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21Multilinear PLS (NPLS) and its discriminant version (NPLS-DA) are very diffuse tools to model multi-way data
22arrays. Analysis of NPLS weights and NPLS regression coefficients allows data patterns, feature correlation
23and covariance structure to be depicted. In this study we propose an extension of the Variable Importance
24in Projection (VIP) parameter to multi-way arrays in order to highlight the most relevant features to predict
25the studied dependent properties either for interpretative purposes or to operate feature selection. The VIPs
26are implemented for each mode of the data array and in the case of multivariate dependent responses con-
27sidering both the cases of expressing VIP with respect to each single y-variable and of taking into account
28all y-variables altogether Q3.
29Three different applications to real data are presented: i) NPLS has been used to model the properties of
30bread loaves from near infrared spectra of dough, acquired at different leavening times, and corresponding
31to different flour formulations. VIP values were used to assess the spectral regions mainly involved in deter-
32mining flour performance; ii) assessing the authenticity of extra virgin olive oils by NPLS-DA elaboration of
33gas chromatography/mass spectrometry data (GC–MS). VIP values were used to assess both GC and MS dis-
34criminant features; iii) NPLS analysis of a fMRI-BOLD experiment based on a pain paradigm of acute
35prolonged pain in healthy volunteers, in order to reproduce efficiently the corresponding psychophysical
36pain profiles. VIP values were used to identify the brain regions mainly involved in determining the pain in-
37tensity profile.
38© 2013 Published by Elsevier B.V.

3940

41

42

43 1. Introduction

44Q5 Multilinear PLS (NPLS) and its discriminant version (NPLS-DA) are
45 very diffuse tools to model multi-way data arrays. NPLS represents
46 the multi-way extension of two-way partial least squares regression
47 (PLS) for multi-way data and was first developed by Bro in 1996 [1]
48 and successively by Bro, Smilde and De Jong [2–4].
49 It has been demonstrated that multi-way data analysis tools, tak-
50 ing into account the multi-way structure of data are much more effi-
51 cient compared to unfolding procedures, that is re-arranging the
52 multi-way data into a two-way matrix structure and then applying
53 bilinear models. Multi-way analysis allows simplifying the interpreta-
54 tion of the results and providing more adequate and robust models
55 using relatively few parameters [5,6]. While this is true in general, it
56 is worth noticing that when dealing with real-time monitoring, e.g.
57 in batch process monitoring, N-way models may not represent a
58 real advantage with respect to adopting a proper unfolding/refolding
59 procedure as by using Multiway-PCA [7].
60 In particular, the use of NPLS shares all the advantages of latent var-
61 iable based regression and discrimination methods, from the point of
62 view of data visualization and interpretation [8–10]. In fact, analysis of

63NPLSweights andNPLS regression coefficients allows data patterns, fea-
64ture correlation and covariance structure to be depicted.
65However, it is often needed to define which are the most relevant
66features to predict the studied dependent properties either for interpre-
67tative purposes, e.g. to provide a better understanding of the underlying
68process that generated the data, or to operate feature selection in order
69to reduce the noise generated by irrelevant features or to reduce data
70redundancy.
71Some of the several variable selection methods applied to two-way
72data matrices in the context of PLS regression [11], such as interval PLS
73(iPLS) [12] or genetic algorithms [13], can be as well suited for NPLS if
74the X-block multi-way data array has only one spectral dimension, e.g.
75samples × spectral profiles × time [14]. When the data array has two
76spectral dimensions, or more generally when a two-dimensional signal
77map characterizes each sample, as generated by hyphenated analytical
78techniques, such as emission/excitation fluorescence, chromatography/
79mass spectrometry, etc., these variable selection methodologies present
80significant challenges and it is suggested to apply them after unfolding
81the data array [15]. However, in this way, the multi-way data structure
82is not taken into account in the variable selection step, thus loosing the
83multi-way analysis advantage.
84Moreover, a general distinction can bemade among tools, which ac-
85complish feature selection by deleting a set of features and re-assessing
86the performance of the reducedmodels, thus requiring extensivemodel
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87 validation, and those that operate a ranking of the features according to
88 their relevance. Concerning the latter type, congruence loadings [16],
89 VIP (Variable Importance in Projection) [17–20], and selectivity ratio
90 [21] have gained increasing attention as an important measure of each
91 explanatory variable or predictor.
92 The aim of this work is to extend the VIP method to multi-way ar-
93 rays and to develop accompanying code. A similar attempt has been
94 reported previously [22] but our formulation is, in our opinion,
95 more straightforward and closer to VIP definition for two-way data.
96 In fact, the VIP definition given in Ref. [22] does not reproduce the
97 two-way VIP formulation, which consists, for each X-variable, of a
98 sum, over latent variables, of its PLS-weight weighted by the percent-
99 age of explained Y variance. The reason is due to the fact that the
100 NPLS mode 1 scores for X-block (T), which are linked to Y by the
101 NPLS inner-relation, are substituted by a different projection of
102 unfolded-X through NPLS weights. Usually, in the case of several de-
103 pendent responses (multivariate Y) VIP is defined taking into account
104 all y-variables altogether. Here we consider as well, the possibility of
105 expressing VIP with respect to each single y-variable (this is a further
106 difference with the approach presented in Ref. [22] that does not
107 allow this possibility). This offers higher flexibility to the method
108 and can be particularly useful to interpret discriminant NPLS-DA
109 models, since the VIP for single y-variables corresponds, in this case,
110 to the most discriminant feature for each category. However, it is be-
111 yond the aim of this paper, to compare the use of VIPs with other fea-
112 ture selection methodologies for multi-way arrays, actually in the
113 applications presented here variable selection is not operated and
114 VIPs are used more on an interpretative ground.

