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HIGHLIGHTS 

Particle size distribution, density and flow properties have been used to characterize dry powder inhalers 

products  

Multivariate Data Analysis provide understanding of correlation among powder properties and in-vitro 

performance  

Predictive models of in-vitro performance allow estimation of DUSA and NGI performance   
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Abstract 

The study aimed at investigating the correlations among the physical and 

bulk properties of carrier based dry powder inhaler formulations and the 

performance of the powder inhaler device estimated by in-vitro tests for a 

specific active pharmaceutical ingredient (API), and at obtaining predictive 

models for the in-vitro performance. Samples from scale-up process batches 

having different formulations, process settings and bulk size, were 

characterized by rheological, density and particle size tests. In vitro 

performance was evaluated by several parameters obtained by a dosage unit 

sampling apparatus (DUSA) and a next generation impactor (NGI). 

Correlations between powder properties and performance properties were 

established using partial least square regression (PLS) analysis. Variable 

importance in projection (VIP) was used in order to assess the most 

influential powder characterization variables to estimate the analytical ones. 

Particle size, density and rate of flowability are significant for modeling the 

delivered dose of the API and the total quantity of powder related to each 

dose. Powder characterization variables, describing the degree of 

cohesiveness and the flow properties of powder, are related to the total 

amount of the active ingredient for different formulations. DUSA test 

variables were satisfactory predicted on the basis of powder characterization 

variables, while NGI performance variables were predicted with higher error. 
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Abstract 17 

The study aimed at investigating the correlations among the physical and bulk properties of 18 

carrier based dry powder inhaler formulations and the performance of the powder inhaler 19 

device estimated by in-vitro tests for a specific active pharmaceutical ingredient (API), and 20 

at obtaining predictive models for the in-vitro performance. Samples from scale-up process 21 

batches having different formulations, process settings and bulk size, were characterized 22 

by rheological, density and particle size tests. In vitro performance was evaluated by 23 

several parameters obtained by a dosage unit sampling apparatus (DUSA) and a next 24 

generation impactor (NGI). Correlations between powder properties and performance 25 

properties were established using partial least square regression (PLS) analysis. Variable 26 

importance in projection (VIP) was used in order to assess the most influential powder 27 

characterization variables to estimate the analytical ones. Particle size, density and rate of 28 

flowability are significant for modeling the delivered dose of the API and the total quantity 29 

of powder related to each dose. Powder characterization variables, describing the degree of 30 

cohesiveness and the flow properties of powder, are related to the total amount of the 31 

active ingredient for different formulations. DUSA test variables were satisfactory 32 
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predicted on the basis of powder characterization variables, while NGI performance 1 

variables were predicted with higher error. 2 

Keywords 3 

Dry powder inhaler; PLS regression; VIP; powder characterization tests; DUSA; NGI. 4 
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1. Introduction 6 

Dry powder inhalers (DPI) are devices that deliver a dry powder formulation of drug to the 7 

lungs [1-3]. Their development was initially promoted as an alternative to pressurized 8 

metered dose inhaler (pMDI), following the Montreal Protocol [4] of the 1987, which 9 

provided for the non-use of ozone reducer propellants in medicinal products. In addition of 10 

being propellant free, DPIs possess higher stability with respect to the liquid state [4]. 11 

Moreover, DPI based on passive devices are directly activated by the patient’s respiratory 12 

airflow, so provide a general optimization between actuation and inhalation [5-7]. DPI 13 

formulations are mainly mixtures of drug and coarse particles of lactose based excipients. 14 

α-lactose monohydrate sugar is the most used and FDA approved and it is used as the main 15 

excipient. It is able to fluidize and disperse the drug whose particles are in the breathable 16 

size range, while it is not delivered to the lungs. Other components, such as fine particle 17 

lactose and magnesium stearate, can be used in the formulation in order to optimize the de-18 

agglomeration of drug particles from the large carrier particles. The active ingredient can 19 

be designed as a target for a generic or specific respiratory disease, such as asthma and 20 

COPD (chronic-obstructive-pulmonary-disease). It has to adhere to the carrier’s surface 21 

during the manufacturing process and keep this status during the shelf-life of the product, 22 

but it has to de-aggregate during the delivery phase, to follow the inspiratory flow and to 23 

reach the deposition site. As powder is transported from the device to the lungs of the 24 

patient as an aerosol, it becomes important to understand how it flows under gravity when 25 

consolidated, unconsolidated, aerated or even fluidized, and how readily it will entrain air 26 

and release it again. Important powder properties include particle size, shape, density, 27 

cohesion, aeration, dynamic flow and shear properties [8]. Several studies have shown that 28 

physico-chemical carrier properties and cohesive-adhesive force balances between drug 29 

and carrier have an influence on the in-vitro aerosol deposition [9-10]. In particular, 30 

performance was optimized when the drug-carrier cohesion–adhesion balance ratio was 31 

slightly cohesive. Moreover, aerosol performance resulted dependent also on the device’s 32 
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design and patient’s inspiratory force. Devices with greater aerosol resistance resulted in 1 

