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Abstract In this paper we report results of a series of simulation experiments aimed
at comparing the behavior of different similarity indexes proposed in the literature
for comparing two hierarchical clusterings on the basis of the whole dendrograms.
Simulations are carried out over different experimental conditions.

1 Introduction

Morlini and Zani (2012) have proposed a new dissimilarity index for comparing
two hierarchical clusterings on the basis of the whole dendrograms. They have
presented and discussed its basic properties and have shown that the index can be
decomposed into contributions pertaining to each stage of the hierarchies. Then,
they have obtained a similarity index S as the complement to one of the suggested
distance and have shown that its single components Sk obtained at each stage k of
the hierarchies can be related to the measure Bk suggested by Fowlkes and Mallows
(1983) and to the Rand index Rk . In this paper, we report results of a series of
simulation experiments aimed at comparing the behavior of these new indexes with
other well-established similarity measures, over different experimental conditions.
The first set of simulations is aimed at determining the behavior of the indexes when
the clusterings being compared are unrelated. The second set tries to investigate
the robustness to different levels of noise. The paper is organized as follows. In
Sect. 2 we report the indexes recently proposed in Morlini and Zani (2012) and the
similarity indexes used as benchmarks in the simulation studies. We also illustrate
some of the properties of these indexes, together with theirs limitations and the
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implied assumptions underlying them. In Sects. 3 and 4 we report results obtained
in the simulations. In Sect. 5 we give some concluding remarks.

2 The Indexes

Consider two hierarchical clusterings (or dendrograms) of the same number of
objects, n. For measuring the agreement between two non trivial partitions in k

clusters (k D 2; : : : ; n � 1) at a certain stage of the procedure, an important class of
similarity indexes is based on the quantities Tk , Uk , Pk and Qk reported in Table 1.
This table is a .2 � 2/ contingency table, showing the cluster membership of the
N D n.n � 1/=2 object pairs in each of the two partitions. Among the indexes
defined on counting the object pairs on which the two partitions agree or disagree,
the most popular ones are perhaps the Rand index:

Rk D N � Pk � Qk C 2Tk

N � Uk

; (1)

and the criterion Bk suggested by Fowlkes and Mallows (1983):

Bk D Tkp
PkQk

: (2)

The simple matching coefficient, formulated in terms of the quantities in Table 1, is
equivalent to the Rand index, while the Jaccard coefficient is Jk D Tk=.N � Uk. In
Morlini and Zani (2012) we have proposed the following new measure Sk :

Sk D
Pn�1

j D2 Pj C Pn�1
j D2 Qj � Pk � Qk C 2Tk

Pn�1
j D2 Pj C Pn�1

j D2 Qj

: (3)

The complement to one of Sk, Zk D 1�Sk , is a metric bounded in [0,1]. This metric
takes value 0 if and only if the two clusterings in k groups are identical and value
1 when the two clusterings have the maximum degree of dissimilarity, that is when
for each partition in k groups and for each pair i , objects in pair i are in the same
group in clustering 1 and in two different groups in clustering 2 (or vice versa). The
statistics Bk , Jk and Sk may be thought of as resulting from two different methods
of scaling Tk to lie in the unit interval. In these indexes the pairs Uk , which are not
joined in either of the two clusterings, are not considered as indicative of similarity.
On the contrary, in the Rand index the counts Uk are considered as indicative of
similarity. With many clusters Uk must necessarily be large and the inclusion of
this count makes Rk tending to 1, for large k. How the treatment of the pairs Uk

may influence so much the values of Rk , for different k, is illustrated in Wallace
(1983). Rk and Sk may be related to distance measures defined on Table 1, like the
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Table 1 Contingency table of the cluster membership of the N object pairs

Second clustering (g D 2)

Pairs in the
First clustering (g D 1) same cluster Pairs in different clusters Sum

Pairs in the same cluster Tk Pk � Tk Pk

Pairs in different clusters Qk � Tk Uk D N � Tk � Pk � Qk C 2Tk N � Pk

Sum Qk N � Qk N D n.n � 1/=2

Hamming distance Hk (Mirkin 1996) and the Zk D 1 � Sk distance (Morlini and
Zani 2012). It can be shown that the numerator of Zk is equal to N.1�Rk/ (Morlini
and Zani 2012) and Hk D 2N.1�Rk/ (Meila 2007). Since the values Rk and Sk are
not well spread out over the interval [0,1] for large k, it may be convenient to correct
the indexes for association due to chance and to consider the measure (Hubert and
Arabie 1985; Albatineh et al. 2006):

ASk D Sk � E.Sk/

1 � E.Sk/:
(4)

It is interesting to note that the adjusted Sk obtained with (4) is equivalent
to the Adjusted Rand index (Hubert and Arabie 1985). Indeed, the expectation
E.Tk/, assuming statistical independence under the binomial distribution for the
contingency table showing the cluster membership of the object pairs (Table 1) is
(Fowlkes and Mallows 1983; Hubert and Arabie 1985):

