses that could be tested on new data sets. The stress on two concepts such
as dynamic experimenting on data (e.g. evaluating the results on different sub-
sets of a same data set, under different data-preprocessing conditions) and
exhaustive visualization capabilities offers researchers the possibility to iden-
tify outliers, trends and patterns in data, upon which new theories and hypoth-
esis can be built. Tukey’s first view on EDA was based on robust and
nonparametric statistical concepts such as the assessment of data by means
of empirical distributions, hence the use of the so-called five-number sum-
mary of data (range extremes, median and quartiles), which led to one of
his most known graphical tools for EDA, the box plot.

p0030 This approach well denotes the conceptual shift from confirmatory data
analysis, where a hypothesis and a distribution are assumed on the data, and
statistical significance is used to test the hypothesis on the basis of the data
(where the less reliable the results, the more the data divert from the postu-
lated distribution), to EDA, where the data are visualized in a distribution-free
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approach, and hypotheses arise from the observation, if any, of trends and
clusters or correlations among them. In practice, the objectives of EDA aim to

u0005 l Highlight phenomena occurring in the observations so that hypotheses
about the causes can be suggested, rather than ‘forcing’ hypotheses on
the observations to explain phenomena known a priori. ‘The combination
of some data and an aching desire for an answer does not ensure that a rea-
sonable answer can be extracted from a given body of data’ [2].

u0010 l Provide a basis to assess the assumption for statistical inference, for exam-
ple, by evaluating the best selection of statistical tools and techniques, or
even new sampling strategies, for further investigations. ‘Exploratory data
analysis can never be the whole story, but nothing else can serve as the
foundation stone as the first step’ [1].

p0045 The tools and techniques of EDA are strongly based on the graphical
approach mentioned so far. Data visualization is given by means of box plots,
histograms and scatter plots, all distribution-free instruments which can be
extremely useful to probe if the data follow a particular distribution.

p0050 At the beginning of its development, EDA represented a kind of Coperni-
can revolution, in the sense that it put data and the information they bring, not
the hypothesis and the information it seeks, at the centre of attention. How-
ever, using it in a framework where the common approach was to reduce pro-
blems into simpler forms that were solvable, usually by constraining the
experimental domains to uni- or oligovariate models nowadays, shows huge
limitations. When dealing with scientific fields such as chemistry, and in par-
ticular analytical chemistry, and food science, where instrumental analysis can
provide at least thousands of variables for each sample, often in a fast way,
data complexity has exponentially increased to the point that a multivariate
approach (i.e. the evaluation of the simultaneous effect of all the variables
which characterize a system on the relationships among its samples) is man-
datory. The use of graphical instruments is limited to human ability to inter-
pret two-dimensional (2D) and three-dimensional (3D) spaces, which is
impossible to apply when variability is represented through, for example, an
analytical signal. Correlation tables, albeit offering a direct view of which
variables are related to each other, are often complex to read and interpret.
Multivariate analysis methods, especially those based on latent variables pro-
jection, provide the best tool to combine the analysis of variable correlations
and sample similarities/differences, the reduction of variable space to lower
dimensions and the possibility of offering graphical outputs that are easy to
read and interpret. Thus, the passage from EDA to exploratory multivariate
data analysis (EMDA) is conceptually easier than the one from confirmatory
data analysis to EDA, as it only represents a shift towards the use of methods
which are based on a multivariate approach to data.

p0055 EMDA stays on the track opened by EDA, in order to grasp the data struc-
ture without imposing any model. It has to be stressed that when dealing with

Comp. by: pdjeapradaban Stage: Proof Chapter No.: 3 Title Name: DHST
Date:18/4/13 Time:11:59:50 Page Number: 3

Chapter 3 Exploratory Data Analysis 3

B978-0-444-59528-7.00003-X, 00003

DHST, 978-0-444-59528-7

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use
only by the author(s), editor(s), reviewer(s), Elsevier and typesetter SPi. It is not allowed to publish this proof online or in print.
This proof copy is the copyright property of the publisher and is confidential until formal publication.



a multidimensional space, visualization requires either a projection step or a
domain change, for example, from acquired variables to a similarity/dissimi-
larity space. Thus, if a priori hypotheses (imposed models) are avoided, most
often some assumptions on data are adopted. This brings a diversity of com-
plementary instruments that can be used, and we may say that EMDA is a
road that several tools allow you to travel.

p0060 The aim of this chapter is to illustrate the most used and effective tools for
the analysis of food-related data, so that the reader is offered some clues about
which tool to choose and what is possible to get out of it.

s0010 2 DESCRIPTIVE STATISTICS

p0065 All those visualization tools which allow the exploration of uni- and oligo-
variate data can be considered as instruments of descriptive statistics. Descrip-
tive statistics is usually defined as a way to summarize/extract information out
of one or a few variables: compared to inferential statistics, whose aim is to
assess the validity of a hypothesis made on measured data, descriptive statis-
tics is merely explorative. In particular, some salient facts can be extracted
about a variable:

o0005 i. A measure of the central tendency, that is, the central position of a fre-
quency distribution of a group of data. In other words, a number which
is better suited to represent the value of the investigated samples with
respect to the measured property. Typical statistics are mean, median
and mode.

o0010 ii. A measure of spread, describing how spread out the measured values are
around the central value. Typical statistics are range, quartiles and stan-
dard deviation.

o0015 iii. A measure of asymmetry (skewness) and peakedness (kourtosis) of the
frequency distribution, that is, if the spread of data around the central
value is symmetric in both left/right directions, and how sharp/flat is
the distribution in the central position, respectively.

p0085 While useful, these statistics are only a summarization of data and do not offer
a direct interpretation benefit when compared to a graphical representation of
the data. The main graphical tools for descriptive statistics are frequency his-
tograms, box-whisker graphs and scatter plots. These tools are useful to
inspect the statistics reported earlier, the presence of outliers and multiple
modes in the data (histograms), to highlight location and variation changes
between different groups of data or among several variables (box-whisker),
to reveal relationships or associations between two variables (scatter plots),
as well as to highlight dependency with respect to some ordering criterion,
such as run order, time, position, etc.

p0090 Albeit simple and in spite of the high degree of summarizing they
carry with them, these tools can also be particularly useful prior to EMDA.
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It may seem a paradox, but they are very effective to identify gross errors: for
example, a huge difference between median and mean for a variable could be
due to a misprinted number, or could suggest the need to transform variables
(e.g. log transform) and help choosing the appropriate data pretreatment.

s0015 2.1 Frequency Histograms

p0095 To draw a histogram, the range of data is subdivided in a number of equally
spaced bins. Thus, frequency histograms report on the horizontal axis the values
of the measured variable and on the vertical axis the frequencies, that is, the num-
ber of measurements, which fall into each bin. The number of bins influences the
efficacy of the representation, thus some attention must be given in their choice.
Some common rules have been coded, among which the most used considers a
number of bins k equal to the square root of the number of samples n, or equal
to 1þ log2(n). Theoretically derived rules are reviewed in Scott’s book [3], and
iterative methods have also been proposed [4]. In most cases, one of the two rules
cited earlier is enough to obtain a nice representation of data distribution, but the
choice of k becomes critical when n is huge, for example, if you want to represent
a frequency histogram of pixels intensity of an image, where the number of ‘sam-
ples’ easily goes beyond several hundreds of thousands.

p0100 Figure 1 reports some examples of histograms which are quite common to
find for discrete variables. Figure 1A shows what to expect when the variable
has an almost normal distribution, that is a maximum frequency of occurrence
for a given value (close to the average of the values) and decreasing frequen-
cies for higher and lower values. Skewness of the distribution (Figure 1B) is
indicated by a higher frequency of occurrence for values which are higher
or lower than the most frequent one. Histograms can show the presence of
clusters in the data according to a given value, as can be seen in Figure 1C:
here it is possible to see two values of higher frequency, around which two
almost normal distributions suggest the existence of two clusters. In addition,
the presence of outliers (Figure 1D) can be highlighted. An outlier usually has
a value way higher or lower than all the other samples, hence it will appear in
the histogram as a bar both well separated from the main cluster of values and
showing a low frequency of occurrence. As mentioned, histograms can also be
used when the number of observations is high (on the other hand, they lose
any exploratory meaning when used for data sets where the number of vari-
ables is very high and correlated, such as in instrumental signals), as shown
in the last two parts of Figure 1. Here, the distribution of pixels of images
is used. In particular, Figure 1E shows the zoomed view of pixel distribution
for an image acquired on a product (in this case, a bread bun) which is consid-
ered a production target (i.e. the colour intensity and homogeneity of its
surface are inside specification values for that product): it is possible to see
that frequencies of occurrence are almost symmetrically distributed across
the average value (data have been centred across the mean intensity value).
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A different shape is manifest in Figure 1F, where an image of a sample with
surface defects (such as darker or paler colour, or the presence of spots and
blisters) is considered. In this case, the pixel distribution is skewed towards
positive values and lower frequency occurrence features appear, which are
an index of phenomena which deviate from the bulk of the data, such as dar-
ker localized spots.
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FIGURE 1f0005 Examples of histograms. (A) Almost normal distribution of a discrete variable;
(B) skewed distribution (higher values have a higher frequency of occurrence); (C) overlapping

of two distributions centred across a different mean value (possibly indicating the presence of

two clusters); (D) presence of outliers (low frequency of occurrence for high values); (E) pixel
distribution of a reference image; and (F) pixel distribution of an image where defects are detected

(defective pixels bring to the bump in the right tail of frequency distribution and to the frequency

bars detected for values >240). In the pixel distribution cases, a zoom has been taken to highlight

the differences.

PART I Theory6

B978-0-444-59528-7.00003-X, 00003

DHST, 978-0-444-59528-7

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use
only by the author(s), editor(s), reviewer(s), Elsevier and typesetter SPi. It is not allowed to publish this proof online or in print.
This proof copy is the copyright property of the publisher and is confidential until formal publication.



s0020 2.2 Box and Whisker Plots

p0105 Box and whisker plots (box plot in short) [5–7] are very useful to summarize
the kind of information that in inferential statistics we seek by means of anal-
ysis of variance (ANOVA). Indeed, they allow a direct comparison of the dis-
tribution of several variables (on the order of tens, visualization becomes
inefficient) in terms of both central location and variation. Thus, it is a quick
way to estimate if a grouping factor has potentially a significant effect on the
measured variables. Typical questions that can be answered are: Does the
location differ between subgroups? Does the variation differ between sub-
groups? Are there any outliers?

p0110 The construction of a box plot requires calculating the median and the
quartiles of a given variable for the samples: the lower quartile (LQ) is the
25th percentile and the upper quartile (UQ) is the 75th percentile. Then a
box is drawn (hence the name) whose edges are the lower and upper quartiles:
this box represents the middle 50% of the data and the difference between the
upper and lower quartile is indicated as the inter quartile range (IQR). Gener-
ally, the median is represented by a line drawn inside the box, and in some
representations the mean is also drawn as an asterisk, for example, to better
evaluate the differences between central tendency descriptors. Then a line is
drawn from the LQ to the minimum value and another line from the UQ to
the maximum value and typically a symbol is drawn at these minimum and
maximum points (whiskers). In most implementations, if a data point presents
a value higher than UQþ1.5* IQR or smaller than LQ"1.5* IQR, it is repre-
sented by a circle. This helps pointing out potential outliers (the circle may be
drawn with a higher dimension if the LQ or UQ is exceeded by 3*IQR).
A single box plot can be drawn for one set of samples with respect to one
variable; alternatively, multiple box plots can be drawn together to compare
several variables, groups in a single set of samples or multiple data sets.
Box plots become difficult to draw and interpret in those cases where it is
necessary to deal with continuous data, such as spectra or signals.

p0115 Figure 2 shows a box plot representation of each of the nine variables
which characterize the GCbreadProcess data set (see Section 3.1.4 for more
details on the data set), the concentration of chemical compounds determined
in gas chromatography (GC) at six points of an industrial bread-making pro-
cess, namely, S0, S2, S4, D, T and L. As it is possible to regroup data accord-
ing to the sampling point, the representation is useful to obtain a screening
evaluation of which variables show different distributions across the phases
of the production process. For example, fumaric acid and malic acid have sim-
ilar distributions and values for all six points (the ‘box’, that is the IQR, and
the ‘whiskers’, that is the 95th and 5th percentile range, are almost overlapped
for all the sampling points), thus they will be of little use to differentiate the
process phases. On the contrary, fructose and glucose show a clear difference
in both range and mean and median value (respectively, the star and the
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horizontal line inside the box) for points S0, S2 and S4 with respect to points
D, T and L. The presence of potential outliers, that is points which fall beyond
the 95th and 5th percentile limits, is indicated by circles (crossed circles are
characterized by a 3*IQR distance). This representation can be a starting
point to decide which variables, or combination of more, are the best to differ-
entiate the six points.