greater FPF values. In this sense, tuning of the resistance to airflow in the design of a dry 2 

powder inhaler may improve the drug deposition in the respiratory tract, as in the case of 3 

passive devices [11]. Understanding powder flowability, fluidization, de-agglomeration 4 

and in general all physico-chemical powder properties, leads to a better knowledge of the 5 

overall delivery system [12].  6 

It is also important to understand how these properties may be affected by process 7 

parameters, especially during the scale-up of a product [13-14]. Mixing, sieving, filling, 8 

granulation and in general all process operations can modify powder characteristics, and 9 

their effects should be taken into account in order to obtain a reliable process and a product 10 

with the required characteristics [15-18]. In this sense, measuring powder properties within 11 

or at the end of the manufacturing process, can give information on the quality of the 12 

product, before executing in-vitro analytical tests of performance. These tests are essential 13 

and mandatory before proceeding to the subsequent phases of the drug development, but 14 

are very time-consuming. NGI (next generation impactor) and DUSA (dosage unit 15 

sampling apparatus) analysis can take few days of execution and, even more important, can 16 

be preceded by a quarantine period of samples storage. Consequently, other scale-up 17 

batches may have been already manufactured during this period, without taking advantage 18 

of the suggestions that the previous results can give. 19 

Powder characterization tests [19] require a shorter time of execution. Some tests, such as 20 

aeration, density and flowability tests require less than 15-20 minutes of execution, while 21 

others, such as shear-cell test, usually last less than one hour. All tests employed in this 22 

work can be performed in a half-day work per sample, ideally at the end of the production 23 

of powder bulk. Gathering information in a shorter time can bring benefits in scale-up 24 

activities, which often require shortcuts. 25 

Most of the research undertaken in this area has emphasized the influence of some 26 

chemical-physical properties on the DPI performance, mainly by studying one property at 27 

time, i.e. using a univariate approach [20-21]. However, studying the properties altogether 28 

can lead to a better understanding of the performance in term of the overall behavior of the 29 

powder as determined by the inter-play of several physico-chemical properties. It is well 30 

recognized that a multivariate approach improves data analysis efficacy and process 31 

understanding [22-25]. Here, we apply multivariate data analysis to the data arising from 32 

several powder characterization tests and in-vitro performance tests. In particular, Principal 33 
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Component Analysis (PCA) is used as an explorative data analysis tool in order to extract 1 

salient traits of the studied batches and the correlation structure of measured variables, and 2 

Partial Least Square Regression (PLS) is used in order to establish correlations among one 3 

or more performance variables and the powder characterization variables with the aim of 4 

obtaining predictive models. In order, to assess which are the most relevant features to 5 

estimate the performance variables and to improve the overall interpretability of the 6 

models, the Variance Importance in Projection (VIP) parameter has been used [26-27]. To 7 

the best of our knowledge this is the first study attempting to predict DPI performance 8 

from powder characterization tests in scale-up phase.  9 

 10 

2. Materials and Methods 11 

2.1 Samples 12 

The study is undertaken at the scale-up step of drug development, i.e. at the phase where, 13 

after laboratory scale optimization the product is tested at pilot plant level before passing to 14 

plant manufacturing. A total of 27 samples were taken at the end of pilot manufacturing 15 

process of batches of powder. Formulations consisted of excipient and one active 16 

ingredient. The excipient used was alpha-lactose monohydrate based. The active 17 

pharmaceutical ingredient (API) was a target molecule designed for a generic or specific 18 

respiratory disease, such as asthma and COPD (chronic-obstructive-pulmonary-disease). 19 

Five different formulations were used, respectively named A, B, C, D and E, increasing the 20 

amount of active ingredient from A to E. The batches differed for bulk size, process 21 

parameters and starting materials. The manufacturing process consisted in the excipient 22 

mixing, the addition of the active principle, mixing and sieving step. Process parameters 23 

were set according to the batch size and the information derived from the scale-up process. 24 

The formulation, as well as the process, is under development, so that any additional detail 25 

cannot be provided at the moment. Despite of this, the manufacturing procedure was 26 

optimized for each formulation, and all the results in terms of blend uniformity analysis 27 

were satisfactory. In particular, the expected quantity of active ingredient (as mean of 40 28 

samples of 20 mg each taken from the bulk) was inside the acceptance criteria (90.0-110.0 29 

percent), with a relative standard deviation of no more than 5.0 percent.  30 

The resulting powder was placed into a generic dry powder inhaler either manually (22 31 

samples) or using an instrumental filling procedure (5 samples). 32 
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Each sample consisted of 500 grams of powder and two devices taken at the end of the 1 

manufacturing process. The 500 grams were characterized by powder characterization tests 2 

within one-two days from production, while the two devices were analyzed for the in-vitro 3 

performance by DUSA and NGI tests in a period that ranges from fourteen to twenty days, 4 

this is due to the higher time required for the in vitro tests and the internal organization of 5 

the laboratory at the company. All test were performed in controlled conditions of 6 

humidity and temperature. The different time periods between characterization and in-vitro 7 

tests support the aim of this study, which is to obtain predictive information on DPI 8 

performance as soon as possible during the scale-up activities. As mentioned before, this 9 

work is about the investigation of all possible correlations between the properties of the 10 

powder and its inhalation performance. To this aim, having collected batches that well 11 

span the manufacturing variability is an advantage in order to obtain a general correlation 12 

model.  13 

The evaluation of the effects of the parameters and materials on performance is not 14 

reported here, and it will be dealt in a coming study.  15 

 16 

2.2 Powder characterization tests 17 

Density 18 

Poured Density and Tapped Density of powder samples were measured using the jolting 19 