E.Tk/ D PkQk=N (5)

Using (5), the expectation E.Sk/ is:

E.Sk/ D
P

j ¤k Pj C P
j ¤k Qj C 2PkQk=N

P
k Pk C P

k Qk

(6)

Using (6) in (4), after some algebraic simplification we obtain:

ASk D 2Tk � 2PkQk=N

Pk C Qk � 2PkQk=N
(7)

which is the same expression of the Adjusted Rand Index.
The most innovative index proposed in Morlini and Zani (2012) is a global

measure of similarity which considers simultaneously all the k stages in the
dendrograms. In the literature, the only measure that has been presented for
measuring the agreement between two whole dendrograms is the � coefficient of
Baker (1974). This criterion is defined as the rank correlation coefficient between
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stages at which pairs of objects combine in the dendrograms and thus it ranges over
the interval [�1, 1] and it is not a similarity index. The global measure of agreement
proposed in Morlini and Zani (2012) is:

S D 2
P

k Tk
P

k Qk C P
k Pk

: (8)

S does not depend on the number k and thus preserves comparability across
clusterings. It has some desirable properties not pertaining to � . It is a similarity
index. Therefore, in a sample of G dendrograms ug 2 U , g D 1; : : : ; G it is a
function S.ug; ug0/ D Sgg0 from U � U into R with the following characteristics:

– Sgg0 � 0 for each ug; ug0 2 U (non negativity).
– Sgg D 1, for each ug 2 U (normalization).
– Sgg0 D Sg0g, for each ug; ug0 2 U (symmetry).

The further additivity property Sgg0 D P
k V gg0

k D P
k

2TkP
k QkCP

k Pk
permits to

decompose the value of the index into contributions pertaining to each stage k of
the dendrograms. This makes the values of S more interpretable and comparable.

3 Simulation Experiments: Unrelated Clusterings

For the first study we generate two data sets according to the following steps:

1. For each data set, the sample size is n D 50 and the number of variables is p D 5.
2. The 50 elements in each set are generated from a multivariate standard normal

distribution with a correlation matrix consisting of equal off-diagonal elements
�1 (in the first set) and �2 (in the second set). �1 and �2 are chosen randomly in
the set [�0.9, �0.8, . . . , 0.8, 0.9].

3. We repeat steps 1. and 2. 5,000 times. Each time we perform a hierarchical
clustering for the two sets with the Euclidean distance and the average linkage
and we compute the indexes Sk , Rk , ASk , Bk , S and the � coefficient.

The two sets are generated independently and the agreements between clusterings
are only due to chance. Since the range of the indices is different, and in these
simulations � takes negative values, we obtain new values of � , which we call ��,
lying in the interval Œ0; 1�, with the transformation �� D .� C 1/n2. Left panel of
Fig. 1 shows the boxplots of the values of S (left) and �� (right). The median and
the mean values of �� are approximately 0.5. The boxplots show that S performs
better than ��, since the median and mean value of S are nearly 0.23 and the index
has fewer outliers. In the right panel are reported the mean values of Bk , Rk and
ASK , for k D 2; : : : ; 49. With k D 2, Rk and Bk have a similar value. Then, the
plot shows the tendency of Rk to increase with k and rapidly approaching 1 and the
opposite tendency for Bk to decrease with k and assuming values close to 0 for large
k. ASk performs best, showing average values always close to zero, regardless of k.
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Fig. 1 Results for 5,000 pairs of unrelated samples. Left panel: boxplots of S (left) and �� (right).
Right panel: plots of the mean values of Rk (solid line), Bk (dotted line) and ASk (dashed line)

Further simulations show that the behavior of all indexes in the case of two unrelated
clusterings is robust with respect to the choice of the distance or to the choice of the
linkage and also with respect to the size n of the data and to the number of variables
p. In several simulations carried out considering the Manhattan distance, different
linkages and different values of n (from 50 to 100) and for p (from 2 to 10), boxplots
for S and �� and plots of Bk , Rk , ASK are similar to those reported in Fig. 1.

4 Simulation Experiments: Robustness to Noise

In this section simulations are aimed at evaluating the robustness to noise. The first
data set is generated as in previous section, setting the sample size n D 50, the
number of variables p D 5 and generating 50 elements from a multivariate standard
normal distribution with a correlation matrix consisting of equal elements �1 chosen
randomly in the set [�0.9, �0.8, . . . , 0.8, 0.9]. The second data set is obtained by
adding to all variables a random normal noise with mean zero and variance �2

e . We
consider the values �2

e D 0:04, 0.16, 0.36. Hierarchical clusterings of each data
set are carried out using the Euclidean distance and the complete, the single, the
average linkages and the Ward method. Since the second data set is just the first one
with added noise, indexes should indicate a great similarity between clusterings and
the similarity should increase with decrease in �2

e . In these simulations � assumes
only positive values, therefore we consider � instead of the normalized index ��.
Figures 2 and 3 report the results obtained with �2