s0025 3 PROJECTION TECHNIQUES

p0120 EMDA pursues the same objectives illustrated for uni- and oligovariate EDA,
namely giving a graphical representation of multivariate data highlighting the
data patterns and the relationships among objects and variables with no
a priori hypothesis formulation. The importance of this step and its relevance
in food analysis is worth being stressed. In fact, the multivariate exploratory
tools make it feasible to generate hypotheses from the data, notwithstanding
how complex they are, opening to the researcher a way towards the formula-
tion of new ideas. In other words, intuition is inspired by the synergy of data
reduction and graphical display. In fact, by compressing the data to a few
parameters, without losing information, it becomes possible to look at data,
so that the researcher’s mind can capture data variation in terms of grouping
and patterns in the natural way.
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p0125 It is indeed very different, with respect to the possibility of enhancing dis-
covery, to operate simplification by reduction at the problem level or data
level [8]. In the first case, prior knowledge is used to isolate or split the com-
plex system into subsystems or steps, for example, in the case of food, to
focus on the quantification of specific constituents or on the modelling of a
simplified process, such as thermal degradation or ageing, at laboratory scale,
discarding the food processing and the production chain. In the second case,
prior knowledge is used, after data reduction by EMDA, to interpret the pat-
terns which appear and validate possible conclusions which will guide to
new hypothesis generation. In the first case, interactions among the reduced
subsystems or steps are lost and, at most, the a priori hypothesized mechanis-
tic behaviour may be confirmed or rejected; reformulation of the hypothesis
will require a priori adoption of a different causal model. Differently, in the
second case, the salient features of the system under investigation as a whole,
including interactions, interconnections and peculiar behaviours, are learned
from data by comparing conclusions induced by graphs to prior knowledge;
it is then possible to validate the model and new hypotheses can be generated,
so that an interactive cycle of multivariate experiments planning, multivariate
systems characterization and multivariate data analysis is enabled.

p0130 Which food area would require explorative multivariate data analysis
tools? We have seen in the introduction section that food science today
embraces a wide multidisciplinary ambit, involving chemistry, biology/micro-
biology, genetics, medicine, agriculture, technology and environmental sci-
ence, and also sensory and consumer analysis as well as economy.

p0135 Moreover, the investigation of the food production chain in an industrial
context requires the assessment of not only the chemical/biological para-
meters but also the process parameters, irregularities, the influence of raw
materials, etc. From an industrial perspective, the goal is not to produce a
given product with constant technology and materials, which is impossible
in practice, but rather to be able to control the specific, transient traits of pro-
duction in order to ensure the same product quality.

p0140 Accordingly, the data used for food and food-processing characterization
are changing [9–11] from traditional physical or chemical data, such as con-
ductivity, thermal curves, moisture, acidity and concentrations of specific
chemical substances, to fingerprinting data. Examples of this kind of data
range from chromatograms or spectroscopic measurements, that is, complete
spectra obtained by infrared (IR) [12–14], nuclear magnetic resonance
(NMR) [15,16], mass spectrometry (MS), ultraviolet–visible (UV–vis) or
fluorescence spectrophotometry, to landscapes obtained by any hyphenated
combination of the previous techniques [17–21]; from signals obtained by
means of sensor arrays such as electronic noses or tongues [22], microarrays
and so on to imaging and hyperspectral imaging techniques [23–25].

p0145 The nature of this kind of data, the need to consider the many sources
of variability due to the origin of raw materials, seasonality, agricultural
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practices and so on, together with the objective of studying the complex food
processes as a whole, explain why EMDA is mandatory.

p0150 Multivariate screening tools are needed in order to model the underlying
latent functional factors which determine what happens in the examined sys-
tems, and are the basis for an exploratory, inductive data strategy.

p0155 These tools have to accomplish two tasks:

o0020 i. Data reduction, that is, compression of all the information to a small set of
parameters without introducing distortion of data structure (or at least
keeping it to a minimum and maintaining control of the disturbance that
has been introduced);

o0025 ii. Efficient graphical representation of the data.

p0170 By far the most effective techniques to achieve these objectives are based on
projection techniques, that is methods to project the data from its J-variables/
conditions space to lower dimensionality, that is, A-latent factors/components
space. The commonly most used one is principal component analysis (PCA)
and its extensions.

s0030 3.1 Principal Component Analysis

p0175 An exhaustive description of PCA historical and applicative perspectives,
including a comparative discussion of PCA with respect to related methods,
has been given by Joliffe [26] and Jackson [27]; other basic references are the
dedicated chapters in Massart’s book [28] and Comprehensive Chemometrics
[29], and a more didactical view, with reference to the R-project code environ-
ment may be found in Varmuza [30] and Wehrens [31]. A description of PCA
strictly oriented to spectroscopic data may be found in the Handbook of NIR
Spectroscopy [32], Beebe [33] and in Davies’ column in Spectroscopy Europe
[34,35]; other salient references are Wold et al. [36] and Smilde et al. [37].

p0180 Here, PCA will be presented as a basic multivariate explorative tool with
emphasis on the data representation and interpretation aiming at giving prac-
tical guidelines for usage in this specific context; the reader is referred to the
literature cited earlier for more details.

p0185 PCA is a bilinear decomposition/projection technique capable of condens-
ing large amounts of data into few parameters, called principal components
(PCs) or latent variables/factors, which capture the levels, differences and
similarities among the samples and variables constituting the modelled data.
This task is achieved by a linear transformation under the constraints of pre-
serving data variance and imposing orthogonality of the latent variables.

p0190 The underlying assumption is that the studied systems are ‘indirectly
observable’ in the sense that the relevant phenomena which are responsible
for the data variation/patterns are hidden and not directly measurable/observ-
able. This explains the term latent variables. Once uncovered, latent variables
(PCs) may be represented by scatter plots in a Euclidean plane.
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p0195 An almost unique feature of PCA and strictly related projection techniques
is that it allows a simultaneous and interrelated view of both samples and vari-
ables spaces, as it will be shown in detail in the following section.

p0200 For clarity of presentation, the PCA subject will be articulated in subsec-
tions: definition and derivation of PCs, including main algorithms; preproces-
sing issues; PCA in food data analysis practice.

s0035 3.1.1 Definition and Derivation of PCA

p0205 PCA decomposes the data matrix as follows:

X I,Jð Þ ¼TA&VA
TþE I,Jð Þ (1)

where A is the number of components, underlying structures or ‘chemical’
(effective) rank of the matrix; the score vectors, T¼ [t1,t2, . . .,tA], give the
coordinates of samples in the PC space, hence score scatter plots allow
the inspection of sample similarity/dissimilarity, and the loadings vectors,
V¼ [v1,v2, . . .,vA], represent the weight with which each original variable con-
tributes to the PCs, so that the correlation structure among the variables may
be inspected through loading scatter plots. E is the residual, or noise or error
matrix, the part of the data which was not explained by the model; it has the
same dimensions as X and it is often used as a diagnostic tool for the identi-
fication of outlying samples and/or variables.

p0210 From a geometrical point of view, PCA is an orthogonal projection (a lin-
ear mapping) of X in the coordinate system spanned by the loading vectors V.
Figure 3A reports an example of a set of samples characterized by two vari-
ables x1 and x2, projected on the straight lines defined by the loading vector
v1 and v2. For each of the I samples, a score vector ti is obtained containing
the scores for the sample (i.e. the coordinates on the PC axes).

p0215 Considering the projection of these samples on the PC space (Figure 3B),
it emerges that the two categories (black circle and grey squares, respectively)
are well separated on the first PC, while the second PC describes mainly non-
systematic variability; thus one component (A¼1) is sufficient to retain infor-
mation on this set of data.

p0220 Thus, PCA operates a reduction of dimensions from the number of variables J
in X to A underlying virtual variables describing the structured part of data.
Hence, a representation of the scores by means of 2D or 3D scatter plots allows
an immediate visualization of where the samples are placed in the PC space,
and makes the detection of sample groupings or trends easier (Figure 4A–C).
The loadings represent the weight of each of the original variables in determining
the direction of each of the PCs or, which is the same as PCs are defined as the
maximum variance directions, which of the original variables varies the most
for the samples with different score values on each of the components. A 2D or
3D plot of the loadings can be read as follow: variables that present loadings,
which are equal or have close values, result correlated (anti-correlated if the signs
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FIGURE 3f0015 Geometry of PCA. A simulated example with 20 samples characterized by two vari-

ables. (A) The samples are plotted in the space of the original variables x1 and x2. The blue (grey,
dashed) and red (black, dot–dashed) lines represent the directions of PC1 and PC2 axes, respec-

tively. The coordinates of the blue (grey) arrow are v11 and v21, the loading values of variables

x1 and x2 on the first PC, respectively. The coordinates of the red (black) arrow are the v12 and

v22, the loading values of variable x1 and x2 on the second PC, respectively. The scores values
are the orthogonal projection of the sample coordinates on the PC axes, as an example the scores

of sample 5 are shown: t51 (PC1 score) and t52 (PC2 score). (B) The 20 samples represented in PC

space: PC1 versus PC2. (For interpretation of the references to colour in this figure legend, the

reader is referred to the online version of this chapter.)
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FIGURE 4f0020 Examples of PCA. PCA of concentrations of six chemical compounds determined in

samples of wine from three different cultivars. (A) PC1 versus PC2 scores plot (cultivar E:
squares; cultivar B: circles; cultivar G: black diamonds). (B) PC1 versus PC2 loadings plot.

PCA of NIR signals acquired at different leavening times of dough bread obtained from several

flour mixtures. (C) PC1 versus PC2 scores plot. Upward triangles: beginning of the leavening

(0–10 min); circles: middle time (10–40 min); downward triangles: end of the leavening
(40–60 min). A slight trend with leavening time can be observed from negative to positive values

of PC1 and towards positive values for PC2 at the end of leavening. (D) Loadings on PC1 (top)

and loadings on PC2 (bottom): the separate visualization helps interpreting which spectral region

influences each component the most.
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are opposite); an example is illustrated in Figure 4B. When dealing with instru-
mental signals it is usually impossible to visualize the loadings with scatter plots,
and more information can be obtained by analyzing them component-wise, as
shown in Figure 4D and E. In this way it is possible to obtain a profile which
can be directly compared to the original signal, so that regions which are more
important for that PC (higher absolute values of the loadings) can be individuated.

p0225 A loading plot can be discussed together with the corresponding score
plot, that is, drawn for the same couple of PCs, or directly represented in
the same figure, which is then named a biplot (the mathematics of a biplot,
i.e. how to render coherent, in the same coordinate space, the scale of score
and loading values will be discussed following the mathematical formulation
of PCA). In this way, it is easier to explain the groupings or trends one may
notice in the PC space in terms of the original variables, as shown in
Figure 5A. Although the biplot representation for spectral data is hard to
visualize, it is possible to highlight some spectral regions which are responsi-
ble for the separation of the process steps, as reported in Figure 5B (small
crosses).

p0230 From an algebraic point of view, PCA can be formulated as a mathemati-
cal maximization problem with constraints. We have seen that PCs are a lin-
ear combination of the original variables:

ta ¼X&va (2)

where va, the loadings vectors, are subjected to vaTva ¼ 1 (normalization),

vaTvb ¼ 0 (orthogonalization) and maximization of var(ta); hence the expres-
sion to be maximized, for a¼1. . .J is

Xvað ÞT Xvað Þ¼ va
TXTXva ¼ va

Tcov Xð Þva (3)

where ‘cov’ stands for covariance (assuming X has been column mean
centred) and the solution can be formulated as an eigenvectors/eigenvalues
problem, for each value of a:

cov Xð Þva ¼lava (4)

p0235 This means that the unknown values for the loadings correspond to the eigen-
vectors of the X covariance matrix and l are the corresponding eigenvalues.

p0240 In other words, PCs calculation brings us to the diagonalization of the
covariance matrix of X, when X is column mean centred; in the case that X
has been autoscaled (for autoscaling procedure, see Section 3.1.3), it brings
us to the diagonalization of the X’s correlation matrix.