Stampf Volumeter STAV 2003 (from Engelsmann, Germany). A measured amount of 20 

powder was introduced into a cylinder of 250ml. Poured density refers to the initial 21 

mass/volume ratio. Tapped density was measured by mechanically and vertically tapping 22 

the cylinder under its own weight and considering the final volume obtained. 23 

Particle Size Distribution 24 

Particle Size determination of powder samples was performed with the Vibratory Sieve 25 

Shaker  AS 200 Control (from Retsch, Germany) on the powder samples. The powder was 26 

fractionated according to the different sieves: 425µm, 355µm, 300µm, 250µm, 212µm, 27 

200µm and 180µm. The achievement of full sieving was assured with a sieving time of 25 28 

minutes, as tested in our laboratory. The corresponding variables are the percentage of 29 

powder with particle size under these sieve size values. 30 

Stability & Variable Flow Rate  31 
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FT4 Powder Rheometer (from Freeman Technology, UK) was used in order to measure 1 

dynamic flow and shear properties of powder. 2 

Stability & Variable Flow Rate properties were determined by combining seven 3 

conditioning and test cycles (for the Stability Test: test1- test7) and four conditioning and 4 

test cycles (for the Variable Flow Rate: test8-test12). Measurements were performed in 5 

triplicates. The used vessel size was 25mm. Blade tip speed was 100mm/s for the Stability 6 

test cycles, while 100, 70, 40 and 10mm/s for the variable flow rate test cycles. The 7 

measured parameters were the Basic Flowability Energy BFE (mJ), the Stability Index SI, 8 

the Flow Rate Index FRI, the Specific Energy SE (mJ/g) and the Conditioned Bulk Density 9 

CBD (g/ml). BFE is the energy required to move a conditioned and stabilised powder at a 10 

given speed of rotation of the blade. SI is a factor describing how the flow energy changes 11 

during repeated testing (SI=test7/test1). FRI is a dimensionless parameter that describes 12 

how the energy changes when the flow rate is reduced by a factor of ten (FRI=test11/test8). 13 

SE represents the energy needed to displace 1 g of conditioned powder using a lifting and 14 

shearing movement. CBD is the bulk density of the conditioned powder.  15 

Aeration 16 

Aeration test is aimed at determining how powder flow properties change as a result of the 17 

aeration. It consists of a combination of six conditioning and test cycles. All test cycles 18 

were at 100mm/s of blade tip speed. The air supply was off during the first test, then was 19 

introduced and increased in velocity for each subsequent test. The used vessel size was 20 

25mm. The measured parameters were the Aeration Energy AE (mJ) and the Aeration 21 

Ratio (ARn). AE is the flowability energy at 42 mms
-1 

air velocity, while AR is the factor 22 

by which the BFE is reduced by aeration (ARn=AE0/AEn). AR values of about 1, between 23 

1 and 20 and more than 20 respectively indicate very cohesive powders not sensitive to 24 

aeration, powders with average sensitivity to aeration, and powders very sensitive to 25 

aeration that tend to be fluidised. Measurements were performed in triplicates. 26 

Compressibility 27 

Compressibility test is aimed at determining how density changes as a function of applied 28 

normal stress. The results depend on several properties, such as cohesivity, particle size 29 

and shape. Powder was placed into a 50mm vessel, and subjected to three initial steps of 30 

conditioning. Then 8 compression tests (starting from 0.5kPa to 18kPa) were made, each of 31 
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them consisting of a period of 60 seconds. Results were in terms of bulk density after the 1 

compression test. 2 

Permeability 3 

Permeability test gives information on how easily a powder can transmit the air. As for 4 

compressibility, powder was placed into a 50mm vessel, and subjected to three initial steps 5 

of conditioning. Then 8 compression tests (starting from 1kPa to 15kPa) were made, at an 6 

air velocity of 2mm/s. Results were in terms of bulk density after the permeability test. 7 

Shear Cell 8 

Shear properties were measured with the Shear Cell Test. During the test, both vertical and 9 

rotational stresses were applied to the powder through a shear head. The shear head moved 10 

downwards inducing a normal stress until the required normal stress, σ, was reached. Then 11 

shear head begun a slow rotation inducing a shear stress, τ. Shear stress increased until the 12 

powder bed failed or sheared, maintaining constant the normal stress. The maximum shear 13 

stress was the Yield Point, or the Point of Incipient Failure. The measured parameters were 14 

Cohesion, Unconfined Yield Strength (UYS), Major Principal Stress (MPS), Angle of 15 

