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In this paper an experimental study on circular cylindrical shells subjected to axial compres-
sive and periodic loads is presented. The setting of the experiment is explained and deeply
described along with a complete analysis of the results. The linear and the nonlinear dynamic
behaviour associated with a combined effect of compressive static and a periodic axial load
has been considered and a chaotic response of the structure has been observed close to the
resonance. The linear shell behaviour is also investigated by means of a theoretical and finite
element model, in order to enhance the comprehension of experimental results, i.e. the natural
frequencies of the system and their ratios.

1. Introduction

Circular cylindrical shells are important elements in many Engineering fields e.g. Aerospace,
Nuclear, Civil and the need of more and more efficient structures in terms of strength and weight
led to a strong reduction of safe factors; one of the direct consequences of weight reduction is the
increasing of vibration problems. Nowadays, several commercial softwares allow to carry out static,
stability and vibration analyses; however, regarding the shell dynamics, such kind of analyses are gen-
erally reliable in the linear field only. Difficulties in developing accurate models for shell structures
were the motivations of a large scientific production, withal there are few experimental studies about
dynamic instabilities and the comparisons between theory and experiments are not yet satisfactory.
The fundamental investigation on the stability of circular cylindrical shells is due to Von Karman and
Tsien [1] that analyzed the static stability (buckling) and the postcritical behavior of axially loaded
shells. In this study, it was clarified that the discrepancies between forecasts of linear models and
experimental results were due to the intrinsic simplifications of linear models; indeed, linear analyses
are not able to predict the actual buckling phenomenon observed in experiments. Vijayaraghavan and
Evan-Iwanowski [2] analyzed, both analytically and experimentally, the parametric instabilities of a
circular shell under seismic excitation. The cylinder position was vertical and the base was axially
excited using a shaker. Instability regions are found analytically and compared to experimental re-
sults. The Donnells nonlinear shallow-shell theory [3] was used by Gonalves and Del Prado [4] to
analyze the dynamic buckling of a perfect circular cylindrical shell under axial static and dynamic
loads. Pellicano and Avramov [5] published a paper concerning the nonlinear dynamics of a shell
with base excitation and a top disk. The work was mainly theoretical and only some experimental
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Table 1: Natural frequencies of mode (1,4) at increasing preload.

Preload (N ) Natural Frequency (FEM) (Hz) Natural Frequency (Experimental) (Hz) relative error (%)
0 1623 1621 0.1

50 1619 1614 0.3
100 1616 1610 0.4
150 1612 1604 0.5
200 1608 1598 0.6
250 1604 1592 0.7

results concerning the linear dynamics were presented. The shell was modeled using the nonlinear
Sanders Koiter theory [3] and a reduced order model was used. Kubenko and Kovalchuk [6] pub-
lished an experimental work focused on shells made of composite materials; they pointed out the
inadequateness of the linear viscous damping models. Axial loads (base excitation, and free top end
of the shell) as well as combined loads were considered. Dynamic instability regions were determined
experimentally: a disagreement between previous theoretical models (narrower region) and experi-
ments (wider) was found, the conjecture made by such scientists was that the disagreement was due
to shells geometric imperfections. Such paper summarizes some of experimental results published
on a previous book (Kubenko et al.) [7] (see e.g. page 123, figure 2.23 gives an interpretation of the
enlargement of instability boundaries)

In the present paper, circular cylindrical shells subjected to axial loads having static (compres-
sive) and harmonic components are investigated.

2. Finite element analysis

Finite Element modal analysis has been carried out for each step of the applied preload. Mode
shape description for a generic mode (m,n) [8] is characterized with an own mode shape where:

m number of longitudinal half-waves (m = 1,2,3,..)

n number of circumferential waves (n = 1,2,3,..)

In Figure 1 the modal shape of mode (1,4) is shown. In Table 1 a comparison between numerical and
experimental frequency for mode (1,4) is shown.

Figure 1: F.E.M. analysis, mode (1,4)

3. Experiments

This section provides informations about the experimental setup developed to test thin shell
structures under constant axial load and periodical excitation. In Figure 2 a schematic representation
of the setup is shown. A shaker is rigidly inserted in a frame designed for the application of the
preload. Connections to the system for data acquisition are shown.
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3.1 Description

The system under investigation consists of a circular cylindrical shell, made of aluminum alloy,
clamped both base and top sides by means of two worm gear clamps at two rigid supports. The bottom
support is an aluminum alloy circular disk rigidly bolted to the shaker. The top disk is connected to
the frame by means of a dynamic load cell, a stinger, and a static load cell. The stinger is introduced
in order to reduce the effects of misalignments. A laser vibrometer is used to measure the velocity of
the side of the shell and its output is routed both to the spectrum analyzer and to the LDS controller.
The control system is open-loop in order to avoid control instabilities induced by nonlinear behavior
of the tested structures.

