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Abstract In cluster analysis, the inclusion of unnecessary variables may mask the
true group structure. For the selection of the best subset of variables, we suggest
the use of two overall indices. The first index is a distance between two hierarchical
clusterings and the second one is a similarity index obtained as the complement to
one of the previous distance. Both criteria can be used for measuring the similarity
between clusterings obtained with different subsets of variables. An application with
a real data set regarding the economic welfare of the Italian Regions shows the
benefits gained with the suggested procedure.

1 Introduction

In cluster analysis, the inclusion of ‘noisy’ variables may mask the recovery of the
true underlying structure. In the literature, various procedures aimed at determining
the best subset of variables have been proposed, both in the context of model-
based and not-model-based clustering (Fowlkes et al., 1988; Gnanadesikan et al.,
1995; Montanari and Lizzani, 2001; Tadesse et al., 2005; Raftery and Dean, 2006;
Fraiman et al., 2008; Steinley and Brusco, 2008). In this paper we propose a
new approach, based on an overall index measuring the distance between two
hierarchical clusterings. This criterion is novel since it is applied directly to the
whole hierarchies and may be thought of as a generalization of the measures used
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for comparing two partitions (Rand, 1971; Fowlkes and Mallows, 1983; Hubert and
Arabie, 1985). The paper is organized as follows: in Sect. 2 we define the index,
we present its properties and its decomposition with reference to each stage of the
hierarchy; in Sect. 3 we consider the similarity index obtained as the complement to
one of the suggested distance and we deal with the adjustment for agreement due
to chance; in Sect. 4 we describe the use of the index for measuring the similarity
between clusterings obtained with different subsets of variables, following a forward
and a backward approach; in Sect. 5 we present results on a real data set.

2 The Index and Its Properties

Suppose we have two hierarchical clusterings of the same number of objects, n. Let
us consider the N D n.n � 1/=2 pairs of objects and let us define, for each non
trivial partition in k groups (k D 2; : : : ; n � 1), a binary variable Xk with values
xik D 1 if objects in pair i.i D 1; : : : ; N / are classified in the same cluster in
partition in k groups and xik D 0 otherwise. A binary .N � .n � 2// matrix Xg for
each clustering g .g D 1; 2/ may be derived, in which the columns are the binary
variables Xk. A global measure of dissimilarity between the two clusterings may be
defined as follows:

Z D k X1 � X2 k
k X1 k C k X2 k ; (1)

where k A kD P
i

P
k k aik k is the L1 norm of the matrix A. In (1) the matrices

involved take only binary values and the L1 norm is equal to the square of the L2

norm. The derivation of Z uses the Rand’s idea of considering the N object pairs.
However, Z is a new index since it is applied to a whole hierarchy and not only to a
single partition. Z has the following properties.

• It is bounded in [0,1]. Z D 0 iff the two hierarchical clusterings are identical
and Z D 1 when the clusterings have the maximum degree of dissimilarity, that
is when for each partition in k groups and for each i , objects in pair i are in the
same group in clustering 1 and in different groups in clustering 2 (or vice versa).

• It is a distance, since it satisfies the conditions of non negativity, identity,
symmetry and triangular inequality (Zani, 1986).

• The complement to 1 of Z is a similarity measure, since it satisfies the conditions
of non negativity, normalization and symmetry.

• It does not depend on the group labels since it refers to pairs of objects.
• It may be decomposed in .n � 2/ parts related to each pair of partitions in k

groups since:

Z D
X

k

Zk D
X

k

X

i

jx1ik � x2ikj
k X1 k C k X2 k : (2)

The plot of Zk versus k shows the distance between the two clusterings at each
stage of the procedure.
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Table 1 Contingency table of the cluster membership of the N object pairs

Second clustering (g D 2)
First clustering (g D 1) Pairs in the same cluster Pairs in different clusters Sum

Pairs in the same cluster Tk Pk � Tk Pk

Pairs in different clusters Qk � Tk Uk D N C Tk � Pk � Qk N � Pk

Sum Qk N � Qk N D n.n � 1/=2

3 The Complement of the Index

Consider the quantities in the .2 � 2/ contingency table showing the cluster
membership of the object pairs in each of the two partitions (Table 1).