115 2. Methods

116 2.1. Multilinear partial least squares (NPLS)

117 Multilinear PLS (NPLS) represents the extension of two-way partial
118 least squares regression (PLS) to data arrays of any order considering
119 bothX and Y-blocks. In the following, themethod is described consider-
120 ing the case of a three-way data array,X, but the extension to further di-
121 mensions can be simply deduced. As for the dependent variables
122 Y-block, we will describe here the case of a two-way matrix, but the
123 method can be easily extended to higher orders in the Y-block [1].
124 Specifically, PLS regression aims to find a relationship between a set
125 of predictor (independent) data, X, and a set of responses (dependent),
126 Y. In themore general case, the arrays of independent,X and dependent
127 Y variables are decomposed in such a way that the score vectors from
128 these models have pair-wise maximal covariance [3,4]. Multilinear
129 PLS was firstly developed as a PARAFAC-like model of X and it was
130 shown that the method could be easily extended to any desired order
131 for both X and Y arrays. This method was further elaborated and lastly
132 improved with respect to residual analyses by introducing a core
133 array in the model of X [2].
134 Considering an X array of dimension I × J × K, the NPLS model is
135 obtained by modeling X as in Tucker3 decomposition:

X ¼ TGX WK⊗WJ
! "T

þ EX ð1Þ

136137 whereX is theX array unfolded to an I × JKmatrix, T holds the firstmode
138 scores (sample mode), WJ and WK are the second and the third mode
139 weights, respectively. The symbol⊗ denotes the Kronecker product [5].
140 GX is the matricized core array of size F × F × F where F is the
141 number of NPLS components (factors) and it is defined by:

GX ¼ TþX WK
! "þ⊗ WJ

! "þ! "T
: ð2Þ

142143
144 Here the superscript ‘+’ means that the Moore–Penrose is pseudo
145 inverse.

146In the case of a two-way data matrix, YI,M is defined by:

Y ¼ UQ þ EY ð3Þ

147148where U holds the Y scores and Q is the loading matrix.
149EX and EY hold X and Y residuals, respectively. In analogy with the
150two-way PLS algorithm, the weights are determined such that the
151scores obtained from the X decomposition (T) have maximum
152covariance with the scores obtained from Y decomposition (inner
153relation: U = TB + EU).
154By regressing the data onto their weights vectors, a score vector is
155found in the X-space providing a least squares model of the X data.
156Furthermore, by choosing the weights such that the covariance be-
157tween X and Y is maximized a predictive model is obtained as:

Y ¼ TBQ þ EY: ð4Þ
158159
160Regression coefficients that apply directly to X(I × JK) may also be
161derived [4,22]:

R ¼ w1 I−w1w1
T

! "
w2…∏

F−1

f¼1
I−wfwf

T
! "

wf

" #
ð5Þ

162163
BPLS ¼ RB1 ð6Þ

164165
Y ¼ XBPLS: ð7Þ

166167
168The NPLS-DA formulation is the same but the dependent variable
169block is a matrix Y holding the class information, i.e. for each category
170a y-variable is defined as a dummy variable assuming values one/
171minus one to indicate class membership or not (notation one/zero
172is also used). As the predicted y-values can assume real values and
173not only minus one and one, classification of the samples is accom-
174plished by assigning the sample to the category corresponding to
175the highest value of the predicted response, i.e. if the predicted vector
176of responses for an unknown sample, is: [−0.5 0.8 0.5] (in the case of
177three classes problem), it will be assigned to class two.