p0245 As a consequence, PCs are sort in decreasing variance order and consider-
ing the algebraic property of the conservation of the trace, that is, for any non-
singular square matrix, B, given its diagonal D, it holds: trace(B)¼ trace(D),
the sum of the eigenvalues equals the total variance of the X matrix:

X
a
la ¼ var Xð Þ (5)
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FIGURE 5f0025 Examples of biplot representation. (A) GCbreadProcess data set. The biplot repre-

sentation of PC1 versus PC2 allows assessing which chemical compounds (loadings, crosses)
are more present in each of the six process steps monitored, visualized as classes for the scores

according to the following coding: empty circles, S0; empty squares, S2; empty diamonds, S4;

filled circles, D; filled squares, T; filled diamonds, L. In particular, all compounds, except for

maltose, are more present in the second phase (filled symbols), and, in both phases, the content
of sucrose, glucose and fructose decreases moving from S0 to S4 and D to L, respectively, while

succinic acid, glycerol and inositol increase. (B) NIRbreadProcess data set. Scores have been

represented according to the same code as in (A). Loadings correspond to each of the 1336 wave-

lengths recorded in the NIR signal (small points).
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p0250 In the case that X has been autoscaled and is full rank, the eigenvalues
sum up to the number of variables J.

p0255 Adopting this derivation, the loadings can be obtained by any method for
eigenvectors/eigenvalues calculation. Then, score vectors are obtained from

T¼X&VT (6)

p0260 The main algorithms used for eigenvectors/eigenvalues computation differ
in two aspects: the matrix to work on, either XTX (eigenvalue decomposition
(EVD) and the POWER method) or X (singular value decomposition (SVD)
and non-linear iterative partial least squares (NIPALS)). However SVD may
work as well on XTX (giving the same results as eigenvalue decomposition).
Another difference is whether PCs are obtained simultaneously (EVD and
SVD) or sequentially (POWER and NIPALS): for details and comparison of
efficiency see Wu et al. [38]. In all the cases for which rows dimension I is
much smaller than columns dimension J, one can operate on XXT instead
(EVD, POWER, SVD), and on XT (NIPALS).

p0265 The two most widely used algorithms, NIPALS [39,40] and SVD [41,42],
are schematically depicted in Figure 6, where the equivalence of loadings,
eigenvalues and scores is also illustrated.

p0270 The main advantage of using NIPALS is in it being sequential, so that,
especially when J is much larger than I (fat data matrices, such as with spec-
troscopic or chromatographic data), it can be stopped after a few components
are derived. Indeed, in EDA two to four PCs are often what is needed, and
generally an automatic stopping criterion can be implemented in NIPALS
such as a desired percentage of explained variance or the reaching of a monot-
onous trend in eigenvalues versus the number of components plot. A disad-
vantage, however, may be that convergence is not always ensured.

p0275 We have mentioned in the previous section that reporting scores and load-
ings values in the same graph, namely a biplot [26,37,43–45], is very useful to
discuss sample trends as a function of variable importance and their synergy
in determining them. Biplots are based on SVD:
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FIGURE 6f0030 PCA derivation according to different algorithms.
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X¼U&S&VT (7)

p0280 U(I'A) and V(J'A) are orthonormal and S(A'A) is a diagonal matrix

with elements equal to la1=2, where la are the eigenvalues collected in the
diagonal matrix L, V is the loadings matrix and the product U & S gives the
scores. We can rewrite Equation (7) as

X¼ U&L1=4
! "

& L1=4&VT
! "

(8)

p0285 We have in this way weighted ‘scores’ and ‘loadings’ equally by the
eigenvalues making the lengths of objects and variables vectors in the biplot
approximately equal, thus, in a biplot, for the corresponding components,
T*¼ (U&L1/4) and V*¼ (L1/4& VT) are plotted simultaneously. A further
option is to take into account the difference in dimensionality between rows
and columns, and use a normalizing factor, for example, (I/J)1/4 and (J/I)1/4

factors for T* and V*, respectively [44].
p0290 This, also called symmetric scaling, is not the only adopted choice in

biplot representation; alternatives are obtained considering the general expres-
sion, with a varying between 0 and 1:

X¼ U&La=2
! "

& L 1"að Þ=2&VT
! "

(9)

p0295 The symmetric scaling just described corresponds to a¼0.5. For a detailed
discussion on the implication of the different choices see Refs. [26,27,37,44].
The most common alternatives are a¼0, in which case the plot gives Euclid-
ean distance among variables and Mahalanobis distance among objects; and
a¼1, in which case the plot gives Euclidean distance among objects and
Mahalanobis distance among variables.

s0040 3.1.2 Extracting Information from the PCA Model

p0300 A PCA model is determined once the number of PCs to be retained has been
fixed. The maximum number of PCs that can be calculated corresponds to the
mathematical rank of the data matrix (if data are not significantly correlated,
the rank is min(I, J), otherwise it can be lower), but the interest is generally in
recovering the ‘chemical’ rank, that is, the number of underlying phenomena,
latent variables sufficient to describe the problem/system at hand.

p0305 When, as illustrated here, PCA is used as an EMDA tool, as the purpose is
graphical representation/inspection of data, the matter of choosing an appropriate
number of PCs, at first sight, does not seem so relevant. This is true, and not true,
at the same time. True because it is always possible to calculate all components up
to the rank and identify the most significant PCs by sequential graphical inspec-
tion of score plots. Not true because the residual E (the errors part or the not sys-
tematic variation in data) does constitute a relevant part of what we also want to
know about our data, such as outliers, noise content. More generally, we may see
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PCA decomposition not only as ‘data structure’þ ‘noise’ but as ‘pertinent infor-
mation’þ ‘other structured variation’þ ‘noise’. Thus, establishing the number of
components corresponding to ‘pertinent information’, and hence establishing a
PCAmodel, is useful. It has to be stressed that by retaining all components no data
reduction is operated (except for the compression from J to the mathematical
rank) and noise is not estimated; only an orthogonal rotation of the variables space
is accomplished.

p0310 Several criteria and rules of thumb have been formulated [26,28,46] to
answer the question: How many PCs? In EMDA, criteria based on statistical
inference, that is, on formal tests of hypothesis, should be avoided as we do
not want to assume, in the model estimation phase, our PCs to follow a spe-
cific distribution. In this context, more intuitive criteria, albeit not formal,
but simple and working in practice, are preferable, especially graphics-based
criteria, such as sequential exploration of scores plots and/or inspection of
residuals plots; plots of eigenvalues (scree plots [47]) or cumulative variance
versus number of components. Different consideration holds when PCA is
used to generate data models that are further used, for example, for regression,
classification tasks or process monitoring [48,49] (Section 3.1.5), where PCA
model validation, for example, by cross-validation, in terms of performance
on the assessment of future samples has to be taken into account.

p0315 By exploring scores plots for subsequent components, the number of PCs
can be evaluated on the basis of data structure description and one can stop
when no further salient information about sample patterns is gathered
(Figure 7). Residual plots allow checking if some systematic variation is left
in the unmodelled part of the data; in general, residuals should be normally
distributed around zero with no specific trends (Figure 7, bottom third from
left). The reasoning behind the use of scree or cumulative variance plots is
that components describing systematic variation will both account for a larger
portion of data variance and are not likely to account for an equal amount of
variance each. Instead, components describing unsystematic variability,
‘noise’, reflect a situation of equivalent captured variance in almost all direc-
tions in the space of the original variables, that is, the situation of randomly or
uniformly distributed data. Thus a change from steep to shallow slope in the
line connecting the points reported in a scree graph can be considered to cor-
respond to an optimal number of components. In Figure 8, for the same data
set shown in Figure 3 the scree plot, reporting both eigenvalue and log(eigen-
values), the cumulative variance and the eigenvalue ratio plot are compared;
the suggested number of components is 2 (classical scree) or 3 (scree variant)
and 4 for cumulative variance. Two PCs, considering that now data have been
centred, are sufficient to extract category-related information.

p0320 Another simple rule is retaining a number of components corresponding to
a given percentage of accounted variance, for example, 80–90%. In this case,
the kind of data and the type of pretreatment (Section 3.1.3) have to be taken
into account: typically, if the data matrix is not centred, the first component
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will account for a very large percentage of data variance and will correspond
to the average variable profile. Moreover, especially with some kind of spec-
tral data, like near-infrared (NIR) signals, the interesting chemical variability
may represent a very low portion with respect to other sources of physical
variability: in these cases, if the sources of non-relevant variability have not
been removed by pretreatment, patterns will emerge in the last PCs instead
of the first few.

p0325 Other rules are based on numerical evaluation of the eigenvalues: it is
assumed that in the case of perfect independence among variables, the PC will
be the same as the original variables (PCA represents an invariant rotation of
axes) and will account for unitary variance in case of autoscaled data, thus a
PC with an eigenvalue less than 1 contains less information of one original var-
iable and could be discarded (this rule sometimes is also taken as eigenvalues
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FIGURE 7f0035 The analysed data set consists of three categories of animal feed characterized by

NIR spectroscopy. Data are first derivative spectra but are not centred. Scores plots for subsequent

components top and first left bottom. PC1 accounts for 95.6% of data variance and describes just

the distance from the origin (i.e. it resembles the average spectrum), PC2 (1%) and PC3 (0.9%)
show the structure, distinguishing the three categories. PC4 describes some peculiar samples.

Further PCs show almost uniform distribution. Residuals versus samples number, coloured

according to category (bottom: second from left). Scree plot (bottom left) suggesting 3–4 PCs.

(For colour version of this figure, the reader is referred to the online version of this chapter.)
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less than 2). This rule has also been extended to not autoscaled data considering
that PC accounting for a percentage variance less than 100*(Vtot/J), where Vtot

is the total variance of the data set, can be discarded.
p0330 It may be argued that these criteria are subjective and it may be difficult

for the user to take a decision. However, it should be remembered that EDA
is always a subjective exercise composed of several steps: a chemometric tool
may be wrong or right for a given purpose/set of data, but it will never be the
only one that can be applied, thus the user will have the honour, and the burden,
of experimenting different ones. The same holds true for the number of PCs to
be retained: while it is mandatory to be aware of the consequences, in terms of
how (which feature of) a data set will be modelled as a consequence of that
choice, the choice itself is a responsibility the user has to take.

p0335 Once a PCA model is obtained, information may be retrieved from eigenva-
lues (explained variance, redundancy), scores (on samples, systems, conditions,
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FIGURE 8f0040 Same set of data as in Figure 7 but PCA has been computed on centred data. Top

left: scree plot, taking 2 PCs seems appropriate. Top right: logarithm of the eigenvalues versus

PC number, the trend is smoothed and suggests taking 3 PCs. Bottom left: plot of cumulative var-
iance versus PC number, a plateau is reached with 4 PCs (85% variance explained). Bottom right:

ratio of eigenvalues, starting from eigenvalue PC1/eigenvalue PC2; suggestion is to stop at 3 PCs,

as the ratio of 3 PCs/4 PCs is very small compared to the previous ones. (For colour version of

this figure, the reader is referred to the online version of this chapter.)
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e.g. time, ageing, etc., depending on what is reported on data table rows), load-
ings (on variables, signal regions depending on the kind of data), biplot (recip-
rocal behaviour and trends in samples/variables) and residuals matrix E
(anomalous/unmodelled samples and variables, model diagnostic). Figure 9
offers a schematic view and a reference summary.

p0340 Furthermore, in the specific case in which the PCA score plot reveals the
absence of grouping and clusters, that is, the data set being analyzed is com-
posed of samples of the same nature which represent the same system or pop-
ulation, it may be assumed that the calculated PCA model represents a
homogeneous set of samples, a specific category, and such a question can
be formulated: How fit is a sample (in the actual data set or a future one) to
this model?

p0345 To get an answer it is useful to calculate two distances: the distance of a
given sample from the PCA model hyper plane and from the centre of the

Comp. by: pdjeapradaban Stage: Proof Chapter No.: 3 Title Name: DHST
Date:18/4/13 Time:12:00:45 Page Number: 22

PCA summary
1. Model

2. Objects (samples, systems)

3. Residuals (check for outliers, unmodeled data structure)

4. Variables

5. Variables/objects

     % Explained X-Variance: closeness between principal component space

and original data space.

     Scores scatter plots t1 vs. t2 etc.: position of objects in the new

components (PCs)—space, grouping, trends.
     Scores line plots t1, t2 vs. number of sample: e.g. if sample have a

temporal order allows exploring trajectories.