Since k X1 kD P
k Qk and k X2 kD P

k Pk , the complement to 1 of Z is:

S D 1 � Z D 2
P

k Tk
P

k Qk C P
k Pk

: (3)

Also the similarity index S may be decomposed in .n � 2/ parts Vk related to each
pair of partitions in k groups:

S D
X

k

Vk D
X

k

2Tk
P

k Qk C P
k Pk

: (4)

The components Vk , however, are not similarity indices for each k since they assume
values < 1 even if the two partitions in k groups are identical. For this reason, we
consider the complement to 1 of each Zk in order to obtain a single similarity index
for each pair of partitions:

Sk D 1 � Zk D
Pn�1

j D2 Pj C Pn�1
j D2 Qj � Pk � Qk C 2Tk

Pn�1
j D2 Pj C Pn�1

j D2 Qj

D
P

j ¤k Pj C P
j ¤k Qj C 2Tk

P
j Pj C P

j Qj
:

(5)

A similarity index between two partitions may be adjusted for agreement due to
chance (Hubert and Arabie, 1985; Albatineh et al., 2006; Warrens, 2008). With
reference to formula (5) the adjusted similarity index ASk has the form:

ASk D Sk � E.Sk/

max.Sk/ � E.Sk/
: (6)

Under the hypothesis of independence of the two partitions, the expectation of Tk

in Table 1 E.Tk/ D PkQk=N . Therefore, the expectation of Sk is given by:

E.Sk/ D
P

j ¤k Pj C P
j ¤k Qj C 2PkQk=N

P
j Pj C P

j Qj

: (7)

Considering max.Sk/ D1 and simplifying terms we obtain:

ASk D 2Tk � 2PkQk=N

Pk C Qk � 2PkQk=N
: (8)
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The adjusted Rand index for two partitions in k groups is given by Warrens (2008):

ARk D 2.NTk � PkQk/

N.Pk C Qk/ � 2PkQk

; (9)

and so ASk is equal to the Adjusted Rand Index.

4 Criteria for Variable Selection

Indexes Z and S can be used for variable selection in cluster analysis (Fowlkes et
al., 1988; Fraiman et al., 2008; Steinley and Brusco, 2008). The inclusion of ‘noisy’
variables can actually degrade the ability of the clustering procedures to recover the
true underlying structure (Friedman and Meulman, 2004). For a set of p variables
and a certain clustering method, we suggest three different approaches, suitable for
data sets with tens of variables. Variable selection in data sets containing hundreds
or thousands of variables (like gene expression data) is not considered in this paper.

First we may obtain the p one dimensional clusterings with reference to each
single variable and then compute the p�p similarity matrix S. The pairs of variables
reflecting the same underlying structure show high similarity. On the contrary, the
noisy variables should present a similarity with the other variables near to the
expected value for chance agreement. We may select a subset of variables that
best explains the classification into homogeneous groups. These variables help us to
better understand the multivariate structure and suggest a dimension reduction that
can be used in a new data set for the same problem (Tadesse et al., 2005).

Next we may find the similarities between clusterings obtained with subsets of
variables (regarding, for example, different features). This approach is helpful in
showing aspects that lead to similar partitions and subsets of variables that, on the
contrary, lead to different clusterings.

A third way to proceed consists in finding the similarities between the ‘master’
clustering obtained by considering all the variables and the clusterings obtained
by eliminating each single variable in turn, in order to highlight the ‘marginal’
contribution of each variable to the master structure.

5 An Application to a Real Data Set

We consider the 20 Italian regions and the following 9 variables measuring different
aspects of the economic wealth: X1 D activity rate, X2 D unemployment rate,
X3 D youth unemployment rate, X4 D family average income, X5 D family median
income, X6 D income Gini concentration index, X7 D % of poor families, X8 D %
of people dissatisfied for their economic conditions, X9 D % of families with
inadequate income. We standardize variables to zero mean and unit variance before
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Table 2 Values of S between pair of clusterings of the Italian regions data set

Euclidean distance Manhattan distance

Method Average Complete Single Ward Centroid Average Complete Single Ward Centroid

Average 1 0.80 0.90 0.76 0.96 0.96 0.81 0.88 0.79 0.95
Complete 0.80 1 0.73 0.72 0.78 0.83 0.98 0.72 0.82 0.78
Single 0.90 0.73 1 0.71 0.93 0.87 0.73 0.92 0.72 0.90
Ward 0.76 0.72 0.71 1 0.75 0.78 0.73 0.68 0.79 0.74
Centroid 0.96 0.78 0.93 0.75 1 0.92 0.79 0.88 0.77 0.95