1782.2. VIP calculation

1792.2.1. Two-way case
180Q6The variable importance in the projection (VIP) [17,19] represents
181the influence of each variable j of the data matrix XI,J on the model of
182the responses matrix YI,M

VIP2 j ¼ Sf w
2
jf % SSYf %J= SSYtot:expl:%F

! "
ð8Þ

183184where, F is the number of latent variables of the PLS model and J the
185number of X variables.
186In the case of mono-dimensional yI × 1 holds:

SSYf ¼ bf ;f
2tf

Ttf SSYtot:expl: ¼ b2TTT ð9Þ

187188where T is the X score matrix and b the PLS inner relation coefficients.
189Thus a VIP value for each variable is computed in order to quantify
190its importance by using the PLS weight wjf weighted by how much of
191y is explained in each model dimension (latent variable).
192VIP formulation as originally proposed [17] is intended to be a pa-
193rameter varying in a fixed range since the sum of squared VIP for all
194variables is the sum to the number of variables Q7. Thus, the variables
195with a VIP value larger than 1 (i.e. larger than the average of square
196VIP values) have an above average influence on the model and are,
197therefore, considered the most relevant for explaining Y. The choice
198of the VIP threshold to assess the salient variables is a critical issue,
199as in any ranking method. The original proposal, that will be adopted
200here as well, of a threshold of one is acceptable if variable relevance is
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201 discussed but feature selection is not accomplished. In the cases of
202 marker identification and variable selection, resampling methods
203 such as bootstrap are more appropriate [19,20] to assess the signifi-
204 cance of the VIPs.

205 2.2.2. Three-way case
206 In the case of a two-dimensional Y(I × M) the previous relation ap-
207 plies to each mode, e.g. in the case of a three-way array X(I × J × K):

VIP2 j ¼ Σf w
2
jf % SSYmf %J= SSYtot:expl:;m%F

! "
ð10Þ

208209
VIP2k ¼ Σf w

2
kf % SSYmf %K= SSYtot:expl:;m%F

! "
ð11Þ

210211 where, F is the number of total latent variables, J the number of X vari-
212 ables inMode2 and K the number of variables in Mode3. For each latent
213 variable f:

SSYtot:expl:;m ¼ Σi T I&Fð ÞB F&Fð Þq
T

m;Fð Þ

! "2
ð12Þ

214215 and each y-variable ym:

SSYmf ¼ Σi tfbf ;fqm;f

! "2
ð13Þ

216217 where, I is the number of samples in Mode2, T is the Mode1 score ma-
218 trix, B holds the NPLS inner relation coefficients and Q the Y loadings.
219 For a given model dimension f and each variable j, the VIP value is
220 given by the squared weightw2

jf of that parameter (i.e. the weightwjf in-
221 dicates the importance of the jth variable in themodel dimension f), mul-
222 tiplied by the percent of Y explained sum of squares by that f dimension.
223 The variable importance is then normalized so that VIP2 equals the
224 number of the variables.
225 While considering all Y variables together, Eqs. (12) and (13) are
226 reduced to:

SSYtot:expl: ¼ Σi T I&Fð ÞB F&Fð ÞQ
T

M;Fð Þ

! "2
ð14Þ

227228SSYf ¼ ΣmΣi tf bf ;fq
T
m;f

! "2
ð15Þ

229230and Eq. (10) is reduced to:

VIP2 j ¼ Σf w
2
jf % SSYf %J= SSYtot:expl:%F

! "
: ð16Þ

231232
233Extension to the other Y modes can be easily obtained.

2343. Data sets and pretreatment

235Q8In this study, we present applications of VIP to different three-way
236data sets. Two data sets are related to optimization of food processing
237and authentication issue for products with protected denomination of
238origin, respectively, and the third one is related to a neuroscience
239problem. Each data set allows exploring the different situations, pre-
240dictive and discriminant models, partial and overall VIP contribution
241with respect to Y block together with the different aspects of comple-
242mentary information that VIP can highlight with respect to e.g. NPLS
243weights or regression coefficients.

2443.1. Data set 1: Bread

245Li Vigni and Cocchi [24] Q9presented a multi-way study related to
246the influence of flour formulation on bread quality. Ten different
247flour mixtures were investigated by means of Near Infrared Spectros-
248copy (NIRS) to obtain information on flour performance in a critical
249phase such as dough leavening. For each mixture, a laboratory-scale
250bread making experiment was carried out according to a standard-
251ized recipe and the leavening phase of each dough sample was mon-
252itored by means of NIRS at different times. NPLS was applied to model
253the properties of bread loaves (dimensions, volume, weight, height)
254from near infrared spectra, acquired at different leavening times, of
255the dough obtained from different flour formulations.
256The data are arranged as follows and schematically shown in Fig. 1:

257- X-block: a three-way array X(I × J × K) (10 flour mixtures × 173
258NIR wavelengths × 7 leavening time intervals)

Fig. 1. Data set arrangement for Bread data. (Left) NIR data (X): Mode1, samples (the 10 different mixtures); Mode2, NIR spectra (173 wavelengths); Mode3, leavening time points
(7). (Right) Bread property data (Y): Mode1, samples (the 10 different mixtures); Mode2, bread properties (4).