Internal Friction (AIF), Flowability (FFc) and Bulk Density (BD). Cohesion is the shear 16 

strength at zero normal stress. UYS is the compressive strength. MPS is the major 17 

consolidation stress given by Mohr stress circle of steady state flow. AIF is the angle 18 

between the axis of normal stress (abscissa) and the straight line given by the values of 19 

shear stress as a function of the values of normal stress. FFc is defined as MPS/Cohesion. 20 

Higher values of Cohesion and UYS, with consequently low values of FFc describe 21 

generally cohesive powders.  22 

More detailed information about the Shear Cell Test, as well as all the other tests, can be 23 

found in the manuals of Freeman Technology (http://www.freemantech.co.uk/).  24 

Names, acronyms, related test and instrument for each characterization variable used in 25 

this work are reported in the following table. 26 

Table 1 to be inserted here 27 

2.3 In vitro performance tests 28 

Dosage Sampling Unit Apparatus (DUSA) and Next Generation Impactor (NGI) were used 29 

in order to assess the in vitro performance of devices, after having verified that the active 30 

http://www.freemantech.co.uk/
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pharmaceutical ingredient was well distributed within the entire bulk of powder. This was 1 

done by High Pressure Liquid Chromatography (HPLC) analysis of samples taken from the 2 

bulk. DUSA and NGI instruments were provided by Copley Scientific, UK. HPLC Waters 3 

Agilent 1100, 1200, 1290 and Alliance 2695 with PDA2998 detector were used for 4 

chromatographic analysis. 5 

DUSA test allows the quantification of the Delivered Dose (DD), which is the total amount 6 

of drug emitted from the device and hence available to the patient. The powder weight of 7 

each dose is measured by an analytical balance as weight difference (Shot Weight, SW). 8 

After capturing the dose, the active drug is dissolved in solvent and an aliquot of the 9 

solution is then analysed by using High Pressure Liquid Chromatography. All 10 

measurements were made at the same conditions. 10 shots were collected for each device, 11 

arranged so as to cover the full range of inhalations (3 shots at the beginning, 4 at middle 12 

and 3 at the end). Shot Weight and Delivered Dose of each device were taken as the 13 

average based on the 10 shots. 14 

NGI test is a high performance particle classifying cascade impactor. It has seven stages 15 

plus a micro-orifice collector (MOC). The air flux transports the powder within the various 16 

stages of the impactor through a series of nozzles having a gradually reduced diameter. 17 

The most important parameters taken into account by analysing the amount of drug 18 

deposited on the various stages are the total or calculated delivered dose (CDD), the fine 19 

particle mass (FPM) and the mass median aerodynamic diameter (MMAD). FPM 20 

represents the amount of drug which particle size is under 5µm. As well as for DUSA test, 21 

analysis is made on different shots taken during the whole range of inhalation.  22 

At least two devices for each sample were analyzed, for both DUSA and NGI tests. 23 

2.4 Data Analysis  24 

Principal component analysis (PCA) has been used as an explorative multivariate data 25 

analysis tool [28] to assess batches differences in terms of powder properties and in vitro 26 

performance, as well as to get a first insight of their correlation structure.  27 

Partial Least Squares (PLS) Regression [29] has been used to derive predictive models of 28 

in vitro performance considering as dependent variables, Y (PLS-2), all variables arising 29 

from DUSA and NGI tests. In order, to establish the most significant explanatory variables 30 

that affect the response variables [30] the Variable Importance in Projection (VIP) 31 
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parameter has been used [26]. VIP values represent the influence of each variable, xj of the 1 

data matrix X, on the model of the responses matrix Y and are computed by using the PLS 2 

weight, wj, weighted by how much of Y is explained in each model dimension, according 3 

to the following equation: 4 

 (eq. 1) 5 

Where SSYa is the sum of squares of estimated Y by the a
th

 PLS component and waj is the  6 

PLS weight for the variable xj in the a
th

 component. This formula may be referred to a 7 

single ym variable (considering SSYm,a) or all Y variables altogether [24]. It is generally 8 

assumed that a significant variable can be selected when vj > 1, since the sum of squared 9 

VIP values close to the number of X-variables in the data set.   10 

Data preprocessing, PCA and PLS analyses were performed in R environment [31] by 11 

using the chemometric packgages developed by Varmuza and Filzmoser [32]. VIP 12 

calculation was performed using in-house routine implemented in R.    13 

Data sets and preprocessing 14 

Different data sets were considered to derive PCA and PLS-2 models, because some tests 15 

were not performed on all samples. The PCA data set includes all variables, i.e. thirty (the 16 

25 reported on Table 2 and the five in vitro performance variables described in 2.3 17 

section), for twenty-two samples, corresponding to batches obtained by five different 18 

formulations.  19 

PLS-2 regression models were calculated both considering all responses, and separately for 20 

DUSA variables (SW and DD) and NGI variables. Global model includes twenty-eight 21 

variables (23 explanatory variables and 5 response variables) for twenty-two samples. 22 

PLS-2 models for DUSA and NGI include respectively twenty-five variables (23 23 

explanatory variables and 2 response variables) for twenty-four samples and twenty-seven 24 

variables (23 explanatory variables and 3 response variables) for twenty-seven samples. 25 