e D 0:04, the single and the
complete linkage methods. Results obtained with the average linkage and the Ward
methods, not reported for lack of space, are available upon request. For all linkages,
the values of S do not exceed 0.9 but are never smaller than 0.4 (for the single
linkage, the minimum value obtained in the 5,000 runs is 0.6). On the contrary, �

assumes values greater than 0.9 and close to one but, on the other hand, presents
several values smaller than 0.4. If we take the median values for comparing the
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Fig. 2 Boxplots of S and � using the complete linkage (left) and the single linkage (right)
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Fig. 3 Plots of the mean values of Rk (solid line), Bk (dotted line) and ASk (dashed line) using
the Euclidean distance and the complete linkage (left panel) and the single linkage (right panel)

degree of similarity measured by S and � , we see that S indicates a more marked
similarity using the complete and the single linkages. Plots in Fig. 3 show again the
opposite tendencies of Rk to approach one and of Bk and ASk to approach zero as k

increases. The plots also show that perturbation affects Bk least for small values of k

and greatest for large values of k. This desirable property was just noted in Fowlkes
and Mallows (1983). For ASk this is true for the Ward method, the single and the
average linkages, but not for the complete linkage. ASk shows a relatively more
constant pattern with respect to k, without precipitous falloffs. These results show
that each index has own desirable properties but also causes for concern and the
choice of one index over the others is somehow difficult. That the average values
of Rk and Bk are higher in the presence of small perturbation of the sample is
reasonable and desirable, but the large values assumed by Rk also in presence of
two unrelated clusterings (see Fig. 1) and the greatest variability of Bk across k are
causes for concern. For these reasons, a global criterion of similarity like S may be
a better choice for measuring the agreement between two hierarchical clusterings.

From Figs. 2 and 3 we may also analyze the stability of the different linkages to
small perturbations. Clusterings with the single linkage are less affected by added
noise while clusterings recovered by the complete linkage are, in general, less stable.

Figures 4, 5 and 6 show the empirical distribution of S , � , Rk , Bk , ASk (with
k D 2; 5; 10; 15; 20; 25; 30; 35; 40; 45) obtained with �2

e D 0:16 and �2
e D 0:36.
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Fig. 4 Boxplots of ASk (k D 2; 5; 10; 15; 20; 15; 30; 35; 40; 45), S and � . Values are obtained
considering pairs of samples where the second one is the first one with added noise with �2
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Fig. 5 Boxplots of Rk (k D 2; 5; 10; 15; 20; 15; 30; 35; 40; 45), S and � . Values are obtained
considering pairs of samples where the second one is the first one with added noise with �2
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Fig. 6 Boxplots of Bk (k D 2; 510; 15; 20; 15; 30; 35; 40; 45), S and � . Values are obtained
considering pairs of samples where the second one is the first one with added noise with �2

e D 0:16

(left panel), �2
e D 0:36 (right panel)

Clusterings are recovered using the Euclidean distance and the average linkage
method. The median values of S and � decrease with increase in �2

e . However,
this drop is more marked in � than in S and, for �2

e D 0:36, the median value of S

is substantially higher than the median value of � . The patterns of the median values
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of Rk , Bk and ASk , versus k, do not change across simulations with different �2
e .

Boxplots show that Rk has a higher variability for small values of k. For k � 30,
Rk is always close to 1 and the values are nearly constant across simulations. The
variability of Bk and ASk , measured by the interquartile range, is more marked for
k D 2 and k D 5.

5 Concluding Remarks

This paper has presented results obtained by simulation studies aimed at comparing
the behavior of different similarity indexes used for measuring the agreement
between two hierarchical clusterings. In contrast to the well-know criteria like the
Rand index and the Bk index of Fowlkes & Mallows, the measure S recently
proposed in the literature is not directly concerned with relationship between
a single pair of partitions, but depends on the whole set of partitions in the
dendrograms. Simulations show that the performances of Rk and Bk strongly
depend on the number of groups k. The major drawback of this dependency is
that Rk assumes values close to one for large k, even though the two partitions
are unrelated. For large k, Bk has improved performances in case of unrelated
clusterings but performs worse when the two clusterings are related. There is not
a clear best choice between these two competing criteria and thus it is probably
meaningless to search for the best criterion. A better goal is to study the behavior of
these indexes and their limitations in different experimental conditions. The adjusted
version of Rk and Sk , is based on a null model that is reasonable but, nevertheless,
artificial. Some authors have expressed concerns at the plausibility of the null model
(Meila 2007). However, simulations show that the adjusted version has improved
performances and the values of the index are not influenced by k. These results are
in agreement with results presented in Albatineh et al. (2006) and Albatineh and
Niewiadomska-Bugaj (2011). The new global index S does not depend on k and
thus preserves comparability. Simulations show that S has good performances. It
takes values close to zero when no clustering structure is present and values close to
one when a structure exists.
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