3S. Favilla et al. / Chemometrics and Intelligent Laboratory Systems xxx (2013) xxx–xxx

Please cite this article as: S. Favilla, et al., Assessing feature relevance in NPLS models by VIP, Chemometrics and Intelligent Laboratory Systems
(2013), http://dx.doi.org/10.1016/j.chemolab.2013.05.013



U
N
C
O

R
R
E
C
T
E
D
 P

R
O

O
F

259 - Y-block: Y(I × M) (10 flour mixtures × 4 bread loaf properties:
260 weight, height, diameter and density).

261 NIR signals were preprocessed by applying Savitsky–Golay Smooth-
262 ing (15 points window, second order polynomial) coupled to Standard
263 Normal Variate normalization (SNV) to remove the baseline shift.
264 VIP values are used to assess the spectral regions mainly involved
265 in determining flour performance.

266 3.2. Data set 2: Extra virgin olive oil (EVOO)

267 The data set [25] consists of a set of extra virgin olive oil (EVOO), be-
268 longing to different olive cultivars and coming from different Mediter-
269 ranean areas: Liguria (Northern Italy), Apulia (Southern Italy), Greece,
270 Tunisia and Spain. The aim is to assess the authenticity of Ligurian
271 EVOO that has been designed by protected denomination of origin
272 (PDO) certification and represents one of the most highly esteemed
273 EVOOs, of high economic value. The EVOO samples have been charac-
274 terized by the analysis of aroma (Head Space Solid Phase Micro Extrac-
275 tion coupled with Gas Chromatography–Mass Spectrometry, i.e.
276 HS-SPME/GC–MS), which is well suited for analyzing the volatile
277 fraction that is of relevance for the sensory quality of olive oil. The
278 differentiation among classes has been obtained by NPLS-DA, defining
279 three classes: Liguria, Apulia and Foreign, which includes the EVOO
280 from Turkey, Spain and Greece.
281 The data set is arranged as follows (Fig. 2):

282 - X-block: a three-way array X(I × J × K) (73 EVOO samples × 1514
283 retention time points × 77 m/z fragments)
284 - Y-block: Y(I × M) (73 EVOO samples × 3 dummy variables hold-
285 ing class memberships).

286 For each class the datawere randomly split in a training and validation
287 (test) set as shown in Fig. 2. The training set was preprocessed by center-
288 ing across thefirstmode, block-scalingwithin the secondmode, by defin-
289 ing four retention time regions in order to allow both major and minor
290 constituents to contribute to the model without up-weighting baseline
291 contribution [25] and scaled by inverse standard deviation within the
292 third mode (selected mass fragments). The pretreatments were applied
293 in the order Mode3, Mode2, and Mode1.
294 VIP values were used to assess both GC and MS discriminant
295 features.

2963.3. Data set 3: Neuroscience data set

297This data set derives from a functional magnetic resonance imag-
298ing (fMRI) experiment where the psychophysical pain profile, corre-
299sponding to subjective responses to acute prolonged noxious
300stimulation of one hand, was acquired in healthy volunteers. The ex-
301periment lasted 20 min (300 time points), the sensory intensity of
302pain (psychophysical pain profile) and the hemodynamic response
303(blood-oxygen-level contrast registered by a magnetic resonance
304pulse sequence, fMRI-BOLD signal) were recorded simultaneously
305during the experiment. The functional fMRI-BOLD signals (fMRI-BOLD
306time series) acquired at each brain voxel, as described in Prato et al.
307[26], were summarized for forty four brain regions of interest (ROIs)
308by taking the first principal singular vector (1st-SVD) of the data ma-
309trix containing the fMRI-BOLD time series for each voxel in that spe-
310cific ROI.

Fig. 2. Data set arrangement for EVOO data. (Left) GC–MS data (X): Mode1, samples; Mode2, Retention times (1514 time points); Mode3, 77 selected m/z fragments. (Right)
Dummy class variables (Y): Mode1, samples; Mode2 classes (3).