     Leverage (diag[TA(TA TTA)−1 TT
A]):

how influential is a variable compared to the rest of the data set

    Leverage (diag[VA(VA TVA)−1 VT
A]):

how influential is a variable compared to the rest of the data set

     Biplots t1 & v1 vs. t2 & v2: simultaneous description of samples and
variables reciprocal influence.

     Residuals plots: eij vs. x’s values, vs. order of samples aquisition, etc..

Check randomness, omoschedasticity, non-linearity.

    Loadings scatter plots v1 vs. v2 etc.: role of original variables in

determining the new PC’s space. Trends, correlation among X variables.

     T 2- contribution Q-contribution plot: influence of variable on extreme

samples

T 2 vs. Q plot: influential samples and outliers

     Plots of PCA+1 vs. PCA+2 etc.: how much structure/information remains

after A-LV. Colour by categories or other additional information (dates,

batches,..)

FIGURE 9f0045 Summary of PCA outputs.
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model (Figure 10). The sum of squared residuals for each sample, here named
Q (other commonly encountered names are SPE, DModX), is a measure of the
distance of a sample from the PCA model (i.e. the higher Q is, the lower the
fit of the model). Q is the sum of squares of each row (sample) of E; that is,
for the ith sample in X, xi:

Qi ¼ ei&eiT (10)

where ei is the ith row of E. Q values indicate how well each sample conforms
to the PCA model, that is, it is a measure of the difference, or residual,
between a sample and its projection into the A PCs retained in the model
(the distance of point A, Figure 10, from the PC’s plane).

p0350 The squared elements of a single row of the, I by J, E matrix, ei
2, represent

the Q contributions for a given sample, which is an indication of how much
each variable contributes to the overall Q for the sample, and is particularly
useful in identifying the variables which contribute most to a given sample’s
sum-squared residual error. To retain information about the sign of the devia-
tion for a given variable, in some of the most common softwares it is possible
to find some implementations, such as sign(ei)*ei

2, or simply ei, instead of ei
2

representing the Q contribution plot.
p0355 The sum of normalized squared scores, T2, known as Hotelling’s T2 statistic

[50], is a measure of the variation in each sample within the PCAmodel (the dis-
tance of point B, Figure 10, from the centre of the PC’s plane). T2 is defined as

Ti
2 ¼ til"1ti

T (11)

where ti refers to the ith row of T, the scores matrix from the PCA model, and l
is a diagonal matrix containing the eigenvalues (l1 through lA) corresponding
to the A eigenvectors (PCs) retained in the model. T2 contributions describe
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FIGURE 10f0050 Graphical representation of the PCs space for a two-component model on a three-
variable data set.
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how individual variables contribute to the distance of Hotelling’s T2 value for a
given sample. The contributions to Ti

2 for the ith sample, tcon,i, is a vector cal-
culated from

tcon, i ¼ til"1=2PT (12)

and can be considered a scaled version of the data within the PCA model to
equalize the variance captured by each PC.

p0360 Assuming a normal distribution of the scores (which may be reasonable in
this specific case, as PCs are derived for a single category and PCs are in gen-
eral more normally distributed than original variables), two statistics can be
associated to the two distances: Q statistics [51,52] and Hotelling’s T2 statis-
tics [50]; for a discussion and further details on these statistics and their appli-
cation the reader is referred to Chapter Au1XXX [53–55].

p0365 From an explorative point of view, the T2 versusQ plot (Figure 11) allows the
inspection of peculiar samples. When the confidence limits, calculated according
to the respective statistics, are added, the plot is split into four regions:

o0030 I. The model space (bottom left) where normally behaving samples belong;
o0035 II. The region of extreme samples (bottom right), which show an extreme

behaviour because they respect the variable correlation structure cap-
tured by the PCA model but get high values in scores space. These sam-
ples, whose T2 values are high, are also said to have high leverage
because they pull the PC axes towards them;

o0040 III. The region far frommodel samples (top left): these samples, whoseQ values
are high, look ‘well behaving’ once projected on model space, because they
share some features with the modelled category, but are not well modelled
because part of their variation is not accounted for by the model (e.g. a sam-
ple which has the same composition as the modelled category but contains a
chemical compound which is not present in the other ones);

o0045 IV. The outliers region (top right), where all the anomalous, extreme and not
modelled samples belong, having both T2 and Q high values.

p0390 Moreover, by means of contribution plots [56] it is possible to come back to
the original variables and their contribution to each distance, thus understand-
ing why the samples behave differently or extremely with respect to the
others. The use of confidence limits [57], additionally, can help in the identi-
fication of which contribution is statistically significant: often, considerations
on the highest absolute value are not sufficient to highlight contributions for
variables which have a wide variability range and also for not extreme sam-
ples, as can be seen in Figure 11.

s0045 3.1.3 Data Pretreatment

p0395 Explorative data analysis aims at looking at/into data. It is a common experi-
ence that things may be seen from different angles and perspectives, and
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resolution changes depending on the distance from which things are observed,
illumination and so on. The way to introduce different perspectives and reso-
lution in looking at data is to apply data pretreatments or preprocessing. In
this respect, EMDA offers different views depending on which data set has
been given as input, raw or processed according to the type of processing,
and by comparing these different views it also becomes possible to assess
the effects the applied pretreatment has introduced. Thus EMDA results,
while depending on data pretreatment, also provide a diagnostic tool to orient
pretreatment choice.
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FIGURE 11f0055 Representation of T2 versus Q values for the samples in the PCA model of Flour-

Rheo Data set and contribution plots to the distances for some illustrative samples. Confidence
limits (dotted black lines) are computed at 95%; for contribution plots they are based on the

5th to 95th percentile range of values for samples in region I. (A) The T2 versus Q plot: the four

regions of the graph (I–IV) are described in the text. (B) Contribution to T2 distance for sample A

in region II: the sample presents an extreme value for parameters W and ext45 (lower value than
the mean of the model), FN and farstab (higher value). (C) Contribution to Q distance for sample

B in region III: correlation structure is not respected for several parameters, for example, FN, far-

dev and PL. (D) Contribution to T2 and Q distances for sample C in region IV: the sample presents

extreme values for several properties (e.g. W, FN and ext45) and correlation structure is not
respected mostly by FN, W and ext135.
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p0400 Here, the subject will not be entirely covered, but the main data pretreat-
ment tools will be illustrated following the two general cases, considering
the data table is organized as samples/objects in the rows and variables in
the columns, rows and columns pretreatments.

s0050 3.1.3.1 Column Pretreatment

p0405 These pretreatments include data centring and scaling.
p0410 Data centring across columns consists of subtracting a constant term, also

called offset, for all samples (rows) from each variable:

xj ¼
X

i
xij=I (13)

p0415 From a geometric point of view this operation corresponds to setting the
centre of the coordinates system (both variables and PCs spaces) equal to
zero. From a practical point of view this means to look at data from the inside
of the data, not from a distance; this is illustrated in Figure 12 where the scat-
ter plot of the first two PCs is shown before and after columns centring the
data. Or, in other words, if we considered the variables average as a rough
summary of our samples data, centring may help focusing on the ‘differences’
discarding what is a common pattern. Columns mean centring keeps the dis-
tances among samples in variable/PCs space unchanged.
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FIGURE 12f0060 The analysed data set consists of three categories of animal feed characterized by

NIR spectroscopy. Spectra are SNV preprocessed. The first PC loadings of not centred data (mid-
dle right, black line) closely resemble the average spectrum (top). The PC1 versus PC2 scores plot

(middle left) shows the distance from the 0,0 point. The first PC loadings of centred data (bottom

left, black line) are like the PC2 loadings (middle left, grey line) of not centred data. (For colour

version of this figure, the reader is referred to the online version of this chapter.)
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p0420 Thus, centring may be generally useful, in situations where the previously
mentioned considerations hold true. When centring is appropriate, data rank is
generally reduced. Also, centring may increase the efficiency of some algo-
rithms for PCA estimation, such as NIPALS or POWER method.

p0425 Of course, centring is not a sensible choice when it is meaningful to consider
the distance of the objects from the zero origin, or we are interested to obtain
models under non-negativity constraints, for example, because ‘chemically’
interpretable scores values in terms of chemical concentrations are needed.

p0430 Mathematically speaking, centring may be seen as projecting the data onto
a space where the common offset represented by the column average is
removed [58]. Fitting a PCA model to centred data can be seen as a two-step
procedure: first, the average is removed; and second, the model is fitted and
model parameters, for example, loadings and scores, are estimated. This
may have some drawbacks in specific situations, for example, when dealing
with incomplete data with missing elements. In this case, removing averages
and then fitting a model is non-optimal and may alter the data structure, pro-
ducing wrong results, as wrong data dimensionality estimation.

p0435 In food data analysis practice, one aspect has to be taken into consideration:
the samples often belong to different conditions, such as same food sampled by
different producers or at different locations and/or at different times (seasons,
years) and so on. In these cases, different views/information are obtained by sim-
ply column centring or centring separately each ‘block’ of samples, even if the
resulting column averages are zero in both cases. An example is given in
Figure 13, where samples are casks of balsamic vinegar at different ageing (the
time order, from the youngest to the oldest, is indicated by symbols: black aster-
isk, light blue cross, magenta triangle, green diamond, red square, blue circle,
respectively) belonging to three different producers (C, M and S) characterized
by organic sugars and acid content [59]. It can be seen how columns centring
by subtracting the overall column average obscures the trends inside each series
of casks: anchoring the variation to the overall average, the intra-producers differ-
ences are highlighted (Figure 13, top right). By subtracting the average for each
series separately, the ageing trend within each series is better depicted
(Figure 13, bottom left), which reflects typical features, such as the starting age
of the series, the extent of yearly topping up and so on. Moreover, the PC1 versus
PC2 scores plot now shows a distinction by cask ageing instead of by producer.

p0440 PCA seeks directions of maximum variance and variance depends on the
measurement scale of the variables, thus it is important to focus our attention
on the kind of variables we have measured to characterize our data: Are the
scales comparable? Are we interested in allowing each variable the same
chance to contribute to the PCA model? Which is the noise level?

p0445 Scaling will cope with these issues. Columns scaling means to apply a
weight to each variable:

Xscaled ¼X &W (14)
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p0450 The weights matrix W is a diagonal matrix of dimension J'J whose diag-
onal elements are weights to be applied to each column. The main purpose of
scaling is to change the importance attached to different parts of the data in
fitting the model. Thus, in general, scaling may be seen as a way to introduce
our knowledge about the nature of the variables, their relevance to our data
description and so on. The choice of the type of weight to apply depends on
the specific data set and our aims. Three main objectives are pursued by scal-
ing: (1) to adjust scale differences; (2) to take into account noise level; and (3)
to consider in the same data set variables differing in size and/or kind, for
example, punctual and spectral variables altogether.

p0455 Case 1. The first case arises because a PCA model is based on describing
data variance: as a consequence, the variables showing large variation are
implicitly important, that is, more important than the others. The point is,
why do those variables have a bigger variability? In case the variation is
solely due to a matter of scale (units of measure) or if it reflects the different
amount of compounds (the presence of major and minor constituents albeit all
potentially interesting to describe/differentiate the studied samples), it is
fair to scale variables. On the contrary, if the variation is only due to noise
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FIGURE 13f0065 Scores plot of PCA of balsamic vinegar at different ageing corresponding to two

different centring procedures. Top plots: overall average removed; bottom plots: series average
removed. The different coloured symbols indicate ageing of each cask (three replicates for each

one): the time order, from youngest to oldest, corresponds to the following symbols: black aster-

isks, light blue cross, magenta triangles, green diamonds, red squares, blue circle). Letters indicate

the three different producers: C, M and S. The dashed oblique line in the bottom right figure high-
lights a possible separation by cask ageing of three oldest (above the line) from the three youngest

(below the line). (For interpretation of the references to colour in this figure legend, the reader is

referred to the online version of this chapter.)
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(which has to be estimated by replicate measures, unless the uncertainty asso-
ciated with the specific method of measurement of the given variable is
known by previous experimentation), the result of scaling enhances unimpor-
tant variables, thus leading to a poorer model. In order to adjust for scale dif-
ferences, it is common to use as variables weights (scaling factors) a measure
of the data dispersion, such as:

u0015 – The inverse of the standard deviation (scaling to unit standard deviation or
unit variance);

u0020 – Pareto scaling [60] (uses the inverse of the square root of the standard
deviation, has an effect, that is, somehow intermediate between using
raw variables and scaling, in the sense that large variance variables are
less down-weighted);

u0025 – Range scaling [61] (uses the inverse of variable range as weight, thus
resulting more sensitive to outliers, a problem which can be avoided by
using robust range estimators);

u0030 – Va.st. (variable stability) scaling [62] (it consists of down-weighting those
variables that are the least stable and focusing on stable variables, using
the standard deviation and the so-called coefficient of variation as scaling
factor).