CBD_Comp and CBD_Perm were not used as explanatory variables in the PLS-2 models 26 

in order to not reduce the dimension of the data sets in terms of samples. Moreover these 27 

variables resulted directly related to the other density variables, so their exclusion in the 28 

regression models should not constitute a limiting factor in terms of prediction.  29 
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All data sets were pre-processed with autoscaling.  1 

 Validation of PLS Models 2 

Both PLS-1 (only one response variable) and PLS-2 models were evaluated. When the 3 

responses variables to be modelled are not correlated an overall PLS-2 model can be less 4 

effective than the single response respective PLS-1 models. Therefore, a global PLS-2 5 

model was first considered, and then PLS-2 models were built taking into account only the 6 

groups of related response variables.  7 

Considering the very limited number of samples for proper validation, all PLS-Models 8 

were obtained according to the following schema: 9 

Assessment of model dimensionality: for each data set about 100 different splits in training 10 

and test (four samples) sets were randomly generated from the initial data table, but 11 

constraining the samples with the most extreme values of Y to be included in the training 12 

set, in order not to reduce the range of the Y values in calibration step. Root Mean Square 13 

Error in Cross Validation (RMSECV), using Leave-One-Out procedure, was assessed for 14 

each model, corresponding to a given split, as function of the number of PLS components. 15 

The average RMSECV value and its standard deviation were then used in order to select 16 

the most appropriate model dimensionality.  17 

The PLS model with a number of components corresponding to the minimum of the 18 

average RMSECV values was then used to estimate the test set samples for each split. The 19 

average RMSEP and its standard deviation were obtained and used to assess the predictive 20 

performance. 21 

     Analysis of the residuals and leverage was used for outliers identification and removal. 22 

Estimation of significant explanatory X variables: VIP values where calculated for each 23 

permutation model. 24 

After identifying the most significant explanatory variables, new PLS models were 25 

generated in order to predict the analytical variables using only the powder characterization 26 

tests containing the significant variables. The results were compared.  27 

PLS models were obtained including as samples all available batches also when having 28 

different formulation. Performance variables such as DD, FPM and CDD were converted 29 
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into percentages calculated on the respective target value related to each formulation, 1 

according to the following equation (example for DD): 2 

 (eq. 2) 3 

This choice was made in order to reduce the prediction error of the models, which was 4 

found to be initially high (respectively 53, 42 and 50%).  5 

 6 

3. Results and Discussions 7 

3.1 Exploratory data analysis 8 

An overview of samples trend and variables correlation structure can be gathered by PCA 9 

scores and loadings plots (Figures 1a and 1b). The first two principal components, which 10 

explained the 57% of the data variance, depicted the most structured information. Samples 11 

were partially grouped according to their formulation, as shown in the Scores Plot (Figure 12 

1a). Samples that differ for increasing amounts of active ingredient had consequently 13 

higher values of DD, CDD and FPM (Delivered Dose of DUSA and NGI Test, Fine 14 

Particle Mass). These variables are placed at positive values of PC1 in the Loadings Plot 15 

(Figure 1b). When the quantity of active ingredient increases, going from formulation A to 16 

E, and thus increasing the number of micronized particles, there is a general increase in the 17 

cohesiveness of the powder, and in flow properties (in particular BFE, SE, FRI). In fact, 18 

BFE, FRI and SE are directly correlated with the amount of active ingredient. Low BFE 19 

values are generally associated with powders that have good flow properties.  20 

Samples related to formulation A and B have BFE values of 130-300 mJ while 21 

formulations C, D and E have values of 300-650 mJ. FRI describes the flow rate sensitivity 22 

of powders. FRI varied approximately between 0.73 and 1.13 when increasing the amount 23 

of the active ingredient for the samples taken into account, describing powders with low 24 

flow rate sensitivity (characteristics observed for values of about 1 or <1.0). Powders with 25 

these characteristics can be processed with low shear mixing operations, minimising the 26 

possibilities of particle attrition and increase of electrostatic charge while still ensuring 27 

homogeneity.  28 

SW and all density variables (green coloured) are directly correlated. This is a consequence 29 

of the drug delivery system: the quantity of powder per single delivered dose is equal to the 30 



 12 

quantity of powder that is placed gravimetrically within a volume defined by a bulk 1 

reservoir.  2 

The increase of density seems associated with powders having a higher percentage of fine 3 

particles in the region under 355µm, whose corresponding variables have positive PC1 4 

values in the Loadings Plot, and thus a lower percentage of particles of particle size 5 

between 425µm and 355µm (coarse particles). Particle size lower than 212µm is very close 6 

to density variables, hence directly correlated, this is confirmed by the Pearson correlation 7 

coefficient of 0.73 between particle size <212µm and Tapped Density.  8 

Flowability and aeration properties (AIF, FF and AE_42) are placed opposite to SW and 9 

densities (Figure 1b). Aeration Ratio (AR) varied approximately between 9 and 60, 10 

describing powders with average and high sensitivity to aeration. Lower values of energy 11 

of aeration describe powder that are easily subjected to flow; samples with this behaviour 12 

are also those to which correspond an higher value of shot weight, that is the quantity of 13 

powder related to the delivery system. 14 

Figure 1 to be inserted about here 15 

3.2 Regression  analysis 16 

A global PLS-2 regression model was obtained considering all the five analytical variables 17 