Average 0.96 0.83 0.87 0.78 0.92 1 0.84 0.87 0.83 0.94
Complete 0.81 0.98 0.73 0.73 0.79 0.84 1 0.72 0.82 0.78
Single 0.88 0.72 0.92 0.68 0.88 0.87 0.72 1 0.72 0.93
Ward 0.79 0.82 0.72 0.79 0.77 0.83 0.82 0.72 1 0.78
Centroid 0.95 0.78 0.90 0.74 0.95 0.94 0.78 0.93 0.78 1

applying hierarchical cluster analysis with different distances and different methods.
We compute the S index for each pair of clusterings. Results, reported in Table 2,
show that, in general, clustering remains stable varying distances or methods or
both (all pairwise similarity indexes take values greater than 0.7). The fact that the
clustering does not change appreciably leads to the evidence that the topologies
of the trees are natural and are not simply artifacts of the algorithms. Analyzing the
values of the pairwise similarities, we note that the Ward and the single linkage seem
to behave a little bit differently from the other methods, while the complete linkage,
the average linkage and the centroid method seem to be more similar to each other.
The global measure of similarity S may be decomposed in parts related to each
partition in k D 2; : : : ; 18 groups. As an example, Table 3 presents the values of Sk

and ASk for two pairs of clusterings. This table shows the reason why the second
couple has a slightly less similarity. In these two dendrograms, 12 partitions (among
the 18 ones) are exactly the same while for the first two dendrograms the identical
partitions are 13. In order to determine the ‘true’ number of clusters, we may count
the couples of clusterings in which each partition in k groups is identical. From
counts reported in Table 4 we see that the partition in 2 groups remains identical in
36 clusterings. Only partition in 18 clusters has a larger count. This may be taken
as evidence that partition in two groups comes naturally from data and is not driven
by the algorithm. In this partition, northern and central regions are separated from
southern regions.

Table 5 reports the values of S between the clustering obtained considering all
variables (fXigiD1;:::;9) (in the following we will refer to this tree as the overall
tree) and the clusterings obtained eliminating each variable in turn. In the table,
the column or row header fXigi¤j indicates the subset of variables without Xj .
For example, fXigi¤1 is the subset fX2; X3; X4; X5; X6; X7; X8; X9g. The Euclidean
distance and the average method are used for obtaining partitions.

If we eliminate X9, the clustering remains identical. This means that X9 has
no ‘marginal’ contribution to the overall clusterings, given the other variables. X8

is the variable which seems to have the major marginal influence to the overall
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Table 3 Values of Sk and ASk for two pairs of clusterings of the Italian regions data set

Number k of clusters

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Similarity between partitions obtained with Euclidean distance and the average method
and partitions obtained with Euclidean distance and the centroid method

Sk 1 1 1 1 0.98 0.98 0.98 1 0.98 1 1 1 1 1 0.98 1 1 1
ASk 1 1 1 1 0.86 0.75 0.86 1 0.81 1 1 1 1 1 0.66 1 1 1

Similarity between partitions obtained with Euclidean distance and the average method
and partitions obtained with Manhattan distance and the centroid method

Sk 1 1 1 1 0.98 0.97 0.98 1 1 1 1 0.98 1 1 0.98 1 1 0.98
ASk 1 1 1 1 0.86 0.73 0.86 1 1 1 1 0.57 1 1 0.66 1 1 0.00

Table 4 Counts of pairs of clusterings in which each partition in k groups is identical

k 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

n. of pairs 36 29 8 8 7 3 1 6 6 8 12 9 17 29 21 16 45 20

Table 5 Values of S for couples of clusterings obtained with different subsets of variables