p0480 Case 2. In this case, scaling may be used to account for non-constant noise
level (error variance), and the applied weight corresponds to the inverse of
residual variance of each variable (it seems similar to unit variance scaling
but instead of the standard deviation of the variable, the residuals standard
deviation, as assessed by replicates, is used), down-weighting variables whose
uncertainty is higher.

p0485 Case 3. In this case, subjective weights are given to variables. The most
common case is the one in which it is necessary to consider subsets of vari-
ables of different nature, for instance concentration variables together with
spectral variables, such as NMR fingerprint. Because the number of spectral
variables is very high, and each one contributes to data variance, the model
will focus on explaining only the spectral variables. To solve this issue, the
spectral variables can be block-scaled [62] so that their total variation is set
equal to the total variation of the metal content variables: in this way both
blocks of data are given an equal chance of influencing data variance. The
weights to accomplish block-scaling are defined as

wjB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SSTOT
SSBLOCK&nBLOCK

r
(15)

where wjB is the weight to be assigned to each variable in a given block, B;
SSTOT is the total sum of squares (alternatively, variance can be used) over
all J’s variables, SSBLOCK is the sum of squares over the J’s variables belong-
ing to the given block and nBLOCK is the number of variables inside the block.
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p0490 Most often, block-scaling is coupled with scaling to unit variance, mean-
ing that each variable is weighted by its inverse standard deviation, but a cor-
rection term taking into account the number of variables in each block is also
included; that is, the weight to be applied to each variable is

wjB ¼ J= sjB&nBLOCK
$ %& '1=2

(16)

p0495 Block scaling is also useful in the case where the variables are of the same
nature, for example, chromatographic or spectral signals, but their variation
reflects the presence of peaks/bands that account for constituents present at
different concentration, such as main/secondary metabolites, metals/trace
metals and so on. In this case, the blocks are defined as signal regions, not
necessarily contiguous, each including peaks of similar variation together with
some baseline regions (in order to avoid up-weighting of noise) as shown in
Figure 14.

p0500 Scaling is most often coupled with centring; autoscaling, for instance,
refers to columns centring plus dividing by columns standard deviation. The
distance among samples is not preserved by scaling: Figure 15 shows how
PCA scores and loadings are affected by data scaling (data set: FlourRheo-
Data, see Section 3.1.4 for more information on it).

s0055 3.1.3.2 Row Pretreatment

p0505 In this section pretreatments applied in the rows direction are discussed; this is
also called data preprocessing and most applications concern data signals, in
particular spectra. Here, we will refer mainly to the preprocessing of NIR
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spectra, given the high relevance this technique has acquired in food analysis;
however, the concepts are generally applicable.

p0510 Signal preprocessing is applied to correct/remove the contribution of
undesired phenomena ranging from stochastic measurement noise to various
sources of systematic errors: non-linear instrument responses, shift problems
and interfering effects of undesired chemical and physical variations. These
operations are also known as de-noising, smoothing, background and baseline
corrections, normalization (transforming to a scale of relative intensity), align-
ment (removing horizontal shift), and correction for scatter in NIR. Moreover,
transforming the signal, for example, by derivative operations, can implicitly
accomplish normalization, baseline removal and partial band deconvolution.
As far as removing horizontal shift is concerned, which is a frequent issue
arising in chromatography, in NMR signals, as well as in time series data, sev-
eral algorithms [63–67] which can aid to remove misalignments have been
proposed.

p0515 A general distinction in preprocessing methods may be in terms of filter-
ing methods, which transform measured data mathematically into a presum-
ably ‘better’ version of the same data, leaving out some undesired types of
variation, and model-based methods, where the ‘better’ version is obtained
based on a more explicit mathematical model in such a way that the informa-
tion filtered out is not lost, as statistical estimates of the mathematical para-
meters involved in the filtering are also obtained.

p0520 Among the most used filtering methods for de-noising/smoothing, that is,
removing uninformative high-frequency variation, there are moving average
and polynomial Savitsky–Golay filtering [68], which works on the assump-
tions that the signal is smooth compared to noise (sum of monotonic func-
tions); noise is mainly uncorrelated and will be eliminated by mild methods.
Alternatively high-frequency contributions may be removed in frequency
(Fourier transform) or wavelet (wavelet transform) domain. Some examples
are given in Figure 16.

p0525 The need to normalize signals, which consists in passing from the mea-
surement scale to a relative one, may arise for different reasons in different
contexts. The normalization issue is relevant for signals where peak inten-
sity/area is proportional to concentration and it is not possible to use exactly
the same amount of matter for each sample, for example, in high-resolution
magic angle spinning-NMR signals where semi-solid samples are used. Other
examples are those situations in which the intensity of the signal is affected by
physical or chemical variability different from the one we are interested to
model, such as water content, temperature, and particle size in NIR, which
may be due to the acquisition condition being different from sample to sam-
ple. Normalization avoids that these differences in concentration overwhelm
the variability due to actual differences in the samples. Signals could be nor-
malized to unit length, unit area, maximum intensity, or according to a refer-
ence, intense, well-resolved peak, which is present in all samples and whose
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variation is uninteresting (as it will get the unit value for all samples, thus
remaining constant over the series of samples considered).

p0530 In cases where a constant offset (vertical shift) is present, it is common to
perform row autoscaling, that is, centring and scaling to unit variance along
time points and wavelength direction and so on (depending on the kind of sig-
nal). For NIR signals, this operation is better known as standard normal vari-
ate (SNV). This preprocessing, to some extent, implicitly accomplishes
normalization too.

p0535 In the presence of a linear or curvilinear offset, the detrend method can be
used. Detrending consists of fitting a polynomial of a given order to the entire
signal range. As this algorithm fits the polynomial to all points, baseline and
signal, it tends to work only when the largest source of variability in each
sample is baseline/background interference, as in NIR signals; this means that
it may remove variations which are interesting to model whenever the varia-
tion of interest is a reasonably significant portion of the overall variance.

p0540 When the polynomial is fitted to signal points, which are manually
selected, that can be attributed only to baseline (background), then baseline
(background) removal is achieved and the drawbacks of detrending are over-
come. A variant for baseline correction is to do adopt a weighted least squares
automatic procedure (asymmetric least squares [63]). This is an automatic
approach to determine which points most likely belong to baseline only, by
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FIGURE 16f0080 An example of a noisy band in a medium-IR spectrum of a balsamic vinegar sam-
ple. Left plot: black line corresponds to original signal; grey line the same signal de-noised by a

db1 wavelet filter at level 3 (all detail coefficients from level 1 to 3 were set to zero, only approx-

imations at level 3 were reconstructed). Right plot: black line corresponds to original signal; blue

dashed line to the same signal after smoothing with an SG filter, 7-point window, second-order
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(For interpretation of the references to colour in this figure legend, the reader is referred to the

online version of this chapter.)
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iteratively fitting a polynomial to each signal and determining which signal
points are clearly above the ‘fitted baseline’ and which fall below. Then the
points below are assumed to be more significant in fitting the baseline and
get higher weights in the next iteration of fit. The baseline is usually approxi-
mated by low-order polynomial, but a specific baseline reference (background
profile) can also be supplied.

p0545 A different approach, based on the assumption that the baseline/back-
ground is a low-frequency contribution, is to filter out this low frequency,
for example, by using the wavelet transform [69] with a wide wavelet filter
and removing approximation coefficients at a low scale. In Figure 17 a
comparison of the same signals of different baseline correction methods is
reported.

p0550 Computation of signal derivatives (also referred to as derivative spectra)
allows the removal of constant (first derivative) and linear (second deriva-
tives) offsets from the signal data [70,71]. Derivatives return the slope of a
line at any given point: thus the first derivative of a signal shows a maximum
where the signal has a maximum slope and crosses zero where the signal has a
peak, which renders spectral interpretation more difficult; the second deriva-
tive accounts for the rate of slope change in the original signal and has nega-
tive peaks corresponding to peaks in the original signal, which allows them to
be better interpreted. Drawbacks of derivatives are that scale is decreased and
when, as in general, they are computed as differences, noise is increased, so
they are often preceded by smoothing. Moreover, derivatives implicitly
accomplish band deconvolution and, in general, tend to be far more amenable
to use before multivariate analysis of NIR spectra.
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p0555 Model-based preprocessing methods [72] assume a mathematical model to
account for the different contributions to a signal, which can be expressed in
the general form:

x¼ bxref þ tPTþ e (17)

where xref is a reference signal which represents at best the sought unknown
‘true’ signal (xtrue) that has to be recovered, and P contains terms modelling
different phenomena: P¼ [PPhys, Pchem_irr, Pchem_i], such as physical variabil-
ity (PPhys) due, for example, to light scattering (NIR), or thermal conditions;
variability due to chemical effects but not relevant to the goals of data analy-
sis (Pchem_irr), for example, compositional/structural changes due to seasonal
variability not important for variety discrimination or water content and so
on; and informative chemical variability (Pchem_i), for example, due to
changes in concentrations of the analytes to be determined, in general varia-
bility which represents interesting information about samples to be captured/
modelled by data analysis. In other words, it is assumed that each signal pro-
file (chromatographic signals, absorbance spectra, etc.) for a set of related
samples may be approximated as physical/chemical modifications of a ‘true’
signal.

p0560 The simplest method which corresponds to these terms is multiplicative
scatter correction (MSC). In this case, it is assumed that chemical variation
is small compared to physical variation (i.e. variation introducing a constant
(additive)/proportional (multiplicative) baseline effect) and thus the true ‘sig-
nal’ may be replaced by a constant reference signal, usually the mean (or
median) spectrum, m (it may also be a specific spectrum of the data set).
The previous equation becomes

x¼ bmþaþ e (18)

p0565 Solving by least squares, the multiplicative, b, and additive, a, parameters
can be estimated and the signal profile corrected to

xcorr ¼ x"að Þ=b (19)

p0570 This is a very strong simplification because it assumes that chemical var-
iations, for example, analyte and possible interferant concentrations, have lit-
tle effect on the observed spectra. However, it often works with NIR spectra,
where the chemically relevant induced changes mostly manifest as ‘shoulders’
on a very strong background profile. A situation where MSC (as well as SNV
for analogous reasons) does not work [72,73] is shown in Figure 18. A possi-
ble solution could be to apply MSC only on a given portion of the signal
known to have constant chemical variation, for example, where an interferant
at constant concentration is present, and/or belonging only to baseline
(absence of chemical variation), as shown in Figure 18.

p0575 It has to be noted that, in the cases shown, derivative spectra would have
solved the problem (see Figure 19).
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p0580 Going back to the general formulation of model-based preprocessing, the
model can be extended (the method in this case is called extended multiplica-
tive scatter correction (EMSC) [74]) to include other physical variations, for
example, non-linear terms (not only proportional/multiplicative) with respect
to wavelengths:

x¼ bmþaþ clþdl2þ&& &þ e (20)

where l is the abscissa vector and higher-order terms in l may as well be
considered.

p0585 Finally, to cope with situations which differ from the case where the
assumption is made of very small effects of ‘chemical’ variation on spectra,
the Pchem_i terms may be introduced in the EMSC model. This can be done
as an example by considering the signal profile of the pure analyte:

x¼ bmþ t PphysPchem"i

& 'Tþ e¼ bmþaþ clþdl2þhxpureþ e (21)

p0590 In this case the a, b, c and d parameters estimated by linear fitting are not
confused with the chemical variation because this is considered in the h xpure
term; hence we can correct for physical unwanted variation by

xcorr ¼ x"a" cl"dl2
$ %

=b (22)

p0595 In Figure 20, an example is shown where this approach has been applied;
however, because the interferant concentration is not constant, in order to
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have a suitable correction the interferant pure spectrum information has also
been considered in the EMSC model.

p0600 When Pchem_irr is known, for example, by taking a difference spectra of
two samples known to belong to different batches, years, producers and so
on, we can take this term into account in the model and correct for it; in other
terms, EMSC can be seen like a generalized linear model.