The characteristics of the shell are the following: length L = 0.137m, thickness h = 0.1 ×
10−3m, mean radius R = 32.9×10−3m, density ρ = 2796 kg

m3 , Young’s modulus E = 71.020×109 N
m2

, Poisson’s ratioν = 0.31 and static preload P0 = 0− 250N .

Figure 2: System setup: (1) structure under test (2) shaker (3) shaker amplifier (4) air cool system (5)
static load cell (6) digital load gauge (7) force transducer pcb m231b (8) force transducer amplifier (9)
press system to apply static preload (10) laser vibrometer (11)laser controller (12) lds dactron laser
usb shaker control system (13) pc (14) spectrum analyzer ono-sokki cf-5220.

The press system has been suitably designed for this research. A screw can move up or down a
plate which applies the desired preload to the shell, both compressive and tractive. A static load cell
AEP transducers TC8 10KN” is interfaced with a digital load gauge that displays the exact preload
applied to the shell. The Shaker LDS V530 is integrated rigidly in the press system structure, is
powered independently and equipped with a system of air cooling.

The laser vibrometer is targeted on the shell surface and plays a significant role as it measures
velocity data acquisition on the shell side without interfering with it. This point is very significant for
thin structures, because the use of a standard accelerometer would introduce an undesired extra mass,
thus altering the symmetry of the structure. The signal coming from the laser is splitted and directed
both to the spectrum analyzer, used to detect the regions of instability, and to the LDS controller.

3.2 Data Presentation

In this section all tests carried out on the shell are described. Formerly a few tests were done
to calibrate the devices properly, then several combination were investigated for different preloads.
The experimental analysis was carried out by sweeping frequencies from 700Hz to 2500Hz, with
a step rate of 7.5 Hz per second, starting from the highest frequency (2500Hz) towards the lower
frequency (700Hz) and backwards, each time varying the magnitude of the oscillations generated
from the shaker, from 0.1 V with regular steps of 0.1 V up to the maximum value of 1.0 V. These
sweeps were repeated, not only by varying the power supplied to the shaker, but also by imposing an
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increasing axial static compressive load P0. The static axial load is increased from 0N up to 250N
(safety limit to avoid shaker damage). Results are presented for preload values of 0N , 100N and
250N and for voltage levels of 0.5V and 0.8V . In Figures 3 and 4, d and u represent the decreasing
frequency sweep (d, down) and the increasing frequency sweep (u, up).

3.2.1 External Load Amplitude of 0.5 volt

In Figure 3 the dynamic axial load vs frequency is plotted whereas in figure 4 the amplitude of
vibration of the shell (in terms of velocity) vs.-frequency are shown.

(a) (b)

Figure 3: Dynamic load-frequency diagram for different preloads at 0.5 volt.

Dynamic load-frequency diagrams show a reduction in terms of resonance frequency for in-
creasing preloads. The amplitude of the resonance peak has a peculiar behavior: it has a maximum
value of 350N for the mid value of preload (100N), see Figure 3b. This point needs further investiga-
tions. The same behavior can be observed in terms of velocity amplitude at the target point, see Figure
4. The maximum velocity, i.e. the maximum amplitude of vibration, is seen for P0 = 100N . The
velocity frequency diagram shows another resonance between 1300 and 1350 Hz. For this resonance,
the amplitude of vibration is minimum for P0 = 100N .
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Figure 4: Amplitude-frequency diagram for different preloads at 0.5 volt.

3.2.2 External Load Amplitude of 0.8 volt

Figure 5 and 6 present the corresponding experimental results for 0.8V excitation amplitude.
From Figure 5a and 5b it is noted that increasing the static load P0, the maximum peak in dynamic
load is reduced. The system presents the opposite behavior with respect to the case of 0.5V excitation.
Moreover, Figure 6 shows again the frequency reduction due to the preload.

4. Measured non linear phenomena

The behavior of the structure close to the mode (1,4) is investigated. Numerical and experimen-
tal analyses show that this mode is close to 1623 Hz (see Table 1) and it is quite far from other modes.
The amplitude-frequency diagram for such resonance is shown in Figure 7. In order to describe the
nonlinear behavior close to the resonance, it is useful to introduce the following dimensionless values:
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(a) (b)

Figure 5: Dynamic load-frequency diagram for different preloads at 0.8 volt.
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Figure 6: Amplitude-frequency diagram for different preloads at 0.8 volt.