(DUSA and NGI tests), the predictive capability of the model is reported in Table 2. The 18 

PLS X-weights and Y-Loadings plots are reported in Figure 2 (respectively 2a and 2b), for 19 

the PLS-2 model corresponding to one of the split. For this model, percentage values of 20 

DD, CDD and FPM were used, as reported in the 2.4.2 section. This explain why they 21 

show a slightly different correlation pattern in the space of the first two PLS components 22 

with respect to the results of the PCA model, in terms of a decrease in the degree of 23 

correlation between cohesiveness and performance variables. 24 

Table 2 to be inserted here 25 

Figure 2 to be inserted about here 26 

The other variables confirm the relationships previously observed in PCA space. 27 

However PLS results, in term of prediction, improved when PLS-2 models were obtained 28 

considering as Y-block groups of analytical variables correlated. Thus, distinct PLS-2 29 
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models were developed considering as Y-block Shot Weight (SW), Delivered Dose (DD) 1 

of DUSA test, and FPM, CDD, and MMAD of NGI test, respectively.  2 

3.2.1 DUSA variables 3 

A PLS-2 model was developed for each of the splits in training and test sets (obtaining 99 4 

models), as described in the 2.4.2 section. The resulting average Root Mean Square Error 5 

in Cross Validation (RMSECV) is reported for each response variable versus the number 6 

of components (Figure 3). The minimum RMSECV value corresponds to three 7 

components, after which it increases, along with its uncertainty.  8 

Figure 3 to be inserted about here 9 

Figure 4 to be inserted about here 10 

Inspection of the PLS inner relationships plots supported the choice of three PLS 11 

components as optimal model dimensionality (Figure 4, for one of the split). The PLS 12 

regression coefficients, for SW and DD of one of the split model, are reported in Figure 5 13 

and show quite similar trends: density, flowability (FF) and particle size (<212µm and 14 

<355µm) present the most positive values of regression coefficients (direct correlation), 15 

while Energy of Aeration (AE), Cohesivity (MPS) presented the most negative ones 16 

(inverse correlation). 17 

Figure 5 to be inserted about here 18 

Figure 6 to be inserted about here 19 

 As mentioned in Methods section, VIP values were calculated, separately for SW and DD 20 

(Figure 6), in order to assess significant explanatory variables. The density variables 21 

(CBD, PDensity, TDensity and BD), the energy of aeration (AE), the particle size (in 22 

particular the 212µm) and MPS are significant for both response variables. 23 

These variables, considered for each formulation, can depict the effect of process 24 

parameters such as mixing and sieving and of starting materials that confer to the powders 25 

different profiles of particle size, different density and aeration energy. The cohesiveness 26 

variables, correlated with the amount of active ingredient are, at variance, not so useful for 27 

prediction of SW and DD.   28 

Figure 7 to be inserted about here 29 
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Figure 7 shows the predicted versus measured values (for each sample there are several 1 

repetitions that correspond to estimated response by each of the 99 PLS models); black 2 

numbers indicate the samples when included in the training set (fit) and red numbers 3 

indicate the samples when used as a test (predicted). The average Root mean squares error 4 

for test samples (RMSEP), i.e. red points, was 2.57% and 2.02% for SW and DD 5 

respectively. This performance was quite satisfactory considering the uncertainty of the 6 

reference method, which is respectively 4.95% and 5.60%. 7 

The results of the PLS-2 model obtained reducing the number of descriptor variables by 8 

considering only the most significant variables according to their VIP values, namely 9 

Stability and Aeration variables, are summarized in Table 3. The model was computed 10 

considering 3 PLS components.  11 

Table 3 to be inserted here 12 

The performance of the models with reduced variables was similar meaning that SW and 13 

DD can be estimated with the two mentioned tests, thus reducing the time and analysis 14 

costs. 15 

3.2.2 NGI variables 16 

A PLS-2 model with one latent variable, according to minimum average RMSECV, was 17 

developed for each of the 100 splits of training and test sets.  18 

Percentage values for CDD and FPM were used. This PLS model however, was not as 19 

performing as the models for SW and DD. RMSEC and RMSEP values are shown in Table 20 

4. 21 

Table 4 to be inserted here 22 

 23 

PLS regression coefficients are reported in Figure 8 (for one of the split), while Figure 9 24 

reports the plot of VIP for each response variable (average and standard deviation based on 25 

all splits).   26 

Figure 8 to be inserted here 27 

Figure 9 to be inserted here 28 
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 1 