p0605 To illustrate the effects of the different preprocessing described until here
on explorative PCA models, the data described in Section 3.1.4, namely NIR-
BreadProcess, has been used.

p0610 The results are shown in Figure 21, which shows the effect of signal pre-
processing on the average spectra (Figure 21A) for each leavening step and on
the variance inside each step (Figure 21B), and in Figure 22, where the trends
as captured by PCA computed on the different preprocessed data, followed by
column mean centring (Figure 22), are shown. For each set, PC2 versus PC3
score plots are reported because these two components describe variability
linked to the different leavening step, while for all preprocessing the first
component is still describing overall variability not relevant for the leavening
step separation. The bottom right sub-plot reports a score plot of the PCA on
the concentration of some organic compounds involved in the leavening pro-
cess determined by GC on the same samples. It is interesting to note that the
preprocessing which best matches this trend is the second derivative.

p0615 In the more general case, when the preprocessed signals are not to be used
for explorative purposes only, but for modelling tasks (classification, multi-
variate calibration) as well, the Pchem_irr, can also be estimated by multivariate
modelling. For instance, a PCA model can be built with samples measured in
those different conditions that we know a priori which may introduce
unwanted variability (batches, seasonality, acidity of the media, humidity con-
tent, etc.); then the loadings of the few PCs where this variability is modelled
can be used as Pchem_irr.

p0620 Other model-based preprocessing methods, which are more demanding
from the computational and validation point of view, are, for example,
orthogonal signal correction and orthogonal partial least squares [75]. When
preprocessing it is not sufficient to distinguish relevant information from
uninformative sources of variation, it is becoming common to employ vari-
able selection techniques which may reveal to be a very useful tool, especially
for multivariate calibration problems [76–78].

s0060 3.1.4 PCA in Practice: Exploring Food Data

p0625 As EMDA is a data-driven method, and according to the main target of this
book which aims to showcase the potentialities of an application-oriented dis-
cipline like chemometrics in a challenging world such as food analysis, in this
section PCA will be shown ‘in action’ on data sets obtained from real cases of
food analysis, both at laboratory and plant scale.
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p0630 The FlourRheo data set consists of 269 samples of wheat flour employed
in an industrial bread-making production, for which 14 variables related to
flour rheology have been measured. This data set represents the database over
3 years (2007–2009) of incoming raw material (flour) delivered at an indus-
trial bakery and is well suited as an example of a problem which is shared
by most areas of the food industry, namely raw materials variability. Flour,
for example, suffers a high degree of seasonal influence on its rheological
properties, which also vary on the basis of wheat varieties and formulation:
therefore, it is important to act in an explorative way to understand which
are the relationships among variables that characterize a flour batch, so that
it is possible to foretell which actions are to be taken on the production pro-
cess in order to maintain the quality of the final product (e.g. bread) inside
its target values [14,79].

p0635 The exploratory PCA (data have been autoscaled) clearly shows (Figure 23)
the differences in terms of rheological properties of the flour deliveries consid-
ered in that period on the basis of wheat variety, mixture type and seasonal
effect (symbols legend is reported in Figure 23C). The score plot of PC1 versus
PC2 (Figure 23A) shows a differentiation of wheat flour deliveries mainly in
terms of the presence of the different pure wheat varieties: samples obtained
from a mixing of pure foreign wheat varieties (that is groups a and b, made of
a mixture of WFor1 and WFor2) are located at negative values of PC2 and at
values of PC1 negative or close to zero, together with mixtures belonging to
group d, which is mainly composed of the aforementioned foreign wheat vari-
eties (together with 30% of Italian wheat WIta1), whereas mixtures containing
a higher percentage of Italian wheat varieties (WIta1 and WIta2) are located at
positive values of PC2. Considering loadings (Figure 23B), it is possible to say
that foreign wheat varieties have globally lower values in terms of some rheo-
logical parameters connected to flour ability to maintain optimal properties
for longer leavening (PL value, ext135 and ext90) and mixing times (farstab),
while reaching higher development (fardev) and showing a higher starch degra-
dation (FN), which results in a higher contribution of sugars for yeast activity. In
addition, the positioning at negative values of PC1 indicates a higher W value
(that is a global index of resistance for the gluten network to gas retention in
the leavening phase) for the foreign varieties. On the contrary, Italian wheat
varieties show an opposite behaviour and appear generally richer in protein con-
tent; moreover, WIta1 (group f) appears different fromWIta2 (group g), the lat-
ter being located at higher PC1 values. As most of the properties have a positive
contribution in terms of loadings on PC1, this indicates that WIta2 presents
higher values than WIta1, especially in terms of extensibility parameters
(ext45, ext90 and ext135) and protein content, while having lower moisture
content and W value. The mixture effect results are quite clear considering
the disposition of groups of samples which have a different foreign versus
Italian wheat variety ratio. Groups d, e and h move from 70:30 to 20:80 and
30:70, and are progressively positioned at more positive values of PC2 and
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PC1, moving from the area of foreign mixtures (quadrant III–IV) to the one of
pure Italian varieties (quadrant I). Some peculiar behaviours appear when con-
sidering, for instance, group c: this group is characterized by a particular homo-
geneity in terms of inter-delivery variability when compared to other groups,
and is positioned in quadrant II. Its mixture composition, having a foreign
versus Italian wheat variety ratio of 25:75, does not differ much from the one
of groups h and i, which is 30:70, which show a higher variability. In this case,
a wheat variety effect might be present, as the foreign variety differs, but there
can also be a significant seasonal effect. Group c belongs to the beginning of
year 2008, while h and i were delivered between the end of 2008 and the begin-
ning of 2009; this means that the Italian wheat variety also, which is the same,
comes from two different harvests, which could have undergone different
weather and growing conditions, thus developing different rheological proper-
ties. A seasonal effect may be seen also for groups a and b, which are very close
to each other and homogeneous in terms of variability, both belonging to the
year 2007. All these exploratory considerations can be the basis for a more
detailed evaluation of similarities/differences of new flour deliveries with the
ones present in the historical database, and for studies on the functional relation-
ship of flour formulation on wheat flour rheological performance, thus leading
to other steps of food analysis.

p0640 The NIRbreadProcess and GCbreadProcess concern 14 doughs from an
industrial bread-making production sampled at six different points of the
industrial process (S0, S2 and S4: beginning, middle and final point of the
first leavening phase; D, T: beginning of the second leavening phase and L:
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FIGURE 23f0115 Principal component analysis of the data set FlourRheo. (A) Scores plot and (B)

loadings plot of PC1 versus PC2. The letters identify the mixtures reported in (C). (For colour ver-

sion of this figure, the reader is referred to the online version of this chapter.)
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end of the second leavening phase). In the first data set, the NIR spectrum was
recorded in the 4350–9500 cm"1 region; in the second data set, the concentra-
tion of nine acids, sugars and other compounds related to dough leavening
(succinic acid, malic acid, glycerol, fructose, inositol, sucrose, maltose, fuma-
ric acid) was determined by means of GC [80].

p0645 In this context, the explorative analysis phase is crucial to check if the ana-
lytical techniques are able to collect information on the process. Figure 24A
shows, as a biplot, that GC (data have been autoscaled prior to analysis) is
able to capture information on sample composition which is, first of all, able
to clearly differentiate the first leavening phase (negative values on PC1) from
the second leavening phase (positive values on PC1), and that is indicative of
the progression of dough leavening, as the trends from positive to negative
values of PC2 suggest. This is connected to a general change, in terms of vari-
ables, from higher concentrations of sugars at the beginning of each leavening
phase towards a higher concentration of some leavening products and the con-
sumption of sugars at the final leavening points. As another technique was
considered, that is NIR spectroscopy, it is also possible to compare the results
obtained with both of them. As reported in Figure 24B, the PCA on the NIR-
breadProcess data set (preprocessing: Savitsky–Golay second derivative, with
second-order polynomial smoothing, and mean centring) indicates that the
NIR signal can bear information, albeit in different components (in this case,
PC2 and PC3), similar to the GC quantification of chemicals present in the
leavening phase. Loadings (Figure 24C) illustrate which infrared vibrations
are mainly involved in the samples distribution in the PC’s space. The sam-
ples located at positive values of PC2, corresponding to most of the samples
of the second leavening phase, are characterized by higher values for the spec-
tral variables around 5200 cm"1, several vibrational modes are absorbed in
this region, such as the asymmetric NH stretching of the CONH2 group, the
second overtone of the C]O stretching (in CO2R), the first stretching and
the second bending overtones of water OH and the combination bands of
starch OH. On the other hand, the PC3 loadings are mostly inherent to the
NIR region below 4500 cm"1, where contributing combination modes are
found, for example, of CH and CC stretching and of CH and CH2 bending,
which can be found in different constituents of flour, such as starch, lipids
and proteins.

p0650 The rather broad nature of NIR signal can be accounted for by the fact that
PC1, the main source of variability, is due to other effects connected to the
production process which are not discussed here.

p0655 The exploratory analysis of these two data sets offers at least two different
points for further analyses:

o0050 1. The NIRbreadProcess data set is shown as being a good representative of a
process-monitoring approach in the food industry, where online analysers
are employed on the production line.
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o0055 2. The fact that the two techniques offer similar views of the same process,
that is the leavening progression, is a start for a feasibility study of indirect
calibration models of properties of interest, that is the concentration of
leavening products in dough from the NIR spectrum, thus obtaining
important information on the process in a matter of seconds (the acquisi-
tion of the NIR signal) instead of more than 1 h (the GC run).

p0670 Finally, an example should be provided about a class of methods, which have
also explorative purposes, which will be discussed with more detail and theo-
retical depth in Chapter Au1XXX, that is multiway analysis methods [81]. These
methods, among which parallel factor analysis (PARAFAC) will be shown
here in action compared to PCA, are to some extent referred to as the concep-
tual (and mathematical) extension of PCA to arrays of order higher than two.
They show their potentiality when the variability of a data set is related to dif-
ferent sources, or conditions, at which a full set of properties for each sample
is measured [17–21]. An example, quite common in the food science analysis,
is the excitation–emission fluorescence landscape, where, for each sample, an
emission spectrum is recorded at each wavelength of the excitation signal.

p0675 The NIRdoughRising data set contains the Near Infrared Spectrum, in the
1376–2245 nm region, recorded at seven leavening times (at the beginning
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and every 10 min up to a 60-min rising phase) for doughs obtained from ten
wheat flour mixtures characterized by a different formulation of four wheat
varieties. As it is important to gain knowledge on the effect of wheat flour for-
mulation on its rheological properties and on its performance in the leavening
phase, this kind of experiment is useful in order to plan the best mixture to be
used in an industrial production [82,83].

p0680 To analyze such a data set in an explorative way, one can chose from two
approaches: to consider a two-way data set arranged as in Figure 25.a1, where
time progression for each sample is ‘unfolded’ in different rows and NIR signal
(preprocessed with smoothing and SNV) represents the source of variability; or
in Figure 25.b1, where a three-way array is composed, having samples in Mode
1, NIR spectra in Mode 2 and leavening times in Mode 3. The ‘unfolded’ data
matrix has been pretreated by centring separately each sample mixture with
respect to its mean leavening time (see Section 3.1.3.1 for some remarks on this
procedure), which corresponds to mean centring across Mode 3, the three-way
array. PCA shows on PC1 scores (Figure 25.a2) that most flour samples have
a similar trend from negative to positive values of PC1 (points are ordered
according to leavening time), and that two main groups can be present, one
which has higher variability (e.g. S4–S8) and another one with less variability
with time (e.g. S2, S3 and S9). It is important to note that PCA confounds the
variability between and within flour mixtures, considering them altogether.
The advantage of using a PARAFACmodel lies in the fact that these two sources
of variability are explored separately and belong to Mode 1 and Mode 3, respec-
tively. This allows obtaining clearer information on similarities and differences
among samples, fromMode 1 scores plot (Figure 25.b2), where now two clusters
appear and sample S4 is highlighted as peculiar, and from Mode 3 loadings plot
(Figure 25.b3), which shows that a trend of evolution of the NIR spectrum with
time exists. Mode 2 loadings (Figure 25.b4) and PCA loadings (Figure 25.a3) are
quite similar, thus showing that the same information is captured by both
approaches, but the visualization is particularly different.