1. ωx = ωn/ω0,1 , is the ratio between the frequency corresponding to the maximum amplitude for
the n-th excitation amplitude and the frequency at which the maximum occurs for the reference
case (0.1 V);

2. vx = vn/v0,1 , is the ratio between the corresponding maximum velocities.
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Figure 7: Amplitude-frequency diagram. mode (1,4); P0 = 100N ; voltage levels 0.1-1V

Figure 8: Amplitude-frequency diagram comparison of mode (1,4) with different preloads (0N, 100N
and 250N) at 0.8 volt

In terms of dimensionless variables, the backbone can be drawn by interpolating the maxima,
Figure 7 it results that the shell presents a softening behavior. The backbone curve moves to the left
with respect to the vertical line through the resonance frequency.

Figure 8 shows dependence of the non linear behavior on the different values of the preload.
The preload of 100N produces a less softening resonance, with respect to the non preloaded case and
the case of 250N preload.
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5. Nonstationary response

Tests performed on the shell structure pointed out the existence of certain frequency intervals
characterized by high amplitude of vibration and complex dynamics; in the following we will call
them ”instability regions”, this gives the clear idea that the periodic orbit has lost stability. Table 2
summarizes the instability ranges found during experiments and Figures 9 - 12 shows the time histo-
ries and spectra of the lateral shell vibration at different forcing loads and with a static compression
of 100N .

Table 2: Frequency ranges of instability regions with different preload.

P0 (N ) Voltage level (V ) Instability range (Hz)

100
0.8 1210.01 - 1217.92
0.9 1205.61 - 1218.80
1.0 1201.22 - 1225.84

150
0.7 1208.25 - 1210.01
0.8 1202.97 - 1212.53
0.9 1199.46 - 1215.29
1.0 1196.82 - 1221.44

200
0.7 1209.13 - 1211.77
0.8 1207.37 - 1213.53
0.9 1195.06 - 1215.29
1.0 1191.54 - 1218.80

250
0.5 1208.25 - 1215.29
0.6 1204.73 - 1221.44
0.7 1202.92 - 1234.63
0.8 1198.53 - 1236.39
0.9 1194.18 - 1238.42
1.0 1189.78 - 1242.42
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Figure 9: Time history and Spectrum at 900 Hz forcing load

In Figure 9 the dynamic scenario is represented, the excitation frequency is 900Hz. The re-
sponse is quasi-periodic, i.e. there is an amplitude modulation that presents two time scales: i) a slow
time scale with period of 2s (see 0.5Hz sidebands); ii) intermediate time scale with period of 10-2s
(see 100Hz sidebands). The response is dominated by the second main spectral harmonics (1800Hz),
suggesting an important role of quadratic nonlinearities; this role is also confirmed by the loosing of
symmetry in the time response (max = 0.2m/s, min = −0.25m/s).
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Figure 10: Time history and Spectrum at 1100 Hz forcing load
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Figure 11: Time history and Spectrum at 1182 Hz forcing load

At 1100Hz (Figure 10) the scenario changes; here the energy in frequency domain is mainly
concentrated at 1100 and 3300Hz. This means that here the linear and cubic behaviors are dominant;
note that this is confirmed by the symmetry in the time history.
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Figure 12: Time history and Spectrum at 1230 Hz forcing load

At 1182Hz (Figure 11) an interesting phenomenon takes place, the response is quasi-periodic
but something interesting happens in the periodicity. The main spikes in the spectrum are spaced of
about 590Hz, i.e. one half the excitation frequency. This means that the periodic part of the response
presents a fundamental frequency of 590Hz. The straightforward consideration is that the response
is one half sub-harmonic; this is partially contradicted by the spectrum that does not present spikes
at 590Hz. However, if one zooms around 590Hz, then will disclose an extremely small peak. Our
conjecture is that the response is sub-harmonic and the amplitude of the fundamental harmonic is
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negligible.

6. Conclusions

The dynamic behavior of a thin cylindrical shell under static axial preload and harmonic external
axial load has been characterized. An ad hoc setup has been developed in order to measure both
the dynamic load and the amplitude of vibration on the shell surface. Tests performed at different
preload values and different amplitudes of the external excitation pointed out the existence of non
linear behavior in certain instability ranges. Chaos is found close to 1230 Hz and a very well defined
softening behavior can be observed close to the mode (1,4). Non linear dependence of the response on
the preload parameter is observed. Further experiments and correlation with numerical and theoretical
models need to be performed in order to fully understand the observed phenomena.
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