Fig. 3. Data set arrangement for Neuroscience data. (Left) fMRI-BOLD data (X): Mode1,
Times Points (300); Mode2, fMRI-BOLD intensity for the 44 ROIs; Mode3, volunteers
(10). (Right) psychophysical responses (Y): Mode1, Time points (300); Mode2, per-
ceived pain intensity by volunteers (10), in this case the actual Y(300 × 1 × 10) has
been rotated for illustration purposes.
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312 variation of the ROI time series of different volunteers and obtain a
313 fitted model that could reproduce the corresponding psychophysical
314 pain profile efficiently.
315 The data arrays have been arranged as (Fig. 3):

316 - X-block: a three-way array X(I × J × K) (300 time points × 44
317 ROIs × 10 volunteers).
318 - Y-block: the Y(I × 1 × K) array is actually a matrix Y(I × K) com-
319 prised of 300 time points (psychophysical pain profile) × 10 volun-
320 teers, as shown in Fig. 3, and so computationally handled as such.

321 The choice of defining time as mode one was motivated by the ap-
322 plicability of the model. In fact, for this approach the main scope was
323 to identify those ROI time series strictly connected (i.e., in terms of
324 covariance) with the psychophysical pain profile of each volunteer
325 (see Fig. 3).
326 The X and Y data were not centered or scaled within any mode.
327 VIP values were used for ranking the ROIs according to their rele-
328 vance in the NPLS model hence to depict brain region activation pro-
329 file in response to pain stimulus.

330 4. Results and discussion

331 4.1. Bread

332 Near infrared spectra acquired on dough at subsequent leavening
333 times is an efficient way to characterize the leavening process. In partic-
334 ular, NPLS was used to study the relationship between themodifications
335 recorded by the NIR signal during the leavening time and four proper-
336 tiesmeasured on bread loaves, namely height, weight, volume and den-
337 sity. The dough samples correspond to ten different wheat mixtures
338 (combining four distinct wheat varieties), performed according to a
339 G-optimal design, thus bread performance can be linked to bestmixture
340 formulation in terms of wheat varieties.
341 The dimensionality of NPLS model was chosen on the basis of the
342 best compromise of the minimum values of RMSECV for the four
343 properties, modeled as a single Y block. Leave One Out cross valida-
344 tion was chosen due to the limited number of samples, ten.
345 A three factor NPLS model explains 75% of the total Y variance in fit,
346 with acceptable performances in fit for all responses and generally poor
347 results in cross-validation. As discussed in Ref. [24] these aremainly due
348 to twomixtures showing extremebehavior in property space. However,
349 a qualitative identification of the relationship amongNIR signal variabil-
350 ity along with the progression of the leavening step and bread proper-
351 ties can be obtained by inspecting NPLS model results.
352 In particular, Y loading plot (Fig. 4, left plot) shows that the first NPLS
353 latent variable (F1) mainly models bread loaf height and volume, while
354 latent variables 2 and 3 (F2 and F3) model bread loaf weight. NPLS
355 Mode2 weights indicate which spectral regions mostly influence each
356 factor and hence bread loaf properties. For example, the first factor for
357 Mode2 weights (wj1, Fig. 4, right plot), which is linked to height/volume

358properties, shows that the most relevant contributions can be assigned
359to water and its redistribution across the macro-polymeric components
360of the dough, such as gluten and starch. In fact, the most relevant fre-
361quencies are those near 1400, and between 1900 and 1950 nm, for
362which weights have a negative sign, and above 2100 nm, for which
363weights have positive sign. These regions correspond, respectively, to ab-
364sorptions that can be associated to theO\H stretchingfirst overtone, the
365O\H bending second overtone mode and to overtone and combination
366mode contributions from the starch, protein and lipid fractions.
367Inspection of Mode3 weights (leavening times, Fig. 5) indicates
368that height and volume are influenced by initial (t0–t10) and last
369leavening phases (yeast activity, dough strength); in fact these
370times have relevant weight values on the first NPLS factor (Fig. 5,
371top plot); weight is mainly influenced by initial (t0) time; hence
372flour properties are mostly important, as shown by second and third
373NPLS factor weights (Fig. 5, middle and bottom plots).
374The regression coefficient maps are not so easily interpretable, see
375Fig. 6, while in order to assess the most relevant spectral regions and
376leavening times VIP values, proved to be very useful (Fig. 7A and B).
377Fig. 7A reports the VIP values for Mode3. It is interesting to notice that,
378for bread weight, the spectrum at the beginning of the leavening phase
379(time 0) has VIP values higher than one while height property exhibits
380significant alternating variation at times 10, 40 and 60. The other two
381properties, volume and density, show that the times at which the most
382significant variations in theNIR spectrumare recorded correspondmain-
383ly to the initial conditions (0 and 10 min) and the final one (60 min).
384Themost influential NIR spectrum regions, as highlighted byMode2
385VIP values (Fig. 7B), are the same for all properties: at about 1425 nm.