s0065 3.1.5 Using PCs and PCA Models Beyond Data Exploration

p0685 In this chapter PCA is discussed as an EMDA tool; however, as discussed in
several other chapters of this book PCA can be part of a modelling task, for
example, in class modelling (SIMCA) or multivariate calibration (PCR Au2) or
in building reference normal operating condition models in multivariate statis-
tical process control. PCA derivation does not differ in these contexts until
assessing the right model dimensionality, that is, the number of significant
PCs (chemical rank), became critical. Thus the choice of the number of PCs
to be retained has to rely on validation, by using methods such as cross-
validation, permutation tests and bootstrapping [58,84,85].

p0690 In these contexts, it is also assumed that with PCA a set of similar samples
representative of a given category is modelled; hence, we also aim at
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estimating ‘population’ parameters in PCA space, such as statistics for T2 and
Q and their respective confidence intervals. A discussion of inference in PCA
may be found in Refs. [26,53,86].

s0070 3.1.6 Other Derivations of PCA

p0695 We have described PCA as a method to project/compress measurements
collected in a J-dimensional space to an A-dimensional hyperplane (A<J)
with the useful property of retaining salient samples/variables patterns
unaltered in the reduced space.

p0700 However, only when the measurement errors are independent and follow a
normal distribution (homoschedastic noise), PCA estimation of this subspace
is optimal in a maximum likelihood sense [87]. On the contrary, if measure-
ment error variances are non-uniform (heteroschedastic noise) and also not
independent, the PCA projection may represent the samples incorrectly or
non-optimally. Non-uniform measurement errors in a data set may arise from
error sources inherent to a given type of instrumentation or experimental
setting, for example, variations in noise across measurement channels in spec-
trophotometers, or due to the presence of missing information.

p0705 An effective visualization of clusters within the scores plots may be
hindered by objects dominated by noisy measurements that are projected in
such a way as to obscure the separation of object classes. To overcome this
issue, a different derivation of PCA has been proposed, [87–90] namely max-
imum likelihood principal components analysis (MLPCA). Basically, it is a
generalization of PCA to non-ideal error structures which, given reasonably
accurate characterization of measurement noise, can improve the projections
of the points into scores space. It does this by performing a separation of noise
variance from other sources of variance in the data and by using maximum
likelihood projection instead of orthogonal projection as standard PCA. The
projections for the noisy measurements in PCA and MLPCA differ because
PCA ignores noise direction and all projections are orthogonal, while MLPCA
best projection geometrically corresponds to the point of nearest intersection
of the measurement error ellipsoid with the subspace. MLPCA projection
for a sample i Au3is formulated as

x̂i ¼ tiV
T ¼ xi

X
i
"1VA VA

T
X

i
"1VA

! ""1
VT

A (23)

where V is the loading, ti the sample score, A the number of components and
Si the error covariance matrix that is needed to project a sample. As in PCA,
scores and loadings are orthonormal, and SVD decomposition method may be
used, but the solution is not nested, that is, a model with two components can-
not be obtained taking the first two PCs from a three-component model.
Moreover, the minimization depends not only on the measurements but also
on its associated error structure. The most common approaches to estimate
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measurement error covariance matrices generally fall into one of the follow-
ing: experimental replication, theoretical modelling, or empirical modelling.
By experimental replication a submatrix of replicates is obtained from which
the error covariance can be estimated.

p0710 In Section 3.1.2 the capability of PCA to help identify multivariate outliers
has been described as an advantage in the EMDA context; the other side of
the medal is that PCA is sensitive to outliers: indeed, PCA direction is most
influenced by outliers. In fact, outliers artificially increase the variance in
an otherwise uninformative direction, and will drive the first PC in that direc-
tion. This constitutes a problem if we want to use the PCA model as a reduced
informative view of our data, as we will end up with a distorted or non-
optimal view of our samples relations (in fact, not only will the first PCs
direction point to outliers but given the orthogonality constraint, the direction
of subsequent PCs will also be influenced, i.e. distorted by the maximum var-
iance direction that will represent the samples in the absence of outliers).

p0715 A solution in this case is to use robust models and robust statistics (such as
median as measure of location and median of absolute deviation around the
median as measure of spread) in estimating PCA parameters. The aim is to
construct models and estimates clearly describing the majority of the data.
Moreover, construction of robust models allows a proper identification of out-
lying observations. A review illustrating the basis of robust techniques in data
analysis and chemometrics can be found in reference [91].

p0720 There are essentially two approaches for robust PCA: the first is based on
PCA on a robust covariance matrix, which is rather straightforward as the PCs
are the eigenvectors of the covariance matrix. Different robust estimators of
covariance matrix may be adopted (MVT [92], MVE and MCD [93]) but
the decomposition algorithm is the same. The second approach is based on
projection pursuit (PP), by using a projection aimed at maximizing a robust
measure of scale, that is, in a PP algorithm, the direction with maximum
robust variance of the projected data is pursued; here different search algo-
rithms are proposed.

p0725 A better visualization of data structure is demonstrated in robust PCA as
shown in Figure 26.

p0730 The scores plots refer to PCA (robust PCA on the left side of the figure
and classic PCA on the right side) of a set of extra virgin olive oil of Greek
provenience whose volatile fraction has been characterized by headspace
GC-MS. In both cases, data have been mean-centred before PCA. The outly-
ing sample no. 15 strongly influences both PC1 and PC2 directions (Figure 26,
top right), resulting in the fact that these PCs almost only describe the variabil-
ity due to this sample. In the Q/T2 plot, Figure 26, bottom right, sample no. 15
is seen as extreme in PC space (outside the Hotelling-T2 limit) but not distant
from the model (inside the Q-statistic limit), because the PC model is driven
to describe this sample. By using a robust approach sample 15 is recognized
as an outlier, outside the Q-statistic limit (Figure 26, bottom left), but PC1

Comp. by: pdjeapradaban Stage: Proof Chapter No.: 3 Title Name: DHST
Date:18/4/13 Time:12:01:50 Page Number: 53

Chapter 3 Exploratory Data Analysis 53

B978-0-444-59528-7.00003-X, 00003

DHST, 978-0-444-59528-7

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use
only by the author(s), editor(s), reviewer(s), Elsevier and typesetter SPi. It is not allowed to publish this proof online or in print.
This proof copy is the copyright property of the publisher and is confidential until formal publication.



and PC2 directions are not influenced by this sample as seen in the
corresponding robust PCA scores plot (Figure 26, top left).

p0735 Robust PCA is not so often used in EMDA; however, there are several
freely available packages to do this, such as robustbase [94] and rrcov [95]
in the R environment, TOMCAT from Walczaks’ group [96] and LIBRA tool-
box in MATLAB [97].

s0075 3.2 Other Projection Techniques

p0740 As one of the most relevant features of EMDA is its possibility of visualizing
data sets in a graphical form which is easy to understand by the human brain
for further reasoning, many methods that aim at finding low-dimensional
representations of high-dimensional data sets have found applications in this
context, PCA being perhaps the most commonly applied in many scientific
fields, food analysis in primis. As described earlier, PCA’s target is in finding
a projection of data to a lower-dimensional space, which maximizes the
explained variance. However, other methods can be easily introduced by con-
sidering a different criterion instead of the one of maximum variance. In the
following sections, the most known will be briefly presented, together with
examples and comparisons of the visualization results on some data sets.
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s0080 3.2.1 Projection Pursuit and Independent Component Analysis

p0745 The concept behind the PP approach was developed by Friedman and Tukey
in 1974 and it is based on the identification of the most ‘interesting’ projec-
tion of data according to the highest degree of deviance from the normal dis-
tribution [98,99]. Independent component analysis (ICA) [100–102] is strictly
connected to PP, as it considers as a criterion the maximum statistical inde-
pendence of the estimated components. This can be obtained through a wide
(and still debated) number of possible definitions of independence, among
which the maximization of non-Gaussianity is probably the most commonly
employed. The non-Gaussianity-based algorithms, such as fastICA
[102,103], are based on the central limit theorem and operate by maximizing
a quantity called ‘negentropy’ DS(x), that is the difference of the entropy of a
normally distributed random variable S(xG) and the entropy of the variable
under consideration S(x), which can be defined as

S xð Þ¼"
ð
f xð Þ log f xð Þdx (24)

p0750 The most important aspect of this approach is that ICs are not as affected
by high variability normally distributed variables as PCs are, thus making it
possible to distinguish directions of differentiation for data where relevant
information is hidden in small, non-normal differences. This means that IC
scatter plots can highlight sample clustering or trends different than PCA,
and that PCA visualization of object differences can be still present in a IC
scatter plot, although in different components. The ICA method, being strictly
related to the blind source separation methodology [104,105], is widely used
in the signals and communication fields, working on the assumption that the
data matrix can be resolved into a set of ‘base’ mutually statistically indepen-
dent source signals and a ‘mixing’ matrix which contains the proportions by
which the base signals are overlapped to obtain each original signal. The
method finds some (albeit not very common) applications in food science
[106–108], and presents some differences and potential advantages with
respect to PCA, especially when related to the deconvolution of instrumental
signals (finding independent sources, rather than orthogonal loadings as in
PCA, reduces the number of mathematical artefacts on the signal) [105].
One significant issue is to find out which factors are significant and which
are not, thus the individuation of validation procedures, which can be compli-
cated by the fact that two consecutive models may differ in the order and
signs of similarly indexed ICs [109,110].

p0755 Figure 27 shows the scatter plots of PC1 versus PC2 for a PCA model
(Figure 27A) of the GCbreadProcess data set (preprocess: autoscale) and of
IC1 versus IC3 for a PP–ICA model (preprocess: autoscale) (Figure 27B),
and a comparison of both. The information, that is the differentiation of the
six points of the process in five clusters (points D and T being overlapped),
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is perhaps clearer in PP–ICA, where one component, IC1, indicates the differ-
ence between the beginning (positive values, points S0, D and T) and the end
of leavening (negative values, points S2, S4 and L), while the other, IC3, dis-
tinguishes the first leavening (negative values, points S0, S2 and S4) from the
second one (positive values, points D, T and L).
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s0085 3.2.2 Multidimensional Scaling and Principal Coordinate
Analysis

p0760 The methods discussed so far are based on the projection of a full set of data
to a new space of lower dimensionality, that is samples which have been char-
acterized by a given number of variables. In some circumstances, however,
only item–item similarities/dissimilarities matrixes are available or preferable,
thus the explorative evaluation of data must be conducted with a different
approach. Multidimensional scaling (MDS) methods [111–114] work on
item–item similarity matrixes by assigning to each of the items a location in
an N-dimensional space, usually with N small enough so that 2D and 3D visu-
alization of data disposition is possible. The goal is to reconstruct a low-
dimensional map of samples that leads to the best approximation of the same
similarity matrix as the original data. Depending on the kind of input matrix
and the criterion used to define which approximation is the best, different
MDS algorithms and approaches are possible.

p0765 Metrical MDS operates on an input matrix of dissimilarities, or distances,
between pairs of samples, giving as a result a matrix of coordinates whose
configuration minimizes a loss function. This method presents an optimization
phase, which can be performed with a variety of loss functions to be consid-
ered, and other possible variations of the methods concern the input distance
matrix, which can be calculated according to different weights and criteria.
When the Euclidean distance is considered, the classical MDS, also known
as the principal coordinates analysis, consists in performing a PCA on the
double-centred distance matrix and then rotating the solution so that the stress
criterion S is minimized:

S¼
X

k<i

dik" eikð Þ2 (25)

where eik corresponds to the input distances and dik are the distances between
objects xi and xk in the projection space. The results of the principal coordi-
nates analysis of the Euclidean distances of samples are substantially analo-
gous to those of PCA of the original data set. The comparison is shown in
Figure 28, where the PCA of FlourRheo data set (see Section 3.1.4 for more
information on the data) has very similar results to the principal coordinates
analysis of the distance matrix for the same samples according to the Euclid-
ean distance (Figure 28B).

p0770 When a non-parametric, monotonic relationship is searched between the
distance matrix and the distance between objects in the projection space,
non-metric MDS is introduced. Usually the approaches differ in the stress
criterion which is chosen to be minimized, and no analytical solution is avail-
able, so that other methods must be considered, such as an iterative, gradient
descent optimization in Sammon’s mapping, repeating the mapping several
times starting from different sets and with different parameters to avoid local
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optima, or an alternation of search for a good configuration in low-
dimensional space, and an appropriate non-monotonic transformation to the
original space, as in Kruskal–Wallis mapping.