It can be seen that SI variable from Stability test is significant for all considered responses, 2 

together with PDensity, TDensity, BD, AIF and particle size variables. SI, Density and 3 

particle size under 355µm had negative values of regression coefficient for CDD and FPM, 4 

while positive for MMAD. FF and particle size under 425µm had positive values of 5 

regression coefficient for CDD and FPM, while negative for MMAD. The observed 6 

different influence of particle size on MMAD depending on the fine fraction considered 7 

seems in agreement with the complex relation, as observed by Podczeck et al. [10] among 8 

fine carrier particles, the micronized drug particles and the surface roughness of carrier. 9 

SI is a parameter that describes the change in energy between test 1 and test 7 of the 10 

Stability test. Several factors can be responsible for instability of powder, resulting in SI 11 

values higher or lower than 1. Some of these factors are de-aeration, agglomeration, 12 

segregation, electrostatic charging, which led to SI values higher than 1, and attrition, de-13 

agglomeration, blending of a flow additive, which led to SI values lower than 1. SI values 14 

range from 0.9 and 1.1. This variable is directly correlated to MMAD for each formulation, 15 

meaning that attrition phenomena, changing the physical size and shape of particles 16 

through mechanical stress can result in different values of mass median aerodynamic 17 

diameter, and thus in an increase or decrease of performance in terms of FPM and CDD.  18 

Density, flowability (AIF, FF) and particle size variables have an influence on performance 19 

and the same considerations given in the Explanatory data analysis section hold.  20 

These results are consistent with previous studies [10,17, 33-37], which highlighted how 21 

shape, size and powder flow properties can influence the mixing and DPI performance. In 22 

terms of DPI performance, Kaialy et al. [33] supported that the shape of carrier particles in 23 

terms of elongation ratio (ER) directly influence the amounts of active delivered to lower 24 

airway regions indicating enhanced DPI performance. In addition, Jones & Price [36] 25 

argued that the addition of fine particles of lactose or one of many other excipients to a 26 

formulation increases formulation performance. In terms of mixing performance, Muzzio 27 

et al. [17, 37] investigated the effect of flow properties and shear environment in 28 

continuous mixing, observing that bulk density showed a significant effect in terms of 29 

significant resident time and that impeller speed and cohesion of powder showed a 30 

significant interacting effect on the axial dispersion coefficient. 31 

 32 
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4. Conclusions  1 

Multivariate data analysis of powder characterization tests and in-vitro performance tests 2 

allowed capturing the salient aspects that influence the performance of DPI devices.  3 

Powders resulted to be more cohesive when increasing the quantity of the active 4 

ingredient. The increase of density was associated with powders having a lower percentage 5 

of particles having particle size between 425µm and 355µm (coarse particles). The 6 

delivery system was mainly affected by properties such as density, particle size, flowability 7 

and aeration properties.  8 

Moreover, predictive models were derived to estimate in-vitro performance from powder 9 

characterization tests. Notwithstanding the entity of the errors these model can always be 10 

used to assess with less efforts batches quality and thus to aid tuning of process settings in 11 

the scale up phase.  12 

Among all variables, SW and DD (DUSA tests) were the ones better predicted. In 13 

particular using only variables measured by Stability and Aeration tests, which took a few 14 

hours of executions, the error provided by these models in predicting unknown samples 15 

was respectively of 2.3% and 1.8% for SW and DD. This result was due to the good 16 

correlation of SW and density variables with the energy of aeration (powder property of 17 

being aerated), which in turn affects the total delivered dose, as the result of the reservoir-18 

based device. Performance response variables (NGI test) were predicted with a greater 19 

error, going from 4.3% up to 11.4%. The differences in performance relative to each 20 

formulation were mainly due to the particle size and shape of the powder, which in turn 21 

affects density and stability of powder during the execution of the Stabilty Test. These 22 

considerations are in agreement with results reported by several studies [10,17, 33-37]. 23 

In order to meet the needs of the scale-up process, in which the number of tested batches 24 

was kept to the minimum necessary, PLS predictive models were obtained for samples 25 

having different formulations. In NGI prediction, probably a PLS model for each single 26 

formulation could provide better results. 27 

Finally, as far as the multivariate data analysis approach is concerned recent studies [38-28 

39] have shown as a quality by design approach allowed developing predictive models for 29 

powder flowability as a function of particle size and shape distribution [38] as well as to 30 

obtain optimal flow properties for four-components powder mixtures [39]. These 31 
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approaches are extremely useful to develop dry powder inhaler formulation and for process 1 

optimization. 2 

The predictive models developed in the present work address the stage of scale-up where 3 

for the limited number of batches allowed not always a proper experimental design 4 

approach is feasible/accepted; in this context models for faster estimation of in vitro 5 

performance may aid finding best process setting. 6 
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 1 

Caption of Figures and Tables. 2 

Figure 1: (a) PC1 vs PC2 Scores plot. Batches are coloured by formulation; (b) PC1 vs 3 

PC2 Loadings plot. Variables are coloured according to type of test: green – Density 4 

variables; grey – Particle size; blue – Aeration test; red – Stability test; violet – Shear Cell 5 

test; light blue – Ability to Settle; black – Dusa variables; orange – NGI variables. Names 6 

of variables are reported in Table 1. 7 

Figure 2: PC1 vs PC2 of PLS X-weights (a) and Y-Loadings (b). X Variables are coloured 8 

according to type of test: green – Density variables; grey – Particle size; blue – Aeration 9 

test; red – Stability test; violet – Shear Cell test; light blue – Ability to Settle. Names of 10 

variables are reported in Table 1. 11 

Figure 3: RMSECV versus the number of PCs. (a) SW and (b) DD response variables 12 