Fig. 4. Data set for Bread. (Left) Y-loadings plot (Q) for the three NPLS components, F1, F2, and F3; (Right) NPLS–weight plot for Mode2 (spectra), F1 vs. wavelengths.

Fig. 5. Data set for Bread. Plot of NPLS weight for Mode3 (leavening times).
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Fig. 6. Data set for Bread. 2D plot of the NPLS regression coefficient map for the y-property Volume.

Fig. 7. Data set Bread. (A) Squared VIP values for Mode3 for each bread property; (B) squared VIP values for Mode2 for each bread property.
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386 There are also contributions from C\H combination and first O\H
387 stretching overtone, between 1900 and 1950 nm, corresponding to ab-
388 sorptionswhich can be associated to the second overtoneO\Hbending
389 mode, and above 2100 nm, where overtone and combination mode
390 contributions from the starch fractions are present.
391 On the basis of VIP analysis it is now possible to plot for each
392 modeled bread property theNPLS regression coefficients corresponding
393 only to the most influential leavening times, so that the spectral contri-
394 butions can be discussed in terms of increasing/decreasing of specific
395 absorption bands, taking into account the regression coefficients sign,
396 in an easier way. Fig. 8, as an example, shows the regression coefficient
397 plot for the most relevant leavening times for the bread Volume. The
398 most significant spectral regions discussed above change correlation
399 sign at the different times as it may be expected by the dynamic of the
400 leavening process where several rearrangements of the starch and glu-
401 ten networks take place [24].
402 The combination of multi-way methods applied to NIR spectra is
403 here useful to supervise changes of the system according to the

404leavening time, and can be used as a reference to evaluate the behav-
405ior of dough obtained from different wheat flour mixtures, and poten-
406tially to identify anomalous leavening situations. Also, it has been
407shown that VIP values give the same information as the joint discus-
408sion of Y loadings and NPLS weights, but with a more direct highlight
409of the most influential contribution for each property. Moreover, they
410can be taken into account as a guide to plot in an interpretable man-
411ner the NPLS regression coefficients, which may otherwise result of
412difficult interpretation.

4134.2. Extra virgin olive oil (EVOO)

414The performance of the NPLS-DA classification models has been
415evaluated by means of percentage of correct classification in cross-
416validation (CV), by using venetian blind with six cancelation groups.
417Three NPLS components gave the best performance with 100% correct
418classification in fit and CV for Liguria and Foreign classes and 92% (fit
419and CV) for Apulia. The test set for Liguria and Foreign classes was

Fig. 9. Data set for EVOO. Plot of the squared VIP. (Left) Mode2 VIPs vs. Retention Times, threshold sets to 5. (Right) Mode3 VIPs vs. m/z fragments, threshold sets to 1.

Fig. 8. Data set for Bread. Plot of NPLS regression coefficients at selected leavening times. Gray bar highlights the most relevant NIR spectral regions.
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420 correctly classified with no error and with one misclassified sample for
421 Apulia.
422 The VIP values for Mode2 andMode3 for each y-variable, hence cat-
423 egory, are reported in Fig. 9. The VIP values threshold is drawn at 1 for
424 Mode3 (m/z fragment), Fig. 9 on the right; while for Mode2 (Retention
425 time) is drawn at 5, Fig. 9 on the left. This choice ismotivated by consid-
426 ering that this is the number of points generally defining a peak, thus a
427 variable to be considered important has to have a contribution at least
428 as one peak in the signal. Taking into account the most important vari-
429 ables of bothmodes some considerations about themain compositional
430 difference of each EVOO category can be made. The chromatographic
431 peaks, which seem to characterize the volatile fraction of Liguria olive
432 oil, are some low molecular weight compounds (Retention time about
433 16 min; m/z b 40) and C6 linear unsaturated aldehydes (Retention
434 time regions at about 27 min and 32 min;m/z region 61–70) character-
435 istics of high quality virgin olive oils. The latter compounds are also

436present in Apulia and the Foreign class but in a lower amount. The Apu-
437lia class ismainly characterized by the retention time region 57–60 min
438and by higher molecular weights compounds (m/z values higher than
43980), such as alpha-copaene (Rt = 57.7 min; m/z 81, 93, 105). The
440high VIP values (mainly for Liguria and Foreign classes) at the retention
441time regions 39–40 and 43–45 min highlight compounds that aremore
442related to, i.e. specific for, the Foreign class as it can be seen from Fig. 10,
443where the average total ion count chromatograms (TIC) for each class
444are shown.
445The NPLS weights for Mode2 and Mode3 for each of the three NPLS
446components (F1, F2 and F3) are reported in Fig. 11. In order to interpret
447these plots the Y loadings have to be inspected (figure not shown). These
448indicate that Liguria (y1) has high positive loadings on components 2
449and 3 (F2 and F3) and close to zero on component 1 (F1), the opposite
450holds for Foreign (y3) while Apulia has high positive loadings values
451on component 1 (F1) and almost zero on the other two components.