p0775 The use of MDS in food science is not particularly common, and it is espe-
cially used in biological studies, psychic–economic studies on food perception
and sales, and sensory analysis [115–118]. In all those situations which belong
more to analytical food science it is very rare to see this method applied, per-
haps because of the fact that, in such a field, it is quite hard to reason in terms
of distances among samples rather than variables, the interest being more
focused both on the visualization of sample similarities and dissimilarities,
and on the interpretation of which variables are responsible. When the full
distance matrix (or the similarity/dissimilarity one) is used, the variable influ-
ence is lost, which causes a drawback both in terms of interpretation and in
terms of lack of a mapping operator to use on new objects in order to project
them into the lower-dimensional point configuration.

s0090 3.2.3 A Non-Linear Approach: Self-Organizing Kohonen’s Maps

p0780 Most of the methods discussed so far are based on a projection to latent vari-
ables which is obtained as a linear combination of the original ones according
to a given criterion, or on the description of the relationships between samples
by means of distances which work in a metric space. However, it is possible
to come across real cases in which the dissimilarities among samples are
caused by clusters characterized by different densities and distributions, and/
or non-linear patterns, that is situations in which a linear, Gaussian-based
model shows its limits. In these cases it is possible to consider non-linear
approaches, such as the aforementioned modifications of MDS, or artificial
neural network algorithms. The latter family will be discussed in more detail
elsewhere in this book, together with a more detailed coverage of one of these
methods, self-organizing maps (SOMs), which presents many analogies in
terms of data reduction and visualization when compared to the other techni-
ques such as PCA and fits well in an EMDA context.

p0785 SOMs are a type of artificial neural network first introduced by Teuvo
Kohonen, thus often referred to as Kohonen maps [119–121]. Without enter-
ing too much into detail, as another chapter of this book Au1(Chapter XXX) is
dedicated to the applications and potentialities of non-linear methods, SOMs
are based on an unsupervised learning method to train the network in order
to obtain a low-dimensional (typically 2D) representation of the input space
of the samples. After the training phase, where the map is built using input
‘examples’, the network can be used in a mapping perspective, automatically
classifying new input samples. An SOM is made up of a number of compo-
nents, called nodes (or neurons), which are each associated to a weight vector
of the same dimensions of the data variables, and disposed in the map space
according to a geometry which characterizes the network, the most common
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arrangements for a 2D map being a hexagonal or rectangular grid. The
mapping from a higher dimensional input to a lower dimensional network is
done by finding the node with the smallest distance (according to the chosen
metric) between the weight vector and the sample vector; in other words, each
node represents an ‘archetype’ sample, to which all the training samples are
compared. The most similar node (the ‘winning unit’) is then rotated towards
the object by replacing the weight vector it carries with an average of the old
values and the ones of the sample, weighted by a learning rate a, which
decreases as the training iterations progress. In addition, all the other nodes
in the neighbourhood of the winning unit are updated as long as that node
changes, which results in the fact that, at the end of training, the neighbouring
units are generally more similar than units far away.

p0790 Figure 29 shows the comparison of the results of PCA and SOM on the
FlourRheo data set. As far as the SOM is concerned, the map was obtained
with the R package som [122]. The network was an 8'8 rectangular grid,
and the autoscaled data were treated for 500 iterations, under an initial
learning rate a¼0.1. As one may note, PCA scores (Figure 29A) show that
clusters exist, but are characterized by different densities (i.e. internal group
variability) rather than actual separation on the basis of one or more linear
combination of flour properties (which concur in composing the PCs), thus
the separation is quite difficult to obtain. On the contrary, the self-assembling
map produces an almost perfect separation of the objects on the nodes of the
net, as shown in Figure 29.b1. Interpretability is granted by the weights,
reported in Figure 29.b2, whose importance for each node, and hence for
the separation in each class, is indicated on a grey scale (the lighter, the more
positive in sign; the darker, the more negative in sign).

s0095 4 CLUSTERING TECHNIQUES

p0795 Cluster analysis methods represent a family of EMDA tools alternative or
complementary to the projection to latent variables tool discussed so far.
The main target of cluster analysis is to find groups within a given data set,
based on the principle for which similar objects are represented by close
points in the space of the variables which describe them. The possible meth-
ods differ either in how groups are defined or in the algorithm used to create
the groups. Generally speaking, group definition is based on within-group
measures (e.g. high similarity between observations) or alternatively on
between-group measures (e.g. maximum distance between objects), while
clustering algorithms are based on different ways to define proximity, either
similarities or dissimilarities. The most intuitive way to define the similarity
level of samples (the concept of dissimilarity is complementary, that is its
value increases the more the objects are different, while similarity increases
the more the objects are similar) is based on the conversion of the N'M data
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matrix in an N'N matrix of distances D obtained by defining a metric, such
as the Euclidean distance:

dij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

m¼1

xim" xjm
$ %2

vuut (26)

where the sum is extended over the M variables which characterize each pair
of objects i and j. It is clear that dij¼0 when i¼ j, and dij>0 when i 6¼ j, which
leads to the definition of a similarity matrix S, whose elements are

sij ¼ 1" dij
dmax

(27)

p0800 Similarity ranges in the interval [0, 1] and assumes higher values the more
similar the two objects i and j are. Of course, several different distance mea-
surements can be implemented to evaluate similarity among objects, and also
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different similarity criteria can be established in the algorithm. Moreover, in
many cases, it can be interesting to cluster variables together, instead of sam-
ples. In this case, a common technique to relate variables can be the use of
their correlation coefficient as a proximity index on which to base one of
the clustering methods which can be used for objects, which will be briefly
described in this section.

p0805 As far as clustering algorithms are concerned, the wide choice of methods
is related to the fact that clusters themselves can have very different character-
istics in terms of shape, dimension and density, and each different cluster
analysis approach is more oriented towards detecting a particular type of
cluster rather than others, for example they work better when objects form
round, dense clusters, rather than having elongated, overlapping distributions.
However, although model-based clustering is possible, it goes beyond
the exploratory purpose, as it requires quite a lot of a priori knowledge on
the system: the best approach is then evaluating the outcome of methods suit-
able for different situations, and obtaining from their results information on
the kind and degree of clustering which is present in the data.

p0810 As said earlier in this chapter, grouping of objects can be explored in dif-
ferent ways; to start with, let us consider visual inspection of scatter plots.
When the number of variables, hence scatter plots, to consider grows over
three, cluster analysis methods can offer a simplification advantage as well
as projection to latent variables methods do. Moreover, projection methods
can also benefit from cluster analysis methods, as it is possible to operate
on the new, lower-dimensional data set, for example, on the score values of
a PCA, with a clustering method, in order to further enhance the grouping
of objects. This is particularly useful when the number of retained compo-
nents is quite high, thus requiring the use of several scores scatter plots. Using
cluster analysis on the scores themselves allows obtaining a direct inspection
of clusters in only one graph: however, as in the more general case, no infor-
mation can be obtained about which variables (here, PCs) are responsible for
the formation of clusters.

p0815 Clustering algorithms can be divided into two main families [123,124]:
partitioning and hierarchical methods. Partitioning [125] aims to segment a
large data set of heterogeneous objects into k clusters, where k is either known
a priori or hypothesized in an explorative way (k-clustering) or ‘discovered’
by the algorithm in an iterative way. A method representative of this family
is MacQueen’s k-means [126,127]. On the contrary, hierarchical clustering
operates on a nested decomposition at various levels of similarity/dissimilar-
ity, working either according to a bottom-up or top-down approach. The
bottom-up approach leads to agglomerative clustering methods [128,129],
which begin with each data as a distinct cluster and progress by merging clus-
ters on the basis of their similarity, up to a stopping criterion (such as a thresh-
old in similarity, or even the fact that all objects have been finally linked).
Some representative methods of this family are single linkage, average
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linkage and complete linkage [130,131]. The top-down approach is at the
basis of divisive clustering methods, where, in the beginning, all data are in
a single cluster and are continuously separated until the stopping criterion is
reached. Each method aims to define clusters, whose position in the
M-dimensional space is defined by a centroid, the vector of the means of
the variables computed over the elements which belong to the cluster. The
instrument which is used to visualize the clustering result is called a dendro-
gram, which reports in a graphic way the degree of similarity at which each
object and cluster is linked.

p0820 One of the most intuitive ways to describe how cluster analysis works in
practice is by referring to the agglomerative hierarchical cluster analysis
(HCA) method. Beside the common preliminary steps already discussed, that
is definition of the metric (Euclidean, Mahalanobis, Manhattan distance, etc.)
and calculation of the distance matrix and the corresponding similarity matrix,
the analysis continues according to a recursive procedure such as

o0060 1. The two most similar objects are identified (i.e. those which have the high-
est similarity degree)

o0065 2. The two objects found at point 1 are linked in a cluster
o0070 3. A calculation of the similarity index of the new cluster versus all the other

objects is performed. The similarity index calculation criterion differs
according to the chosen clustering method, but the operation has the com-
mon result of substituting in the similarity matrix the rows and columns
related to the two objects which have just been linked with a new row
and column that report the similarity index of the new cluster with all
the remaining objects.

p0840 The procedure is repeated by moving to the next pair of most similar objects:
it is important to note whether in the beginning the comparison is done
between objects, whereas in the following steps it is done by comparing clus-
ters, according to one of the several similarity criteria which can be consid-
ered. For example, the centroid linkage criterion consists in substituting the
objects which form the new cluster with the centroid of the cluster, so that
the updated similarity matrix contains the distances between the centroids of
the new clusters. The result of the procedure is represented as a dendrogram,
as reported in Figure 30. Here, the objects are reported on the y-axis, while on
the x-axis the similarity or the distance is reported. The lines which depart
from each object are connected according to the degree of similarity at which
the linkage between objects or clusters happens, so that it is possible to visua-
lize in a fast way which level of similarity intercourses among the samples. In
this example, the GCbreadProcess data set has been considered (preprocess:
autoscale) in an agglomerative HCA with the centroid linkage criterion. It is
possible to observe, when compared to other analyses of the same data set
(e.g. boxplot, Figure 2, or PCA, Figure 24), that the subdivision in clusters
is already present, as well as the common similarity of process phases D
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and T. In this case, HCA represents a fast check on the presence of clusters,
and possibly outliers (it is manifest that some samples connect to the main
classes at higher distances, although belonging to that given process phase).
However, information on variable influence is lost, which means that this
graph should be analysed, for instance, together with a boxplot, to understand
which variables are responsible for the separation into clusters, although it
might not be able to explore the relationships among them, as it would be pos-
sible in PCA.

s0100 5 REMARKS

p0845 In this chapter, we have tried to offer a view, and recommendations for use, of
the available tools to look at data, however complex and burdened by unsys-
tematic variability they can be. Food data analysis is rich of real challenges, in
this context, as we have shown with real application data. The focus has been
twofold: furnishing a guide tour through data exploration and furnishing
salient references to deepen the knowledge of specific aspects and less-
known/applied techniques.

p0850 Explorative data analysis and especially EMDA offers an integrated set of
methods to furnish us computer-aided ‘eyes’ to have a global perception of
the high-dimensional world, and to do what we, as researchers, appreciate bet-
ter: unravel relations, understand/connect patterns, formulate hypothesis and
progress further. In other words, they offer us the possibility of handling sys-
tems complexity beyond reductionism.
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Non-Print Items

Abstract
In the food research and production field, system complexity is increasing and
several new challenges are emerging every day. This implies an urgent neces-
sity to extract information and obtain models capable of inferring the underly-
ing relationships that link all the variability sources which characterize food
or its production process (e.g. compositional profile, processing conditions)
to very general end properties of foodstuff, such as the healthiness, the con-
sumer perception, the link to a territory and the effect of the production chain
itself on food.

This makes a ‘deductive’ theory-driven research approach inefficient, as it
is often difficult to formulate hypotheses. Explorative multivariate data anal-
ysis methods, together with the most recent analytical instrumentation, offer
the possibility to come back to an ‘inductive’ data-driven attitude with a min-
imum of a priori hypotheses, instead helping in formulating new ones from
the direct observation of data.

The aim of this chapter is to offer the reader an overview of the most sig-
nificant tools that can be used in a preliminary, exploratory phase, ranging
from the most classical descriptive statistics methods, to multivariate analysis
methods, with particular attention to projection methods. For all techniques,
examples are given so that the main advantage of these techniques, which is
a direct, graphical representation of data and their characteristics, can be
immediately experienced by the reader.

Keywords: Descriptive statistics; Projection techniques; Principal component
analysis; Clusterin Au4g techniques; Multivariate explorarory analysis
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