(DUSA Test). 13 

Figure 4: PLS Inner Relationships of one of the 99 PLS-2 models (the same trends are 14 

observed for all the other models), for the first three principal components. 15 

Figure 5: PLS regression coefficients for SW (a) and DD (b) for one of the split model. 16 

Figure 6: VIP values for SW (a) and DD (b) responses. Error bar corresponds to 17 

uncertainty estimated by considering the 99 permutation models. 18 

Figure 7: Predicted vs measured values for SW (a) and DD (b) responses. In black training 19 

samples, in red test samples. 20 

Figure 8: PLS regression coefficients for CDD (a), FPM (b) and MMAD (c) for one of the 21 

split model. 22 

Figure 9: VIP values for CDD (a), FPM (b) and MMAD (c) responses. Error bar 23 

corresponds to uncertainty estimated by considering the 100 permutation models. 24 

Table 1:  Description of powder properties variables. 25 

Table 2: PLS-2 model performance for DUSA and NGI responses. The average error and 26 

the corresponding standard deviation, in fit and prediction, over the 93 permutation models 27 

are reported.  28 

Table 3: PLS-2 model performance for DUSA responses. The average error and the 29 

corresponding standard deviation, in fit and prediction, over the 99 permutation models are 30 

reported.  31 

Table 4: PLS-2 model performance for NGI responses. The average error and the 32 

corresponding standard deviation, in fit and prediction, over the 100 permutation models 33 

are reported. 34 
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Table 1:  Description of powder properties variables. 

Acronym Variable Name u.m.a Test Instrument 

PDensity Poured Density g/ml 

Density 

Tapped 

Density 

Tester IG4 

TDensity Tapped Density g/ml 

AbSettle Ability to Settle ml 

Under X 

% of powder with particle size  

under X, where X is: 425µm, 

355µm, 300µm, 250µm, 212µm, 

200µm and 180µm 

% Particle Size 

Vibratory 

Sieve Shaker 

AS 200 

Control 

AE Aeration Energy mJ 

Aeration 

FT4 

Rheometer 

AR Aeration Ratio Dimensionless 

BFE Basic Flowability Energy mJ 

Stability 

SI Stability Index Dimensionless 

FRI Flow Rate Index Dimensionless 

SE Specific Energy mJ/g 

CBD Conditioned Bulk Density g/ml 

Cohes Cohesion kPa 

Shear Cell 

UYS Unconfined Yield Strength 

(UYS) 

kPa 

MPS Major Principal Stress (MPS) kPa 

AIF Angle of Internal Friction (AIF) ° 

FF Flowability (FFc) dimensionless 

BD Bulk Density (BD) g/ml 

CBD_Comp Conditioned Bulk Density of 

Compressibility 

g/ml Compressibility 

CBD_Perm Conditioned Bulk Density of 

Permeability 

g/ml Permeability 

 

 

Table 1 revised



Table 2: PLS-2 models performance for DUSA and NGI responses. The average error and the corresponding 

standard deviation, in fit and prediction, over the 93 permutation models are reported.  

 

Y response variable Average RMSEC / std dev.   Average RMSEP / std. dev. 

SW 2.12%+/-1.37% 3.26%+/-1.66% 

DD 1.87% +/- 1.30% 2.68% +/- 2.14% 

CDD 3.50% +/- 3.24% 5.56% +/- 4.67% 

FPM 9.65% +/- 7.58% 11.61% +/- 7.85% 

MMAD 9.27% +/- 5.91% 15.02% +/- 9.43% 

 

Table 2



Table 3: PLS-2 models performance for DUSA responses. The average error and the corresponding standard 

deviation, in fit and prediction, over the 99 permutation models are reported.  

 

Model X-variables y  

Average 

RMSEC / std 

dev.   

Average 

RMSEP / std. 

dev. 

y 

Average 

RMSEC / std 

dev.   

Average 

RMSEP / std. 

dev. 

I All  SW 1.83 +/- 1.30% 2.57 +/- 1.77% DD 1.49 +/- 1.06% 2.02 +/-1.36% 

II 

Only variables 

obtained by 

Stability and 

Aeration Tests 

SW 2.09 +/- 1.28% 2.33 +/- 1.54% DD 1.47 +/- 1.11% 1.82 +/- 1.26% 

 

Table 3



Table 4: PLS-2 models performance for NGI responses. The average error and the corresponding standard 

deviation, in fit and prediction, over the 100 permutation models are reported. 

 

Y response variable Average RMSEC / std dev.   Average RMSEP / std. dev. 

CDD 4.65% +/- 3.88% 4.34% +/- 2.97% 

FPM 9.95% +/- 7.44% 10.67% +/- 8.07% 

MMAD 9.27% +/- 5.42% 11.42% +/- 7.66% 

 

Table 4