Fig. 11. Data set EVOO. (a) NPLS weights for Mode2 vs. retention times, for NPLS components F1 (top), F2 (middle) and F3 (bottom). (a) NPLS weights for Mode3 vs. m/z fragments,
for NPLS components F1 (top), F2 (middle) and F3 (bottom).

Fig. 10. Data set for EVOO. Average TIC chromatograms for each class, overlaid with a shift of 0.5 on time axis (x-axis) and of 1 on y-axis. Dots indicate retention time with VIP values
higher than one.
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452 Taking this into account by looking at the Mode2 weights (Fig. 11a) the
453 observations about the characteristics retention time regions for each
454 class,made on the basis of the VIP values, are confirmed, e.g. the negative
455 sign of theweights at retention time 39–40 and 43–45 indicates that this
456 region is characteristic of the Foreign class.

457 4.3. Neuroscience data set

458 The goal was to build a model that, starting from the fMRI-BOLD
459 characterization as expressed by the 1st SVD component of each ROIs
460 fMRI-BOLD time series, could predict efficiently the psychophysical
461 pain intensity for each volunteer. A NPLSmodel with 4 Latent Variables
462 (LVs) was selected according to Cross Validation results, lowest
463 RMSECV value, i.e. 28.12, with explained Y variance around 95%.

464The VIP values were used for ranking the brain regions (ROIs) main-
465ly involved in pain perception. In this case it is interesting to consider
466the VIP values calculated for the overall Y-responses, to gain a global
467picture of brain activation common to all subjects. Fig. 12 reports the
468VIP values versus ROI number as bar plot, highlighting the ROIs showing
469VIP values greater than one. These brain regions are in agreement with
470the results reported in Prato et al. [26].
471The information gathered by the VIPs is complementary to the one
472carried by the N-PLS weights. Fig. 13 reports the weights for the first
473two N-PLS factors for the second mode (ROIs). Extreme positive wj

474values on F1 are those related to ROI with VIP values higher than
475one. Inspection of the corresponding weights plot for Mode3 (volun-
476teers), i.e. wk, Fig. 14, shows that the different volunteers are distrib-
477uted along the first factor that differentiates e.g. volunteer #9 from
478volunteer #10.

Fig. 13. Data set for Neuroscience. Scatter plot of NPLS weights for Mode2 (ROIs): first vs. second component.

Fig. 12. Data set for Neuroscience. Plot of the squared VIP calculated for all Y altogether vs. ROIs, the threshold is set to 1. Labels refer to ROIs: Contralateral (C) and Ipsilateral (I) to
the injected hand, respectively; Pre-Central Gyrus (PreCG), Middle (Mid); Medial Superior Frontal Gyrus/Paracentral Lobule (MSFG); Parietal Operculum (PO); Posterior Insula
(pINS); Anterior Insula (aIns); Mid-Cingulate Cortex (MCC); Medial Thalamus (Med Th); Lateral Thalamus (Lat Th); Caudate Nucleus, head (hCaud); Caudate Nucleus, body
(bCaud); Inferior Parietal lobule (IPL).
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479 This can be discussed by considering the different behaviors in per-
480 ceived pain as underlined by the first mode loadings plots (functional
481 fMRI profiles), shown in Fig. 15. The first factor describes the average
482 pain profile, the second seems almost dedicated to a delayedmaximum
483 peak and more persistent pain. High positive loading values on factor
484 one for Mode2, Fig. 14 (see for instance volunteer #7) represent an op-
485 posite behavior with an anticipatedmaximumpeak in comparisonwith
486 the average pain profile. The highest negative value (volunteer#9)with
487 the extreme negative position (with respect to the abscissa) identifies a
488 positive shift of the maximum pain perceived in comparison with the
489 mean profile (reference volunteer #3). This may be retrieved by direct
490 observation of the psychophysical responses for these subjects in com-
491 parison with those subjects showing a profile close to average as sub-
492 jects three, see Fig. 16.
493 The second factor can be considered as a component that takes into
494 account a sort of “prolonged activation due to tonic pain input” (see
495 Fig. 15, in gray dashed) and it is particularly dedicated to describe vol-
496 unteer #2 with its ample bell-shape of the pain perceived. In Fig. 16
497 the comparison between the pain profiles of volunteer #2 and the refer-
498 ence volunteer #3 is shown. High weightwk2 value (see Fig. 14) for this
499 volunteer seems to be only related to its particular behavior that is also
500 responsible for the separation of the ROI regions in two groups with re-
501 spect to the weight values on the second mode (Fig. 13).
502 Thus, discussion of the weights plot is useful to recover the detailed
503 information on specific subject behavior while the overall VIP values
504 point to the most relevant ROIs whose activation is involved in pain
505 perception and that are thus capable of reproducing the Y-psycho
506 responses.