fXi gi¤1 fXi gi¤2 fXi gi¤3 fXi gi¤4 fXi gi¤5 fXi gi¤6 fXi gi¤7 fXi gi¤8 fXi gi¤9 fXi g
fXi gi¤1 1 0.96 0.83 0.85 0.88 0.86 0.93 0.84 0.89 0.89
fXi gi¤2 0.96 1 0.86 0.88 0.86 0.87 0.95 0.85 0.91 0.91
fXi gi¤3 0.83 0.86 1 0.83 0.82 0.87 0.84 0.81 0.89 0.89
fXi gi¤4 0.85 0.88 0.83 1 0.97 0.86 0.86 0.80 0.89 0.89
fXi gi¤5 0.88 0.86 0.82 0.97 1 0.85 0.85 0.80 0.89 0.89
fXi gi¤6 0.86 0.87 0.87 0.86 0.85 1 0.85 0.84 0.94 0.94
fXi gi¤7 0.93 0.95 0.84 0.86 0.85 0.85 1 0.85 0.88 0.88
fXi gi¤8 0.84 0.85 0.81 0.80 0.80 0.84 0.85 1 0.86 0.86
fXi gi¤9 0.89 0.91 0.89 0.89 0.89 0.94 0.88 0.86 1 1
fXi g 0.89 0.91 0.89 0.89 0.89 0.94 0.88 0.86 1 1

clustering structure. The value of S between fXigi¤4 and fXigi¤5 (S D 0:97) shows
that X4 and X5, as one would expect, bring the same marginal contribution. We may
also consider the similarities between the clustering recovered by all variables fXig
and the clusterings obtained by using each single variable. The values of S are:

S.fXig; fX1g/ D 0:74; S.fXig; fX2g/ D 0:66; S.fXig; fX3g/ D 0:58;

S.fXig; fX4g/ D 0:55; S.fXig; fX5g/ D 0:76; S.fXig; fX6g/ D 0:69;

S.fXig; fX7g/ D 0:77; S.fXig; fX8g/ D 0:52; S.fXig; fX9g/ D 0:53:

None of the values are particularly high and thus the clustering recovered with all
variables seems to derive from a multivariate effect and not to be dominated by
the univariate effect of a single variable. As shown in Fig. 1, variables X1, X5 and
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Fig. 1 Values of Sk for the partitions obtained with all variables and the partitions obtained with
(a) X1, (b) X2, (c) X3, (d) X4, (e) X5, (f) X6, (g) X7, (h) X8 and (i) X9

X7 have a peak of the similarity values Sk for k D 3. X1 is in perfect agreement
also for k D 2 while X7 for k D 4; 5. Variables X4, X6 and X9 have a different
Sk pattern, but they also have a peak for k D 3. On the contrary, the peak for
X2 and X3 is for k D 2. Thus, in this case, the choice for the ‘correct’ number
of clusters is somehow difficult, since both k D 2 and k D 3 seem to be good
alternative. Figure 1 also shows that variables which have the smaller values in the
similarity S , like X3, X4, X5 and X6, exhibit a less agreement to the overall clusters
for small numbers k of groups. The patterns of Sk for these variables display smaller
values for k < 12. For the other variables, Sk increase less rapidly, with respect to
k. Finally, we study the behavior of three subsets of variables, each one related
to a specific feature of the economic situation. We consider subset fX1; X2; X3g,
related to the demographic structure, subset fX4; X5; X6g related to the income
structure and subset fX7; X8; X9g, related to the relative and the perceived poverty.
The similarities between the cluster trees of each subset and of all variables are:
S.fXig; fX1;2;3g/ D 0:76, S.fXig; fX4;5;6g/ D 0:66, S.fXig; fX7;8;9g/ D 0:78. The
similarities between clusterings of each subsets are: S.fX4;5;6g; fX7;8;9g/ D 0:59,
S.fX1;2;3g; fX4;5;6g/ D 0:61, S.fX1;2;3g; fX7;8;9g/ D 0:62. Here again we note that
none of the three subsets reveals a clustering very similar to the clustering obtained
with all the variables. All the three aspects of the economic health seem equally
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Fig. 2 Plots of Sk (left) and ASk (right) between partitions obtained with all variables fXi g
and subset fX1; X2; X3g (dotted line), subset fX4; X5; X6g (solid line), subset fX7; X8; X9g
(dashed line)

to contribute to the overall clustering. Figure 2 reports the plots of Sk and ASk .
The scales in the Y -axis are different. However, the patterns of Sk and ASk are
nearly identical, for k � 12. It is a desirable property that the correction for the
chance influences the values but not the configuration of the plot for small k. For
large k, as one would expect, the correction for chance do influence the patterns of
the index and Sk tends to one while ASk tends to zero. We note that, for example,
the configuration in two groups is largely dominated by the demographic structure,
while configurations in 3, 4 and 5 clusters are mostly influenced by the perceived
poverty.
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