5075. Conclusions

508The recent developments in feature selection methods for two-way
509data have addressed the problem of increasing the performance of re-
510gression models, such as PLS. Complex filter, wrapper or embedded
511methods [11,20] improve predictor performance compared to simpler
512variable ranking methods, but the improvements are not always signifi-
513cant, they are computationally costly and in case of a large number of
514variables, the risk of over-fitting can be not negligible in the process of
515variable selection. The extension of variable selection methods to the
516multi-way data arrays, in multilinear regression context (NPLS, NPLS-
517DA) without recurring to unfolding, has been rather limited.
518In thiswork,we introduced an extensionof theVariable Importance in
519Projection (VIP) parameter to multi-way arrays. The proposed method
520has been tested on three different data sets where VIPs were discussed
521comparatively with respect to NPLS weight and regression coefficients.
522VIPs naturally point out the identification of the most relevant vari-
523ables related to Y in a multi-way array X. In particular, VIPs can be
524calculated for each mode of X and both considering the single
525y-responses or all the Y altogether. The former can be useful to assess
526the relevant variables with respect to each modeled properties, espe-
527cially in the case of discriminant NPLS-DA to highlight the discriminant
528features, since each y-variable corresponds to a given class. While the
529latter offer a useful summary in order to operate feature selection.
530However, when considering VIP, it is important to remember that,
531from an interpretative point of view, this metric suffers from the fact
532that PLS/NPLS components carry with them the unresolved contribution
533of both Y-related andY-orthogonal parts of theX-variance. Both contribu-
534tions are fundamental for a correct prediction of Y and the VIPmetric rep-
535resents a valid support whenever the interest is aimed to rank variables
536according to their influence to the whole model, while for contexts and
537purposeswhere the interest ismainly focused on assessing the X-part co-
538varying with Y only, other methodologies may represent a valuable solu-
539tion, such as OPLS [28] and Selectivity Ratio metric [21].
540In the studied cases, VIPs provided an easier and complementary
541way to interpret the variable relevance in NPLS models, especially
542when examination of regression coefficients was not so straightfor-
543ward due to the unreadable complex patterns associated [27], as in
544the case of spectral data (as for the Bread data set) and moreover
545with two signal dimensions as in the case of hyphenated analytical
546techniques. In the EVOO application, which is an example of chroma-
547tography/mass spectrometry data, the joint information from the VIPs
548on the retention time and m/z directions allows discussion in chemi-
549cal terms of the most discriminant features.

Fig. 14. Data set for Neuroscience. Scatter plot of NPLS weights for Mode3 (volunteers):
first vs. second component.

Fig. 15. Data set for Neuroscience. Mode1 loading (score) plot vs. time points (the temporal mode showing the evolution of functional fMRI-BOLD): (black) first component; (gray
dashed) second component.

10 S. Favilla et al. / Chemometrics and Intelligent Laboratory Systems xxx (2013) xxx–xxx

Please cite this article as: S. Favilla, et al., Assessing feature relevance in NPLS models by VIP, Chemometrics and Intelligent Laboratory Systems
(2013), http://dx.doi.org/10.1016/j.chemolab.2013.05.013



U
N
C
O

R
R
E
C
T
E
D
 P

R
O

O
F

550 NPLSweights carry the information about the relevance of variables
551 and sign of correlation with the modeled responses. However, they re-
552 quire to be discussed together with the Y loadings and per component.
553 In this respect, the VIPs are complementary pointing to the most influ-
554 ential variables for each property on taking into account all components
555 but of course require inspection of weights to assess the direction of the
556 effect (increasing or decreasing the response values). Finally, the results
557 obtained on the Neuroscience dataset were found to be in line with
558 those published with a completely different method belonging to the
559 machine learning field [26] as far as ranking of the most influential
560 ROIs is concerned, while the use of multi-way models added the possi-
561 bility to discuss both the common pattern to all volunteers in pain per-
562 ception as well as the peculiar behavior of specific ones.
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